A Forefront Framework for Sustainable Aquaponics Modeling and Design
Abstract
:1. Introduction
- SDG2: Zero hunger;
- SDG7: Energy for everyone and clean;
- SDG8: Both job satisfaction and economic growth;
- SDG12: Responsibility to create Responsibility to use;
- SDG14: Protect the richness of the sea.
2. Aquaponics/Aquaculture Lifecycle Sustainability
- Predictive or fully plan-driven;
- Iterative—incremental or process-driven;
- Adaptive—agile or change-driven.
2.1. Concept Design
2.2. Modeling Approaches
- Confirming the scenario score
- Ensuring state statements and goals
- Defining the indicators
- Evaluating indicators interconnection and impact
- Considering the hypothesis impact
- Weighing the indicators
- Considering the overall consequences of outcome and
- Alternatives
- Evaluating the decision, and finally
- Taking proper action
3. Efficiency Measures and Sustainability Pillars
- Low startup cost;
- Low operation cost including minimum supervision;
- Low management and maintenance cost.
- 12 kg/ha per day of total suspended solids;
- 1 kg/ha per day of total nitrogen;
- 0.15 kg/ha per day of total phosphorus.
- Net production in—in tons;
- The net value of producing products—in any currency units;
- Increase/decrease rate (compared to a benchmark: year, months, or other indicators)—in terms of quantity/monetary;
- Target to reach (based on timeline or monetary span)—in terms of quantity/money;
- Contribution to environmental sustainability (monetary and nonmonetary)—amount of greenhouse gases emitted, amount of waste generated and disposed of, amount of water deranged and reused, rate of mechanical and electrical energy saved and recovered, cost of environmental conservation, area of land optimized, contribution to research and development of codes and standards, socio-economic impact of environmental conservation activities, etc. [29]. Often, analytical assessment tools such as ecological footprint (EF) [17,30,31] and life cycle assessment (LCA) [32,33] techniques are used for environmental impact assessment.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action, 1st ed.; The State of World Fisheries and Aquaculture (SOFIA); Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2020; ISBN 978-92-5-132692-3. [Google Scholar]
- Levis, J.W.; Weisbrod, A.; Van Hoof, G.; Barlaz, M.A. A Review of the Airborne and Waterborne Emissions from Uncontrolled Solid Waste Disposal Sites. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1003–1041. [Google Scholar] [CrossRef]
- Samuel-Fitwi, B.; Wuertz, S.; Schroeder, J.P.; Schulz, C. Sustainability Assessment Tools to Support Aquaculture Development. J. Clean. Prod. 2012, 32, 183–192. [Google Scholar] [CrossRef]
- Simke, A. Aquaponics Presents a New Way to Grow Sustainable Fish and Veggies. Forbes 2020. Available online: https://www.forbes.com/sites/ariellasimke/2020/04/26/aquaponics-presents-a-new-way-to-grow-sustainable-fish-and-veggies/?sh=4c04e25e5f0c (accessed on 21 May 2021).
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-Year Retrospective Review of Global Aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- PMI. Guide to the Project Management Body of Knowledge (PMBOK® Guide), 5th ed.; Project Management Institute (PMI): Newtown Square, PA, USA, 2013. [Google Scholar]
- Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 6th ed.; Project Management Institute: Newtown Square, PA, USA, 2017; ISBN 978-1-62825-184-5. [Google Scholar]
- Project Management Institute (PMI). Available online: https://www.pmi.org/ (accessed on 21 May 2021).
- Rowley, J. 5th Edition PMBOK® Guide—Chapter 2: Project Life Cycle Types (Predictive, Iterative, Agile). 4squareviews 2013. Available online: https://4squareviews.com/2013/02/01/5th-edition-pmbok-guide-chapter-2-project-life-cycle-types-predictive-iterative-agile/ (accessed on 25 May 2021).
- Lessard, C.; Lessard, J. Project Management for Engineering Design. Synthesis Lectures on Engineering; Morgan & Claypool Publishers: San Rafael, CA, USA, 2007; Volume 2, pp. 1–110. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Senjyu, T.; Ibrahimi, A.M.; Ahmadi, M.; Howlader, A.M. A Managed Framework for Energy-Efficient Building. J. Build. Eng. 2019, 21, 120–128. [Google Scholar] [CrossRef]
- Danish, M.S.S.; Senjyu, T.; Sabory, N.R. (Eds.) Sustainability Outreach in Developing Countries, 1st ed.; Springer: Singapore, 2021; ISBN 9789811571787. [Google Scholar]
- Danish, M.S.S.; Elsayed, M.E.L.; Ahmadi, M.; Senjyu, T.; Karimy, H.; Zaheb, H. A Strategic-Integrated Approach for Sustainable Energy Deployment. Energy Rep. 2020, 6, 40–44. [Google Scholar] [CrossRef]
- Ragas, A.M.J.; Scheren, P.A.G.M.; Konterman, H.I.; Leuven, R.S.E.W.; Vugteveen, P.; Lubberding, H.J.; Niebeek, G.; Stortelder, P.B.M. Effluent Standards for Developing Countries: Combining the Technology- and Water Quality-Based Approach. Water Sci. Technol. 2005, 52, 133–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jegatheesan, V.; Zeng, C.; Shu, L.; Manicom, C.; Steicke, C. Technological Advances in Aquaculture Farms for Minimal Effluent Discharge to Oceans. J. Clean. Prod. 2007, 15, 1535–1544. [Google Scholar] [CrossRef]
- Masabni, J.; Sink, T. Water Quality in Aquaponics; Texas A&M AgriLife Extension Service: College Station, TX, USA, 2021; pp. 1–8. [Google Scholar]
- Bunting, S.W. Appropriation of Environmental Goods and Services by Aquaculture: A Reassessment Employing the Ecological Footprint Methodology and Implications for Horizontal Integration. Aquac. Res. 2001, 32, 605–609. [Google Scholar] [CrossRef]
- James Sullivan Consulting. Smart Fishing Initiative: Comparison of Wild-Capture Fisheries Certification Schemes; WWF—World Wide Fund For Nature: Gland, Switzerland, 2012; p. 62. [Google Scholar]
- Danish, M.S.S.; Zaheb, H.; Sabory, N.R.; Karimy, H.; Faiq, A.B.; Fedayi, H.; Senjyu, T. The Road Ahead for Municipal Solid Waste Management in the 21st Century: A Novel-Standardized Simulated Paradigm. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Seoul, Korea, 26–29 January 2019; Volume 291, pp. 1–5. [Google Scholar]
- Danish, M.S.S.; Sabory, N.R.; Ershad, A.M.; Danish, S.M.S.; Yona, A.; Senjyu, T. Sustainable Architecture and Urban Planning Trough Exploitation of Renewable Energy. Int. J. Sustain. Green Energy 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, G. (Eds.) Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future, 1st ed.; Springer: Berlin, Germany, 2019; ISBN 978-3-030-15943-6. [Google Scholar]
- Stones, M. Aquaponics for Beginners: How to Start Raising Fish and Growing Vegetables at Home, 1st ed.; Urban Gardening; Michael Stones: New York, NY, USA, 2016; ISBN 978-1-5242-1401-2. [Google Scholar]
- Schmautz, Z.; Espinal, C.A.; Smits, T.H.M.; Frossard, E.; Junge, R. Nitrogen Transformations across Compartments of an Aquaponic System. Aquac. Eng. 2021, 92, 102145. [Google Scholar] [CrossRef]
- Van Tung, T.; Phuong Thao, N.T.; Vi, L.Q.; Hieu, T.T.; Le Thanh, S.; Braunegg, S.; Braunegg, G.; Schnitzer, H.; Hai, L.T. Waste Treatment and Soil Cultivation in a Zero Emission Integrated System for Catfish Farming in Mekong Delta, Vietnam. J. Clean. Prod. 2021, 288, 125553. [Google Scholar] [CrossRef]
- Gorjian, S.; Calise, F.; Kant, K.; Ahamed, M.S.; Copertaro, B.; Najafi, G.; Zhang, X.; Aghaei, M.; Shamshiri, R.R. A Review on Opportunities for Implementation of Solar Energy Technologies in Agricultural Greenhouses. J. Clean. Prod. 2021, 285, 124807. [Google Scholar] [CrossRef]
- Amos, C.C.; Rahman, A.; Karim, F.; Gathenya, J.M. A Scoping Review of Roof Harvested Rainwater Usage in Urban Agriculture: Australia and Kenya in Focus. J. Clean. Prod. 2018, 202, 174–190. [Google Scholar] [CrossRef]
- Gallegos Rivero, A.R.; Daim, T. Technology Roadmap: Cattle Farming Sustainability in Germany. J. Clean. Prod. 2017, 142, 4310–4326. [Google Scholar] [CrossRef]
- Comparative Life Cycle Assessment of Aquaponics and Hydroponics in the Midwestern United States. J. Clean. Prod. 2020, 275, 122888. [CrossRef]
- Maslesa, E.; Jensen, P.A.; Birkved, M. Indicators for Quantifying Environmental Building Performance: A Systematic Literature Review. J. Build. Eng. 2018, 19, 552–560. [Google Scholar] [CrossRef]
- Berg, H.; Michélsen, P.; Troell, M.; Folke, C.; Kautsky, N. Managing Aquaculture for Sustainability in Tropical Lake Kariba, Zimbabwe. Ecol. Econ. 1996, 18, 141–159. [Google Scholar] [CrossRef]
- Roth, E.; Rosenthal, H.; Burbridge, P. A Discussion of the Use of the Sustainability Index: ‘Ecological Footprint’ for Aquaculture Production. Aquat. Living Resour. 2001, 13, 461–469. [Google Scholar] [CrossRef]
- Forchino, A.A.; Lourguioui, H.; Brigolin, D.; Pastres, R. Aquaponics and Sustainability: The Comparison of Two Different Aquaponic Techniques Using the Life Cycle Assessment (LCA). Aquac. Eng. 2017, 77, 80–88. [Google Scholar] [CrossRef]
- Kamareddine, L.A.; Maraqa, M.A. Chapter 22: Lifecycle assessment of aquaponics. In Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering; Mohamed, A.-M.O., Paleologos, E.K., Howari, F.M., Eds.; Butterworth-Heinemann: Oxford, UK, 2021; pp. 1083–1108. ISBN 978-0-12-809582-9. [Google Scholar]
Predictive | Iterative | Adaptive | |
---|---|---|---|
Conceptual Characteristics | Plan-Driven | Process-Driven | Change-Driven |
Phases implementation | Sequential, overlapping | Sequential, overlapping | Sequential, overlapping, parallel |
Scope definition | At the beginning of project | At the beginning of each phase | At the beginning of phase or iteration |
Scope description | Covers all project phases | Only for each phase | Only for each phase or iteration |
Detailed Planning | At the beginning of project OR rolling wave | Only for each phase | Only for each phase or iteration |
Application purpose | Well-defined projects or products | Large and complex projects | Product is not well understood, rapidly changing environments |
Stakeholders’ involvement | Beginning, when scope changes, and project end | Periodic | Continuous |
Parameter | Unit |
---|---|
Dissolved oxygen (DO) | mg/L |
Ammonia (NH3) | |
Nitrite (NO2−) | |
Nitrate (NO3−) | |
Phosphate (PO₄3−) | |
Ferric chloride (FeCl3) (for flocculation) | |
Water Hardness | |
Turbidity (NTU) | |
Conductivity | (μS/cm) |
pH | |
Water Temperature | °C/F |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danish, M.S.S.; Senjyu, T.; Sabory, N.R.; Khosravy, M.; Grilli, M.L.; Mikhaylov, A.; Majidi, H. A Forefront Framework for Sustainable Aquaponics Modeling and Design. Sustainability 2021, 13, 9313. https://doi.org/10.3390/su13169313
Danish MSS, Senjyu T, Sabory NR, Khosravy M, Grilli ML, Mikhaylov A, Majidi H. A Forefront Framework for Sustainable Aquaponics Modeling and Design. Sustainability. 2021; 13(16):9313. https://doi.org/10.3390/su13169313
Chicago/Turabian StyleDanish, Mir Sayed Shah, Tomonobu Senjyu, Najib Rahman Sabory, Mahdi Khosravy, Maria Luisa Grilli, Alexey Mikhaylov, and Hemayatullah Majidi. 2021. "A Forefront Framework for Sustainable Aquaponics Modeling and Design" Sustainability 13, no. 16: 9313. https://doi.org/10.3390/su13169313