Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review
Abstract
:1. Introduction
2. Thermal Post-Treatment
2.1. Thermal Post-Treatment at Moderate Temperature
2.2. Thermal Post-Treatment at High Temperature
2.3. Thermal Post-Treatment at High Temperature Followed by Explosion
2.4. Thermal Post-Treatment—Discussion and Perspectives
3. Mechanical Post-Treatment
3.1. Comminution
3.2. Ultrasonication
3.3. Mechanical Post-Treatment—Discussion and Perspectives
4. Chemical Post-Treatment
4.1. Oxidative Post-Treatment
4.2. Acidic Post-Treatment
4.3. Alkaline Post-Treatment
4.4. Chemical Post-Treatment—Discussion and Perspectives
5. Biological Post-Treatment
5.1. Enzymatic Post-Treatment
5.2. Microbial Aerobic Post-Treatment
5.3. Biological Post-Treatment—Discussion and Perspectives
6. General Discussion and Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | anaerobic digestion |
BMP | biochemical methane potential |
COD | chemical oxygen demand |
C/N | carbon to nitrogen ratio |
CSTR | continuous stirred tank reactor |
EPS | extracellular polymeric substances |
GHG | greenhouse gases |
HRT | hydraulic retention time |
OBM | organic-binding metals |
OLR | organic loading rate |
SFD | solid fraction of digestate |
SS | suspended solids |
SSF | solid state fermentation |
TS | total solids |
VFA | volatile fatty acid |
VS | volatile solids |
WAS | waste activated sludge |
WD | whole digestate |
WRF | white-rot fungi |
WWTP | wastewater treatment plant |
References
- Christy, P.M.; Gopinath, L.R.; Divya, D. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew. Sustain. Energy Rev. 2014, 34, 167–173. [Google Scholar] [CrossRef]
- Sun, L.; Müller, B.; Schnürer, A. Biogas production from wheat straw: Community structure of cellulose-degrading bacteria. Energy Sustain. Soc. 2013, 3, 15. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Cao, X.; Sun, R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 2016, 199, 49–58. [Google Scholar] [CrossRef]
- Kim, H.W.; Nam, J.Y.; Shin, H.S. A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system. Bioresour. Technol. 2011, 102, 7272–7279. [Google Scholar] [CrossRef]
- Kim, H.W.; Nam, J.Y.; Kang, S.T.; Kim, D.H.; Jung, K.W.; Shin, H.S. Hydrolytic activities of extracellular enzymes in thermophilic and mesophilic anaerobic sequencing-batch reactors treating organic fractions of municipal solid wastes. Bioresour. Technol. 2012, 110, 130–134. [Google Scholar] [CrossRef]
- Parawira, W. Enzyme research and applications in biotechnological intensification of biogas production. Crit. Rev. Biotechnol. 2012, 32, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Carrere, H.; Antonopoulou, G.; Affes, R.; Passos, F.; Battimelli, A.; Lyberatos, G.; Ferrer, I. Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresour. Technol. 2016, 199, 386–397. [Google Scholar] [CrossRef]
- Takashima, M.; Tanaka, Y. Acidic thermal post-treatment for enhancing anaerobic digestion of sewage sludge. J. Environ. Chem. Eng. 2014, 2, 773–779. [Google Scholar] [CrossRef]
- Zhen, G.; Lu, X.; Kato, H.; Zhao, Y.; Li, Y.Y. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sustain. Energy Rev. 2017, 69, 559–577. [Google Scholar] [CrossRef]
- Lebiocka, M.; Montusiewicz, A.; Cydzik-Kwiatkowska, A. Effect of bioaugmentation on biogas yields and kinetics in anaerobic digestion of sewage sludge. Int. J. Environ. Res. Public Health 2018, 15, 1717. [Google Scholar] [CrossRef] [Green Version]
- Angelidaki, I.; Boe, K.; Ellegaard, L. Effect of operating conditions and reactor configuration on efficiency of full-scale biogas plants. Water Sci. Technol. 2005, 52, 189–194. [Google Scholar] [CrossRef]
- Sambusiti, C.; Monlau, F.; Ficara, E.; Musatti, A.; Rollini, M.; Barakat, A.; Malpei, F. Comparison of various post-treatments for recovering methane from agricultural digestate. Fuel Process. Technol. 2015, 137, 359–365. [Google Scholar] [CrossRef]
- Brémond, U.; Bertrandias, A.; Loisel, D.; Jimenez, J.; Steyer, J.P.; Bernet, N.; Carrere, H. Assessment of fungal and thermo-alkaline post-treatments of solid digestate in a recirculation scheme to increase flexibility in feedstocks supply management of biogas plants. Renew. Energy 2020, 149, 641–651. [Google Scholar] [CrossRef]
- Gullón, P.; Romaní, A.; Vila, C.; Garrote, G.; Parajó, J.C. Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels Bioprod. Biorefin. 2012, 6, 219–232. [Google Scholar] [CrossRef]
- Bougrier, C.; Delgenès, J.P.; Carrère, H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chem. Eng. J. 2008, 139, 236–244. [Google Scholar] [CrossRef]
- Paudel, S.R.; Banjara, S.P.; Choi, O.K.; Park, K.Y.; Kim, Y.M.; Lee, J.W. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresour. Technol. 2017, 245, 1194–1205. [Google Scholar] [CrossRef]
- Wang, W.; Lee, D.J. Valorization of anaerobic digestion digestate: A prospect review. Bioresour. Technol. 2020, 323, 124626. [Google Scholar] [CrossRef] [PubMed]
- Kaparaju PL, N.; Rintala, J.A. The effects of post-treatments and temperature on recovering the methane potential of >2 mm solid fraction of digested cow manure. Environ. Technol. 2005, 26, 625–632. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Thygesen, A.; Thomsen, A.B.; Schmidt, J.E. Anaerobic digestion of waste activated sludge—Comparison of thermal pretreatments with thermal inter-stage treatments. J. Chem. Technol. Biotechnol. 2011, 86, 238–245. [Google Scholar] [CrossRef]
- Menardo, S.; Balsari, P.; Dinuccio, E.; Gioelli, F. Thermal pre-treatment of solid fraction from mechanically-separated raw and digested slurry to increase methane yield. Bioresour. Technol. 2011, 102, 2026–2032. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahring, B.K. Anaerobic Digestion of Digested Manure Fibers: Influence of Thermal and Alkaline Thermal Pretreatment on the Biogas Yield. BioEnergy Res. 2020, 1–10. [Google Scholar] [CrossRef]
- Bruni, E.; Jensen, A.P.; Angelidaki, I. Steam treatment of digested biofibers for increasing biogas production. Bioresour. Technol. 2010, 101, 7668–7671. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.; Ahring, B.K. Improving the biogas yield of manure: Effect of pretreatment on anaerobic digestion of the recalcitrant fraction of manure. Bioresour. Technol. 2021, 321, 124427. [Google Scholar] [CrossRef] [PubMed]
- Bjerg-Nielsen, M.; Ward, A.J.; Møller, H.B.; Ottosen, L.D.M. Influence on anaerobic digestion by intermediate thermal hydrolysis of waste activated sludge and co-digested wheat straw. Waste Manag. 2018, 72, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Cheng, Y.; Zhang, Z.; Lei, Z.; Shimizu, K. Comparative study on hydrothermal treatment as pre-and post-treatment of anaerobic digestion of primary sludge: Focus on energy balance, resources transformation and sludge dewaterability. Appl. Energy 2019, 239, 171–180. [Google Scholar] [CrossRef]
- Biswas, R.; Ahring, B.K.; Uellendahl, H. Improving biogas yields using an innovative concept for conversion of the fiber fraction of manure. Water Sci. Technol. 2012, 66, 1751–1758. [Google Scholar] [CrossRef]
- Ortega-Martinez, E.; Sapkaite, I.; Fdz-Polanco, F.; Donoso-Bravo, A. From pre-treatment toward inter-treatment. Getting some clues from sewage sludge biomethanation. Bioresour. Technol. 2016, 212, 227–235. [Google Scholar] [CrossRef]
- Shana, A. Application of an Innovative Process for Improving Mesophilic Anaerobic Digestion of Sewage Sludge. Ph.D. Thesis, University of Surrey, Guildford, UK, 2016. [Google Scholar]
- Rus, E.; Mills, N.; Shana, A.; Perrault, A.; Fountain, P.; Thorpe, R.B.; Ouki, S.; Nilsen, P.J. The intermediate thermal hydrolysis process: Results from pilot testing and techno-economic assessment. Water Pract. Technol. 2017, 12, 406–422. [Google Scholar] [CrossRef]
- Montgomery, L.F.; Bochmann, G. Pretreatment of Feedstock for Enhanced Biogas Production; IEA Bioenergy: Paris, France, 2014; pp. 1–20. [Google Scholar]
- Rajendran, K.; Drielak, E.; Varma, V.S.; Muthusamy, S.; Kumar, G. Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production—A review. Biomass Convers. Biorefinery 2018, 8, 471–483. [Google Scholar] [CrossRef]
- Bruni, E.; Jensen, A.P.; Angelidaki, I. Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bioresour. Technol. 2010, 101, 8713–8717. [Google Scholar] [CrossRef]
- Monlau, F.; Sambusiti, C.; Barakat, A. Comparison of Dry Versus Wet Milling to Improve Bioethanol or Methane Recovery from Solid Anaerobic Digestate. Bioengineering 2019, 6, 80. [Google Scholar] [CrossRef] [Green Version]
- Lindner, J.; Zielonka, S.; Oechsner, H.; Lemmer, A. Effects of mechanical treatment of digestate after anaerobic digestion on the degree of degradation. Bioresour. Technol. 2015, 178, 194–200. [Google Scholar] [CrossRef]
- Tsapekos, P.; Kougias, P.G.; Frison, A.; Raga, R.; Angelidaki, I. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment. Bioresour. Technol. 2016, 216, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Somers, M.H.; Azman, S.; Sigurnjak, I.; Ghyselbrecht, K.; Meers, E.; Meesschaert, B.; Appels, L. Effect of digestate disintegration on anaerobic digestion of organic waste. Bioresour. Technol. 2018, 268, 568–576. [Google Scholar] [CrossRef]
- Boni, M.R.; Polettini, A.; Pomi, R.; Rossi, A. Effect of ultrasonic post-treatment on anaerobic digestion of lignocellulosic waste. Waste Manag. Res. 2021, 39, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Azman, S.; Milh, H.; Somers, M.H.; Zhang, H.; Huybrechts, I.; Meers, E.; Meesschaert, B.; Dewil, R.; Appels, L. Ultrasound-assisted digestate treatment of manure digestate for increased biogas production in small pilot scale anaerobic digesters. Renew. Energy 2020, 152, 664–673. [Google Scholar] [CrossRef]
- Boni, M.R.; D’amato, E.; Polettini, A.; Pomi, R.; Rossi, A. Effect of ultrasonication on anaerobic degradability of solid waste digestate. Waste Manag. 2016, 48, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Garoma, T.; Pappaterra, D. An investigation of ultrasound effect on digestate solubilization and methane yield. Waste Manag. 2018, 71, 728–733. [Google Scholar] [CrossRef]
- Ashokkumar, M. The characterization of acoustic cavitation bubbles—An overview. Ultrason. Sonochem. 2011, 18, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Yang, J.; Liu, H.; Zhang, J. Sludge ozonation: Disintegration, supernatant changes and mechanisms. Bioresour. Technol. 2009, 100, 1505–1509. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: A review. Bioresour. Bioprocess. 2017, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Battimelli, A.; Millet, C.; Delgenès, J.P.; Moletta, R. Anaerobic digestion of waste activated sludge combined with ozone post-treatment and recycling. Water Sci. Technol. 2003, 48, 61–68. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Q.; Ye, L.; Yuan, Z. Enhancing post anaerobic digestion of full-scale anaerobically digested sludge using free nitrous acid treatment. J. Ind. Microbiol. Biotechnol. 2016, 43, 713–717. [Google Scholar] [CrossRef]
- Jurado, E.; Skiadas, I.V.; Gavala, H.N. Enhanced methane productivity from manure fibers by aqueous ammonia soaking pretreatment. Appl. Energy 2013, 109, 104–111. [Google Scholar] [CrossRef]
- Mirtsou-Xanthopoulou, C.; Jurado, E.; Skiadas, I.V.; Gavala, H.N. Effect of aqueous ammonia soaking on the methane yield and composition of digested manure fibers applying different ammonia concentrations and treatment durations. Energies 2014, 7, 4157–4168. [Google Scholar] [CrossRef] [Green Version]
- Jagadabhi, P.S.; Lehtomäki, A.; Rintala, J. Co-Digestion of grass silage and cow manure in a cstr by re-circulation of alkali treated solids of the digestate. Environ. Technol. 2008, 29, 1085–1093. [Google Scholar] [CrossRef]
- Brémond, U.; Bertrandias, A.; de Buyer, R.; Latrille, E.; Jimenez, J.; Escudié, R.; Steyer, J.; Bernet, N.; Carrere, H. Recirculation of solid digestate to enhance energy efficiency of biogas plants: Strategies, conditions and impacts. Energy Convers. Manag. 2021, 231, 113759. [Google Scholar] [CrossRef]
- Song, K.; Yeerken, S.; Li, L.; Sun, J.; Wang, Q. Improving post-anaerobic digestion of full-scale Anaerobic digestate using free ammonia treatment. ACS Sustain. Chem. Eng. 2019, 7, 7171–7176. [Google Scholar] [CrossRef]
- Li, H.; Zou, S.; Li, C.; Jin, Y. Alkaline post-treatment for improved sludge anaerobic digestion. Bioresour. Technol. 2013, 140, 187–191. [Google Scholar] [CrossRef]
- Campo, G.; Cerutti, A.; Zanetti, M.; Scibilia, G.; Lorenzi, E.; Ruffino, B. Enhancement of waste activated sludge (WAS) anaerobic digestion by means of pre-and intermediate treatments. Technical and economic analysis at a full-scale WWTP. J. Environ. Manag. 2018, 216, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Takashima, M.; Kudoh, Y.; Tabata, N. Complete anaerobic digestion of activated sludge by combining membrane separation and alkaline heat post-treatment. Water Sci. Technol. 1996, 34, 477–481. [Google Scholar] [CrossRef]
- Xu, Y.; Lu, Y.; Dai, X.; Dong, B. The influence of organic-binding metals on the biogas conversion of sewage sludge. Water Res. 2017, 126, 329–341. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, G.; Ye, L.; Yuan, Z. Enhancing methane production from waste activated sludge using combined free nitrous acid and heat pre-treatment. Water Res. 2014, 63, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Jin, Y.; Mahar, R.; Wang, Z.; Nie, Y. Effects and model of alkaline waste activated sludge treatment. Bioresour. Technol. 2008, 99, 5140–5144. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Wu, C.; Peng, Y.; Wang, S.; Li, B.; Zhang, L.; Cao, S.; Du, R. Mechanisms of nitrite addition for simultaneous sludge fermentation/nitrite removal (SFNR). Water Res. 2014, 64, 13–22. [Google Scholar] [CrossRef]
- Smits, J.; van Haastert, M.; Janse, A.M.; Maas, J.; de Graaf, K.; Kroon, H.; Verlinden RA, J.; Happel, A. Scale-up of optimal mild-acid pretreatment conditions in the production and application of lignocellulosic sugars from wood. Bioresour. Technol. Rep. 2020, 9, 100361. [Google Scholar] [CrossRef]
- Barcelos, C.A.; Rocha, V.A.; Groposo, C.; Castro, A.M.; Pereira, N., Jr. Enzymes and Accessory Proteins involved in the Hydrolysis of Lignocellulosic Biomass for Bioethanol Production. Mycol. Curr. Future Dev. 2015, 1, 23–56. [Google Scholar]
- Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.W. Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 2009, 157, 174–209. [Google Scholar] [CrossRef] [PubMed]
- Falade, A.O.; Nwodo, U.U.; Iweriebor, B.C.; Green, E.; Mabinya, L.V.; Okoh, A.I. Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 2017, 6, e00394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wawrzynczyk, J. Enzymatic Treatment of Wastewater Sludge. Sludge Solubilisation, Improvement of Anaerobic Digestion and Extraction of Extracellular Polymeric Substances. Ph.D. Thesis, Lund University, Lund, Sweden, 2007. [Google Scholar]
- Gao, D.; Haarmeyer, C.; Balan, V.; Whitehead, T.A.; Dale, B.E.; Chundawat, S.P. Lignin triggers irreversible cellulase loss during pretreated lignocellulosic biomass saccharification. Biotechnol. Biofuels 2014, 7, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djajadi, D.T.; Pihlajaniemi, V.; Rahikainen, J.; Kruus, K.; Meyer, A.S. Cellulases adsorb reversibly on biomass lignin. Biotechnol. Bioeng. 2018, 115, 2869–2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Wyman, C.E. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol. Bioeng. 2006, 94, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Ying, W.; Shi, Z.; Yang, H.; Xu, G.; Zheng, Z.; Yang, J. Effect of alkaline lignin modification on cellulase–lignin interactions and enzymatic saccharification yield. Biotechnol. Biofuels 2018, 11, 214. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Zhu, J.Y.; Lan, T.Q.; Lai, H.; Qiu, X. pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem 2013, 6, 919–927. [Google Scholar] [CrossRef] [PubMed]
- López, M.J.; Suárez-Estrella, F.; Vargas-García, M.C.; López-González, J.A.; Verstichel, S.; Debeer, L.; Wierinck, I.; Moreno, J. Biodelignification of agricultural and forest wastes: Effect on anaerobic digestion. Biomass Bioenergy 2013, 58, 343–349. [Google Scholar] [CrossRef]
- Zanellati, A.; Spina, F.; Poli, A.; Rollé, L.; Varese, G.C.; Dinuccio, E. Fungal pretreatment of non-sterile maize silage and solid digestate with a Cephalotrichum stemonitis strain selected from agricultural biogas plants to enhance anaerobic digestion. Biomass Bioenergy 2021, 144, 105934. [Google Scholar] [CrossRef]
- Zanellati, A.; Spina, F.; Rollé, L.; Varese, G.C.; Dinuccio, E. Fungal pretreatments on non-sterile solid digestate to enhance methane yield and the sustainability of anaerobic digestion. Sustainability 2020, 12, 8549. [Google Scholar] [CrossRef]
- Roth, S.; Spiess, A.C. Laccases for biorefinery applications: A critical review on challenges and perspectives. Bioprocess Biosyst. Eng. 2015, 38, 2285–2313. [Google Scholar] [CrossRef]
- Brémond, U.; de Buyer, R.; Steyer, J.P.; Bernet, N.; Carrere, H. Biological pretreatments of biomass for improving biogas production: An overview from lab scale to full-scale. Renew. Sustain. Energy Rev. 2018, 90, 583–604. [Google Scholar] [CrossRef]
- Tian, X.F.; Fang, Z.; Guo, F. Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels Bioprod. Biorefin. 2012, 6, 335–350. [Google Scholar] [CrossRef]
- Tabatabaei, M.; Aghbashlo, M.; Valijanian, E.; Panahi, H.K.S.; Nizami, A.S.; Ghanavati, H.; Sulaiman, A.; Mirmohamadsadeghi, S.; Karimi, K. A comprehensive review on recent biological innovations to improve biogas production, part 1: Upstream strategies. Renew. Energy 2020, 146, 1204–1220. [Google Scholar] [CrossRef]
- Salihu, A.; Alam, M.Z. Pretreatment methods of organic wastes for biogas production. J. Appl. Sci. 2016, 16, 124–137. [Google Scholar] [CrossRef]
- Santi, G.; Muzzini, V.G.; Galli, E.; Proietti, S.; Moscatello, S.; Battistelli, A. Mycelial growth and enzymatic activities of white-rot fungi on anaerobic digestates from industrial biogas plants. Environ. Eng. Manag. J. 2015, 14, 1713–1719. [Google Scholar] [CrossRef]
- Isikhuemhen, O.S.; Mikiashvili, N.A.; Kelkar, V. Application of solid waste from anaerobic digestion of poultry litter in Agrocybe aegerita cultivation: Mushroom production, lignocellulolytic enzymes activity and substrate utilization. Biodegradation 2009, 20, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakat, A.; Carrère, H. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
Treatment | Digestate Characteristics | Treatment Conditions | Post-AD Conditions | Methane Yield Untreated (mL CH4/g VS) | Methane Yield Increase Untreated/Treated | Reference |
---|---|---|---|---|---|---|
Moderate Temperature | WD, agricultural | 80 °C, 1 h | Batch, 35 °C, 65 days | 70 ± 2 | −19% | [12] |
Moderate Temperature | SFD, agricultural | 80 °C, 3 h | Batch, 35 °C, 30 and 340 days | Day 30: 61 ± 4.7 Day 340: 179 ± 12.2 | −21% (day 30) −4% (day 340) | [18] |
Moderate Temperature | SFD, agricultural | 80 °C, 3 h | Batch, 55 °C, 30 and 340 days | Day 30: 82 ± 1.8 Day 340: 215 ± 7.3 | −40% (day 30) −24% (day 340) | [18] |
Moderate Temperature | SFD, agricultural | 80 °C, 1 h | Batch 35 °C, 65 days | 90 ± 1 | −12% | [12] |
Moderate Temperature | WAS and WD a | 80 °C, 10–48 h at pH 7.1 or pH 9.3 | Batch, 37 °C Pre: 40 days Inter-stage: 21 + 19 days | 291 | −3% (pre, pH 7.1, 10 h) 5% (pre, pH 9.3, 10 h) Between +11% and +20% (inter-stage, pH 7.1, 10–48 h) b +31% (inter-stage, pH 9.3, 10 h) b | [19] |
High Temperature | WD, agricultural, HRT of 40, 100 and 150 days | 120 °C, 30 min | Batch, 40 °C, 56 days | 71.4 ± 5.3 (40 days HRT) 116.9 ± 11.3 (100 days HRT) 156.9 ± 7.4 (150 days HRT) | +115% (40 days HRT) −16% (100 days HRT) +12% (150 days HRT) | [20] |
High temperature | SFD, agricultural | 100 °C, 6 h + 135 °C, 1 h | Batch, 37 °C, 50 days | 62 | +48% | [21] |
High temperature | SFD, agricultural | 100 °C, 6 h + 135 °C, 1 h | Batch, 53 °C, 50 days | 71 | +54% | [21] |
High Temperature | SFD, agricultural | 230 °C, 15 min | Batch, 52 °C g | Not reported | +29% | [22] |
High temperature | SFD, agricultural | 180 °C, 30 min | Continuous, 53 °C, 20 days HRT | ≈80 | +48% | [23] |
High Temperature | WAS and WD a | 130 °C, 15 min | Batch, 37 °C Pre: 40 days Inter-stage: 21 + 19 days | 291 | +13% (pre) +9 (inter-stage) b | [19] |
High Temperature | WAS and WD a | 170 °C, 15 min | Batch, 37 °C Pre: 40 days Inter-stage: 21 + 19 days | 291 | +9% (pre) +29% (inter-stage) b | [19] |
High Temperature | WD, sludge-based | 120–190 °C, 60 min | Batch, 35 °C, 60 days | 52 | +246%, +327% and +304% (120, 170 and 190 °C) | [24] |
High Temperature | WD, mixed (agricultural and sludge-based) | 120–190 °C, 30 and 60 min | Batch, 35 °C, 60 days | 147 | Between 0% and +52% | [24] |
High Temperature | WD, sludge-based | 130–210 °C, 30 min | Batch, 35 °C, 30 days | 46.47 | Between +178% and 255% | [25] |
High Temperature | Primary sludge and WD a | 130–210 °C, 30 min | Batch, 35 °C Pre: 30 days Inter-stage: 30 + 30 days | 203.68 (30 days) 222.79 (30 + 30 days) | Between −8% and +31% (pre) Between +13% and 23% (inter-stage) b | [25] |
High Temperature + explosion | SFD, agricultural | 145–180 °C, 10–20 min, with/without O2 | Batch, 38 °C, 48 days | ≈89 | +79%, +108% and +136% (10 min at 145, 165 and 180 °C) +82% (20 min, 165 °C) +106% (10 min, 165 °C, with O2) | [26] |
High Temperature + explosion | SFD, agricultural | 180 °C, 10 min | Continuous, 38 °C, 20 days HRT, 2.5–3.5 g VS/l/day, co-digestion of manure and treated/untreated digestate (1:1 VS basis) | 180 (raw manure) 111 (raw manure + untreated digestate) | +75% e | [26] |
High Temperature + explosion | WD, sludge-based | 165–200 °C, 0–50 min | Batch, 35 °C, 20 days | ≈76 | Between +26% and 125% | [27] |
High Temperature + explosion | Mixed sludge and SFD a | 170 °C, 30 min | Semi-batch, 38 °C, 12.5–18 days HRT, 2–4 g VS/l/day Configurations: single AD, pre-treatment + AD, AD + AD, AD + inter-stage treatment + AD | 330.5 ± 11.2 f (single AD) 365.5 ± 4.3 f (AD + AD) | +4% (pre-treatment + AD) c,f +31% (AD + inter-stage treatment + AD) d,f | [28] |
High Temperature + explosion | Mixed sludge and SFD a | 165 °C, 30 min | Continuous, 38–39 °C, 3–5 g VS/l/day, inter-stage | 505 ± 81 f | n.d | [29] |
Treatment | Digestate Characteristics | Treatment Conditions | Post-AD Conditions | Methane Yield Untreated (mL CH4/g VS) | Methane Yield Increase Untreated/Treated | Reference |
---|---|---|---|---|---|---|
Comminution | SFD, agricultural | Size reduction to <2 mm | Batch, 52 °C, 80 days | Not reported. | +10% | [32] |
Comminution | SFD, agricultural | Size reduction to <1 mm | Batch, 35 °C, 30 and 340 days | 61 ± 4.7 (30 days) 179 ± 12.2 (340 days) | −16% (30 days) −33% (340 days) | [18] |
Comminution | SFD, agricultural | Size reduction to <1 mm | Batch, 55 °C, 30 and 340 days | 82 ± 1.8 (30 days) 215 ± 7.3 (340 days) | −32% (30 days) −42% (340 days) | [18] |
Comminution | SFD, agricultural, HRT of 14.5 and 160 days | Rotational speed of 500 min−1, 2–10 min | Batch, 37 °C, 35 days | 23 ± 3.3 a (HRT of 160 days) 229 ± 18.8 a (HRT of 24.5 days, hay/straw feeding) 291 ± 28 a (HRT of 24.5 days, maize silage feeding) | Between +65% and +170% (HRT of 160 days) Between +11% and +16% (HRT of 24.5 days, hay/straw feeding) Between +3% and +9% (HRT of 24.5 days, maize silage feeding) | [34] |
Comminution | Dried SFD, agricultural | Frequency of 20 s−1, 30 min | Batch, 35 °C, 25 days | 101.5 | +31% | [33] |
Comminution | SFD, agricultural | Size reduction to <3 mm | Continuous, 53 °C, 20 days HRT | ≈80 | +9% | [23] |
Comminution | SFD, agricultural | Manual shearing | Batch, 53 °C d | 42 | Between +15% and +45% | [35] |
Comminution | SFD, agricultural | Manual shearing | Continuous, 53 °C, 15 days HRT, 2.0–2.5 g VS/l reactor/day, co-digestion of manure and SFD (0.7:0.3 ratio VS basis) | 211 (manure) 143 (manure + untreated SFD) | +7% e | [35] |
Ultrasonication | WD, agricultural | 3000–15,000 kJ/kg TS | Batch, 37 °C, 13 days, treated/untreated digestate ratio of 1 | 241.9 ± 4.10 b | Between −10% and 8% | [36] |
Ultrasonication | WD, agricultural | 3000–50,000 kJ/kg TS | Batch, 37 °C, 56 days, treated/untreated digestate ratio of 3 | Not reported | Between −4% and +21% | [37] |
Ultrasonication | WD, agricultural | 1500–3000 kJ/kg TS | Continuous, 37 °C, 20–30 days HRT, 2.42–3.60 g VS/l/day, recycling ratio (digestate/raw manure) of 1 | 0..22 ± 010–0.23 ± 0.09 c,d (20 days HRT); ≈0.14 c,d (30 days HRT) | −18% (20 days HRT, 3000 kJ/kg TS) −17% (20 days HRT, 1500 kJ/kg TS) +18% (30 days HRT, 1500 kJ/kg TS) | [38] |
Ultrasonication | WD, sludge-based | 600–50,000 kJ/kg TS | Batch, 37 °C, 28 days, treated/untreated digestate ratio of 3 | 169.4 | Between +7% and +25% | [39] |
Ultrasonication | WD, sludge-based | 14,868–59,472 kJ/kg TS | Batch, 37 °C, 24 days | 38 | Between +60% and 133% | [40] |
Treatment | Digestate Characteristics | Treatment Conditions | Post-AD Conditions | Methane Yield Untreated (mL CH4/g VS) | Methane Yield Increase Untreated/Treated | Reference |
---|---|---|---|---|---|---|
Oxidative (H2O2) | WD, agricultural | 5, 10, and 30 g H2O2/kg TS, 2 h | Batch, 37 °C, 13 days, treated digestate/untreated digestate (w/w) of 1 | 427.2 ± 19.33 a | Between +8% and +12% | [36] |
Oxidative (O3) | WD, agricultural | 5, 10, and 30 g O3/kg TS l | Batch, 37 °C, 13 days, treated digestate/untreated digestate (w/w) of 1 | 356.5 ± 43.52 a | Between −9% and +13% | [36] |
Oxidative (O3) | WD, sludge-based | 0.16 g O3/g SS, 10–15 min | Continuous, 35 °C, 28 days HRT, 1.1 g COD/l/day, recycling ratio (WD/raw WAS) of 0–1 | 348 ± 9 b (no digestate recirculation) | Between +43% and +66% | [44] |
Thermo-acidic (H3PO4) | SFD, agricultural | 0.04 g H3PO4/g TS, 160 °C, 15 min | Batch, 52 °C, 80 days | Not reported | +8% | [32] |
Thermo-acidic (H2SO4) | SFD, agricultural | 0.021–0.07 g H2SO4/g TS, 230 °C, 15 min | Batch, 52 °C l | Not reported | +67% (0.021 g H2SO4/g TS, 155 °C) +43% (0.023 g H2SO4/g TS, 160 °C) +6% (0.023 g H2SO4/g TS, 180 °C) | [22] |
Acidic (HNO2) | WD, sludge-based | 0, 0.77, 1.54, 2.31, 3.08 and 3.85 mg N/L; pH of 5.5, 22 °C and 24 h | Batch, 37 °C, 4 days | 37 (22 °C, 24 h, no HNO2) | +38%, +22%, +3%, −3% and −19% (at 0.77, 1.54, 2.31, 3.08 and 3.85 mg N/L) | [45] |
Acidic (HCl) | WD, sludge-based | pH 2–6 (corrected with HCl), 25 °C, 1 h | Batch, 35 °C, 20 days | 0.11 c | +54%, +63% and +9% (25 °C at pH 2, 4 and 6) | [8] |
Thermo-acidic (HCl) | WD, sludge-based | pH 2–6 (corrected with HCl), 100 and 180 °C, 1 h | Batch, 35 °C, 20 days | 0.11 c | Between +63% and 190% | [8] |
Thermo-acidic (HCl and H2SO4) | SFD, sludge-based | pH 5–6 (corrected with HCl and H2SO4), 170 °C, 1 h | Continuous, 15.4–20 days HRT, recycling rate (SFD/raw sludge) of 30% | 0.92–1.15 d (no digestate recirculation) | Between +14% and 21% | [8] |
Alkaline (ammonia) | SFD, agricultural | 3.2 g ammonia/g TS; 1–5 days, 22 and 55 °C | Batch, 37 °C, 35 days | ≈77–110 e | Between −5% and +80% | [46] |
Alkaline (ammonia) | SFD, agricultural | 0.5–3.2 g ammonia/g TS; 1–5 days, 22 °C | Batch, 37 °C, 35 days | 64–81 | Between +76% and 205% | [47] |
Alkaline (CaO) | SFD, agricultural | 6%, 8% and 10% CaO (w/w); 15 °C; 5–25 days | Batch, 52 °C, 80 days | Not reported | Between +15% and +66% (6% CaO) Between +19% and +57% (8% CaO) Between +18% and +50% (10% CaO) | [32] |
Alkaline (NaOH) | WD, agricultural | 10 g NaOH/kg TS, 40 °C, 24 h | Batch, 35 °C, 65 days | 70 ± 2 | −40% | [12] |
Alkaline (NaOH) | SFD, agricultural | 10 g NaOH/kg TS, 40 °C, 24 h | Batch, 35 °C, 65 days. | 90 ± 1 | −10% | [12] |
Alkaline (NaOH) | WD, agricultural | 20 to 60 g NaOH/kg VS, 35 °C, 65 h | Batch, 35 °C, 118 days | 100 ± 6 (35 °C, 65 h, no NaOH) | Between −7% and −1% | [48] |
Alkaline (NaOH) | SFD, agricultural | 20 to 60 g NaOH/kg VS, 35 °C, 65 h | Batch, 35 °C, 118 days | 301 ± 43 (35 °C, 65 h, no NaOH) | Between −10% and +13% | [48] |
Alkaline (NaOH) | SFD, agricultural | 20 g NaOH/kg VS, 35 °C, 65 h | Continuous, 35 °C, ≈ 20 days HRT, 2.0–2.5 kg VS/m3/day, recycling ratio (SFD/raw manure and grass silage) of 10% | 182 ± 20 (no SFD recirculation); 143 ± 30 (untreated SFD recirculation) | −11% f +13% g | [48] |
Alkaline (NaOH) | SFD, agricultural | 20 g NaOH/kg VS, 25 °C, 30 min | Continuous, 53 °C, 20 days HRT | ≈80 | +11% | [23] |
Alkaline (NaOH) | SFD, agricultural | 40 g NaOH /kg VS, 20 °C, 48 h | Batch, 35 °C, 30 and 340 days | 61 ± 4.7 (30 days) 179 ± 12.2 (340 days) | +0% (30 days) −13% (340 days) | [18] |
Alkaline (NaOH) | SFD, agricultural | 40 g NaOH /kg VS, 20 °C, 48 h | Batch, 55 °C, 30 and 340 days | 82 ± 1.8 (30 days) 215 ± 7.3 (340 days) | −5% (30 days) −20% (340 days) | [18] |
Thermo-alkaline (NaOH) | SFD, agricultural | 40 g NaOH /kg VS, 80 °C, 3 h | Batch, 35 °C, 30 and 340 days | 61 ± 4.7 (30 days) 179 ± 12.2 (340 days) | +6% (30 days) −14% (340 days) | [18] |
Thermo-alkaline (NaOH) | SFD, agricultural | 40 g NaOH /kg VS, 80 °C, 3 h | Batch, 55 °C, 30 and 340 days | 82 ± 1.8 (30 days) 215 ± 7.3 (340 days) | +7% (30 days) −16% (340 days) | [18] |
Thermo-alkaline (NaOH) | SFD, agricultural | 20 g NaOH/kg TS, 55 °C, 3 days | Batch, 35 °C l | 129–150 | Between 30% and +46% | [49] |
Thermo-alkaline (NaOH) | SFD, agricultural | 40 g NaOH/kg TS, 160 °C, 15 min | Batch, 52 °C, 80 days | Not reported | +26% | [32] |
Thermo-alkaline (NaOH) | SFD, agricultural | 20–60 g NaOH/kg TS, 55 °C, 24 h | Batch, 53 °C l | 42 | Between +48% and +300% | [35] |
Thermo-alkaline (NaOH) | SFD, agricultural | 20–60 g NaOH/kg TS, 90 and 121 °C, 20 min | Batch, 53 °C l | 42 | Between ≈ +114% and +320% | [35] |
Thermo-alkaline (NaOH) | SFD, agricultural | 40 g NaOH/kg TS, 121 °C and 60 g NaOH/kg TS, 55 °C | Continuous, 53 °C, 15 days HRT, 2.0–2.5 g VS/l/day, co-digestion of manure and SFD (0.7:0.3 ratio VS basis) | 211 (manure) 143 (manure + untreated SFD) | +25% g (40 g NaOH/kg TS, 121 °C) +26% g (60 g NaOH/kg TS, 55 °C) | [35] |
Thermo-alkaline (NaOH) | SFD, agricultural | 10–30 g NaOH/kg TS, 100 °C, 6 h + 135 °C, 1 h | Batch, 37 °C, 50 days | 62 | Between +65% and 144% | [21] |
Thermo-alkaline (NaOH) | SFD, agricultural | 10–30 g NaOH/kg TS, 100 °C, 6 h + 135 °C, 1 h | Batch, 53 °C, 50 days | 71 | Between 89% and 180% | [21] |
Thermo-alkaline (NaOH) | SFD, agricultural | 10–30 g NaOH/kg VS, 180 °C, 30 min | Continuous, 53 °C, 20 days HRT | ≈80 | Between +86% and +127% | [23] |
Alkaline (NaOH) | WD, sludge-based | pH correction with NaOH 1 mol/L to 8, 9 and 10, 25 °C, 24 h | Batch, 37 °C, 8 days | 55 ± 0.3 | Between +5% and +25% | [50] |
Alkaline (NaOH) | WD, sludge-based | 0.1 M NaOH, 30 min | Continuous, 35 °C, 20 days HRT, feeding with raw sludge and recycling ratio (volume of recycled digestate/volume of digester) of 5–15% | Not reported | +33% (recycling ratio of 5%) Lower than +33% for higher recycling ratios | [51] |
Thermo-alkaline (NaOH) | WAS and WD (7 and 15 HRT) h | 40 g NaOH/kg TS, 70 and 90 °C, 90 min | Batch, 35–38 °C, 21 days | 166 ± 15 (WAS) 143 ± 3 (WD, 7 days HRT) 47 ± 1 (WD, 15 days HRT) | +40% and +66% (WAS, at 70 and 90 °C) +29% and +56% (WD, 7 days HRT, at 70 and 90 °C) +131% and +184% (WD, 15 days HRT, at 70 and 90 °C) +23% and +16% (inter-stage, 7 + 13 days with treatment at 70 and 90 °C) i,k ≈−26% and −38% (inter-stage, 15 + 5 days with treatment at 70 and 90 °C) i,k | [52] |
Thermo-alkaline (NaOH) | WD, sludge-based | 0.1 M NaOH, 175 °C, 1 h | Continuous, 35 °C, 30 days HRT, recycling rate (WD/raw WAS) of 30% | 57% j | +24% | [53] |
Thermo-alkaline (KOH) | WAS and WD h | 170 °C, pH 10 (adjusted with KOH), 15 min | Batch, 37 °C, 40 days Pre: 40 days Inter-stage: 19 + 21 days | 291 | +2% (pre) +29% (inter-stage) k | [19] |
Treatment | Digestate Characteristics | Treatment Conditions | Post-AD Conditions | Methane Yield Untreated (mL CH4/g VS) | Methane Yield Increase Untreated/Treated | Reference |
---|---|---|---|---|---|---|
Enzymatic (xylanases and glucanases) | WD, agricultural | 0.15 mL/g TS, pH 5, 40 °C, 24 h | Batch, 35 °C, 65 days | 70 ± 2 | +51% | [12] |
Enzymatic (xylanases and glucanases) | SFD, agricultural | 0.15 mL/g TS, pH 5, 40 °C, 24 h | Batch, 35 °C, 65 days | 90 ± 1 | +13% | [12] |
Enzymatic (laccases and cellulases) | SFD, agricultural | 0.5–2 U/g TS (cellulases), 0.5–84 U/g TS (laccases), pH 4–7, 37 °C, 20 h, with O2 supply | Batch, 52 °C h | Not reported | No effect | [32] |
Thermo-acidic (H3PO4) + enzymatic (laccases) | SFD, agricultural | H3PO4 at 4% (w/w TS), 160 °C, 15 min, 48–59 U/g TS, pH 5.5, 37 °C, 20 h | Batch, 52 °C h | Not reported | +18% | [32] |
Thermo-alkaline (NaOH) + enzymatic (laccases) | SFD, agricultural | NaOH at 4% (w/w TS), 160 °C, 15 min, 48–59 U/g TS, pH 5.5, 37 °C, 20 h | Batch, 52 °C h | Not reported | +34% | [32] |
Aeration | SFD, agricultural | 1.5–33 l air/h/kg TS, 1.75–6 days | Batch, 35 °C h | 153–171 | Between −21% and +0% | [49] |
Fungal SSF (Phanerochaete flavido-alba) | SFD, agricultural | Sterilization by autoclaving, 30 °C, 60% moisture, 21 days | Batch, 52 °C, 20 days | ≈76 c,d (digested grass) ≈166 c,d (digested corn stover) ≈129 c,d (digested wheat straw) | −10% (digested grass) −2% (digested corn stover) +8% (digested wheat straw) | [70] |
Fungal SSF (Pleurotus ostreatus) | SFD, agricultural | Sterilization by autoclaving with 2% CaO (w/w), 20–25 °C, 75% moisture, 5.5–21 days | Batch, 35 °C h | 232 ± 12 e | Between −15% and −51% | [13] |
Fungal SSF (Stropharia rugosoannulata) | SFD, agricultural | Sterilization by autoclaving with 2% CaO (w/w), 20–25 °C, 75% moisture, 5.5–21 days | Batch, 35 °C h | 167 ± 3 e | Between −17% and +1% | [13] |
Fungal SSF (Cephalotrichum stemonitis) | SFD, agricultural | No sterilization, 25 °C, 67% moisture, 10 days | Batch, 40 °C, 50 days | 22 ± 3 f,g | +72% | [71] |
Fungal SSF (Coprinopsis cinerea) | SFD, agricultural | No sterilization, 25 °C, 70–75% moisture, 10–20 days | Batch, 40 °C, 75 days | 44 f,g | +120% and 143% (10 and 20 days) | [72] |
Fungal SSF (Cyclocybe aegerita) | SFD, agricultural | No sterilization, 25 °C, 70–75% moisture, 10–20 days | Batch, 40 °C, 75 days | 44 f,g | +136% and +102% (10 and 20 days) | [72] |
Fungal SSF (Cephalotrichum stemonitis) | SFD, agricultural | No sterilization, 25 °C, 70–75% moisture, 10–20 days | Batch, 40 °C, 75 days | 44 f,g | +166% and +214% (10 and 20 days) | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romio, C.; Kofoed, M.V.W.; Møller, H.B. Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review. Sustainability 2021, 13, 9295. https://doi.org/10.3390/su13169295
Romio C, Kofoed MVW, Møller HB. Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review. Sustainability. 2021; 13(16):9295. https://doi.org/10.3390/su13169295
Chicago/Turabian StyleRomio, Cristiane, Michael Vedel Wegener Kofoed, and Henrik Bjarne Møller. 2021. "Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review" Sustainability 13, no. 16: 9295. https://doi.org/10.3390/su13169295
APA StyleRomio, C., Kofoed, M. V. W., & Møller, H. B. (2021). Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review. Sustainability, 13(16), 9295. https://doi.org/10.3390/su13169295