Simulating Grassland Carbon Dynamics in Gansu for the Past Fifty (50) Years (1968–2018) Using the Century Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Data
2.2.1. Meteorological Data
2.2.2. Terrestrial Ecoregions
2.2.3. Soil Data
2.2.4. Validation Data
2.3. Method
- The CENTURY Model
- Model Parameterization
- Model initialization
- Model calibration
- Event Scheduling
- Equilibrium run
- Running the Model
- Model validation
3. Results
3.1. Results from the Equilibrium Run
3.2. Results from Actual Simulation
3.2.1. Point Validation
3.2.2. Spatial and Temporal Distribution of SOC and ABVG
3.2.3. SOCD and ABCG Distribution by Soil Type
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above pre Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Han, R.Q.; Zhen, D.; Dai, E.F.; Wu, S.H.; Zhao, M.H. Response of production potential to climate fluctuation in major grain regions of China. Resour. Sci. 2014, 36, 2611–2623. [Google Scholar]
- Cline, W.R. The impact of global warming of agriculture: Comment. Am. Econ. Rev. 1996, 86, 1309–1311. [Google Scholar]
- Tanaka, S.K.; Zhu, T.; Lund, J.R.; Howitt, R.E.; Jenkins, M.W.; Pulido, M.A.; Tauber, M.; Ritzema, R.S.; Ferreira, I.C. Climate warming and water management adaptation for California. Clim. Chang. 2006, 76, 361–387. [Google Scholar] [CrossRef]
- Yang, X.M. Using agricultural soils to fix organic carbon—Alleviating global warming and improving soil productivity. Soil Environ. Sci. 2000, 9, 311–315. [Google Scholar]
- Yang, X.M.; Zhang, X.P.; Fang, H.J. The significance of carbon sequestration in agricultural soils to alleviate global warming. Sci. Geogr. Sin. 2003, 23, 101–106. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 1995: Impact, Adaptation and Mitigation: Scientific Technical Analyses; Working Group 1; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Lal, R. Soil Erosion and Gaseous Emissions. Appl. Sci. 2020, 10, 2784. [Google Scholar] [CrossRef] [Green Version]
- Sornpoon, M.; Bonnet, S.; Garivait, S. Effect of open burning on soil carbon stock in sugarcane plantation in Thailand. World Acad. Sci. Eng. Technol. 2014, 8, 822–827. [Google Scholar]
- Ray, R.L.; Griffin, R.W.; Fares, A.; Elhassan, A.; Awal, R.; Woldesenbet, S.; Risch, E. Soil CO2 emission in response to organic amendments, temperature, and rainfall. Sci. Rep. 2020, 10, 5849. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.F. Coupling Development of Triple-Microbe Model and Its Simulation of Global Soil Organic Carbon and Microbial Carbon; Northwest A & Forestry University: Xianyang, China, 2017. [Google Scholar]
- Bohn, H.L. Estimate of organic carbon in world soils. Soil Sci. Soc. Am. J. 1982, 46, 1118–1119. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Wang, S.Q.; Zhou, C.H. Estimating soil organic carbon reservoir of terrestrial ecosystem in China. Geogr. Res. 1999, 18, 349–356. [Google Scholar]
- Luo, W.; Zhang, H.H.; Chen, J.J.; Liu, Y.; Li, D.Q. Storage and spatial distribution of soil organic carbon in Guangdong Province. Ecol. Environ. Sci. 2018, 27, 1593–1601. [Google Scholar]
- Han, B.; Wang, X.K.; Ou, Y.Z.Y. Distribution and change of agro-ecosystem carbon pool in Northeast of China. Chin. J. Soil Sci. 2004, 35, 1140–1147. [Google Scholar]
- Zhang, J.; Lin, M.; Ao, Z.Q. Estimation of soil organic carbon storage in arid areas of Western China. J. Arid Area Resour. Environ. 2018, 32, 132–137. [Google Scholar]
- Yang, A.G.; Miao, Z.H.; Qiu, F.F.; Yang, Q.C.; Wang, Z.M.; Mao, D.H. Estimation and spatial distribution of organic carbon storage in topsoil of Sanjiang Plain based on GIS. Bull. Soil Water Conserv. 2015, 35, 155–158. [Google Scholar]
- Xiao, X.M.; Wang, Y.F.; Chen, Z.Z. Dynamics of primary productivity and soil organic matter of typical steppe in the Xilin River Basin of Inner Mongolia and their responses to climate change. J. Integr. Plant Biol. 1996, 38, 45–52. [Google Scholar]
- Zhang, Y.Q.; Tang, Y.H.; Jiang, J. Dynamic characteristics of soil organic carbon in grassland ecosystems of the Qinghai-Tibet Plateau. Sci. Sin. 2006, 36, 1140–1147. [Google Scholar]
- Althoff, T.D.; Menezes, R.S.C.; Pinto, A.D.S.; Pareyn, F.G.C.; Carvalho, A.L.D.; Martins, J.C.R.; Carvalho, E.X.D.; Silva, A.S.A.D.; Dutra, E.D.; Sampaio, E.V.D.S.B. Adaptation of the CENTURY model to simulate C and N dynamics of Caatinga dry forest before and after deforestation. Agric. Ecosyst. Environ. 2018, 254, 26–34. [Google Scholar] [CrossRef]
- Tang, M.; Wang, S.; Zhao, M.; Falyu, Q.; Liu, X. Simulated Soil Organic Carbon Density Changes from 1980 to 2016 in Shandong Province Dry Farmlands Using the CENTURY Model. Sustainability 2020, 12, 5384. [Google Scholar] [CrossRef]
- Available online: https://www.chinadaily.com.cn/m/gansu/2013-10/24/content_17055494.htm (accessed on 15 February 2020).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Nachtergaele, F.; van Velthuizen, H.; Verelst, L.; Batjes, N.H.; Dijkshoorn, K.; van Engelen, V.W.P.; Fischer, G.; Jones, A.; Montanarella, L.; Petri, M. The harmonized world soil database. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 34–37. [Google Scholar]
- Driessen, P.; Deckers, J.; Spaargaren, O.; Nachtergaele, F. Lecture Notes on the Major soils of the World; Food and Agriculture Organization (FAO): Rome, Italy, 2000. [Google Scholar]
- Harmonized World Soil Database Version 1.2 (HWSD V1.2). Available online: http://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 6 January 2020).
- Available online: http://www.ecosystem.csdb.cn/ (accessed on 1 August 2020).
- Available online: www.worldclim.org (accessed on 20 March 2020).
- Pattern, N.C.S. Climatic Research Unit, University of East Anglia. Available online: https://crudata.uea.ac.uk/cru/data/ncp (accessed on 10 August 2020).
- Available online: http://koeppen-geiger.vu-wien.ac.at/present.htm (accessed on 15 February 2020).
- Rusong, W. The frontiers of urban ecological research in industrial transformation. Acta Ecol. Sin. 2000, 20, 830–840. [Google Scholar]
- Shi, X.Z.; Yu, D.S.; Warner, E.D.; Pan, X.Z.; Petersen, G.W.; Gong, Z.G.; Weindorf, D.C. Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Surv. Horiz. 2004, 45, 129–136. [Google Scholar] [CrossRef]
- Kodešová, R.; Alias, L.J. Available online: http://www.koedoe.co.za (accessed on 10 August 2020).
- Spawn, S.A.; Gibbs, H.K. Global Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010. ORNL DAAC 2020. [Google Scholar] [CrossRef]
- Parton, W.J. The CENTURY Model. In Evaluation of Soil Organic Matter Models; Springer: Berlin/Heidelberg, Germany, 1996; pp. 283–291. [Google Scholar]
- Available online: https://www.nrel.colostate.edu/projects/century/ (accessed on 10 June 2020).
- Bortolon, E.S.O.; Mielniczuk, J.; Tornquist, C.G.; Lopes, F.; Bergamaschi, H. Validation of the Century model to estimate the impact of agriculture on soil organic carbon in Southern Brazil. Geoderma 2011, 167, 156–166. [Google Scholar] [CrossRef]
- Bockstaller, C.; Girardin, P. How to validate environmental indicators. Agric. Syst. 2003, 76, 639–653. [Google Scholar] [CrossRef]
- Gomes, A.G.; Varriale, M.C. Modelagem de Ecossistemas, Uma Introducao; UFSM: Santa Maria, Brazil, 2004. [Google Scholar]
- Xu, L.; Yu, G.; He, N.; Wang, Q.; Gao, Y.; Wen, D.; Li, S.; Niu, S.; Ge, J. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Guo, L.H.; Gao, J.B.; Wu, S.H.; Hao, C.Y.; Zhao, D.S. Spatial-temporal change of soil organic carbon and its susceptibility to climate change in Inner Mongolia Grassland 1981–2010. Res. Environ. Sci. 2016, 29, 1050–1058. [Google Scholar]
- Catling, D. The Soils. In Rice in Deep Water; Palgrave Macmillan: London, UK, 1992. [Google Scholar] [CrossRef]
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Marinos, R.E.; Bernhardt, E.S. Soil carbon losses due to higher pH offset vegetation gains due to calcium enrichment in an acid mitigation experiment. Ecology 2018, 99, 2363–2373. [Google Scholar] [CrossRef]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil pH and organic matter. Nutr. Manag. Module 2009, 8, 1–12. [Google Scholar]
- Available online: https://www.esf.edu/pubprog/brochure/soilph/soilph.htm (accessed on 10 March 2021).
- Zhou, W.; Han, G.; Liu, M.; Li, X. Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. Peer J. 2019, 7, e7880. [Google Scholar] [CrossRef] [Green Version]
- Céspedes-Payret, C.; Bazzoni, B.; Gutiérrez, O.; Panario, D. Soil organic carbon vs. bulk density following temperate grassland afforestation. Environ. Process. 2017, 4, 75–92. [Google Scholar] [CrossRef]
- National Research Council. Grasslands and Grassland Sciences in Northern China; National Academies Press: Washington, DC, USA, 1992. [Google Scholar]
- Overview of Land Desertification Issues and Activities in the People’s Republic of China. Available online: http://www.fao.org/3/w7539e/w7539e03.htm (accessed on 12 March 2020).
- Xu, W.; Chen, X.; Luo, G.; Lin, Q. Using the CENTURY model to assess the impact of land reclamation and management practices in oasis agriculture on the dynamics of soil organic carbon in the arid region of North-western China. Ecol. Complex. 2011, 8, 30–37. [Google Scholar] [CrossRef]
- Breuer, L.; Huisman, J.; Keller, T.; Frede, H.-G. Impact of a conversion from cropland to grassland on C and N storage and related soil properties: Analysis of a 60-year chronosequence. Geoderma 2006, 133, 6–18. [Google Scholar] [CrossRef]
- Kasel, S.; Bennett, L. Land-use history, forest conversion, and soil organic carbon in pine plantations and native forests of south eastern Australia. Geoderma 2007, 137, 401–413. [Google Scholar] [CrossRef]
- Elberling, B.; Touré, A.; Rasmussen, K. Changes in soil organic matter following groundnut–millet cropping at three locations in semi-arid Senegal, West Africa. Agric. Ecosyst. Environ. 2003, 96, 37–47. [Google Scholar] [CrossRef]
- Ogle, S.M.; Conant, R.T.; Paustian, K. Deriving grassland management factors for a carbon accounting method developed by the intergovernmental panel on climate change. Environ. Manag. 2004, 33, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.Z.; Zhao, H.l. Soil properties and plant species in an age sequence of Caragana microphylla plantations in the Horqin Sandy Land, north China. Ecol. Eng. 2003, 20, 223–235. [Google Scholar] [CrossRef]
- Jaiyeoba, I.A. Changes in soil properties due to continuous cultivation in Nigerian semiarid Savannah. Soil Tillage Res. 2003, 70, 91–98. [Google Scholar] [CrossRef]
- Yu, S.S.; Dou, S.; Yang, J.M. Application of central model in soil organic carbon research. Soils Crop. 2014, 3, 10–14. [Google Scholar]
- Wang, S.Q. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China. Acta Geogr. Sin. 2000, 55, 533–544. [Google Scholar]
- Oelbermann, M.; Voroney, R.P. An evaluation of the century model to predict soil organic carbon: Examples from Costa Rica and Canada. Agrofor. Syst. 2011, 82, 37–50. [Google Scholar] [CrossRef]
- Slaton, N.A.; Norman, R.J.; Gilmour, J.T. Oxidation rates of commercial elemental sulfur products applied to an alkaline silt loam from Arkansas. Soil Sci. Soc. Am. J. 2001, 65, 239–243. [Google Scholar] [CrossRef]
- Jones, C.A.; Jacobsen, J.; Lorbeer, S. Metal concentrations in three Montana soils following 20 years of fertilization and cropping. Commun. Soil Sci. Plant Anal. 2002, 33, 1401–1414. [Google Scholar] [CrossRef]
Physiochemical Properties | |||||||
---|---|---|---|---|---|---|---|
Soil Group | Area (Km2) | Percentage (%) | BD (gcm−3) | Silt (%) | Sand (%) | Clay (%) | pH |
Gypsisols | 105,236.7 | 23.19 | 0.25 | 35 | 25 | 40 | 7.0–9.0 |
Cambisols | 94,781.1 | 20.89 | 1.12 | 30 | 58.8 | 11.2 | 5.7–7.0 |
Leptosols | 81,108.7 | 17.88 | 1.34 | 28 | 57.9 | 14.1 | 6.8–8.0 |
Luvisols | 29,081.7 | 6.41 | 1.27 | 30.2 | 49.5 | 20.3 | 7.0–8.0 |
Arenosols | 27,751.2 | 6.12 | 1.5–1.7 | 13.04 | 68.96 | 18 | 7.0–8.0 |
Calcisols | 27,379.5 | 6.03 | 1.25 | 28.0 | 53.0 | 19.0 | 7.0–8.5 |
Kastanozems | 15,859 | 3.5 | 1.13 | 27.3 | 51.2 | 21.5 | 7.0–8.5 |
Chernozems | 14,469.6 | 3.19 | 1.30 | 30.9 | 50.5 | 18.6 | 6.5–7.5 |
Solonchaks | 14,204.7 | 3.13 | 1.16 | 34 | 49.07 | 16.0 | >8.3 |
Anthrosols | 13,391.7 | 2.95 | 1.20 | 25 | 58.6 | 20 | 4.0–4.5 |
Fluvisols | 8438.1 | 1.86 | 1.28 | 16 | 68.75 | 24 | 6.8–7.5 |
Regosols | 8086.2 | 1.78 | 1.26 | 5.75 | 67.25 | 26.25 | 7.1–8.5 |
Phaeozems | 7444 | 1.64 | 1.25 | 28 | 63.25 | 19 | 5.0–7.0 |
Gleysols | 3668.7 | 0.81 | 1.27 | 30 | 49.5 | 20 | 6.0–8.0 |
Greyzems | 2137 | 0.47 | 1.32 | 26 | 53.86 | 20 | 6.75–7.9 |
Histosols | 680.7 | 0.15 | 1.32 | 26 | 53.86 | 20.14 | 7.8 |
Total | 453,719 | 100 |
Grassland Type | Area (Km2) | Percentage (%) |
---|---|---|
Temperate Typical | 52,581.6 | 37.2 |
Alpine Meadows | 21,715.2 | 15.4 |
Stipa Desert Steppe | 16,123.2 | 11.4 |
Subalpine Deciduous Broadleaf Shrubs | 15,945.7 | 11.3 |
Typical Meadows | 9006.1 | 6.4 |
Temperate Deciduous | 6138.5 | 4.3 |
Alpine Sparse | 5376.4 | 3.8 |
Halophyte | 4774.9 | 3.4 |
Temperate Meadows | 3346.5 | 2.4 |
Subalpine Hard-leaf Evergreen Broadleaf Shrubs | 2781.6 | 2 |
Artemisia Ordosica | 2059.2 | 1.5 |
Tropical and Subtropical Evergreen Broadleaf Shrubs | 1404.1 | 1 |
Total | 141,253 | 100 |
Scenario | Zone | Land Use/Management Practice |
---|---|---|
1 | A | Intensive grazing, ploughing, and no-till after |
2 | B | Intensive grazing and land till |
3 | C | Row—cultivator and moderate erosion |
4 | D | Ploughing and moderate grazing, |
5 | E | Cultivator and medium grazing |
6 | F | Hay harvest and no till |
7 | G | Low grazing and ploughing |
8 | H | Moderate grazing with no till |
9 | I | Land till and high erosion |
Calibration Site | SOMTC (t C) |
---|---|
Arid region | 1680.7 |
Alpine region | 2028.07 |
Aboveground Biomass Density (g/m2) | SOCS (t C) | SOCD (t C/ha) | |
---|---|---|---|
Mean | 2.95 × 102 | 436.098 × 106 | 15.75 |
Standard Deviation | 1.15 × 102 | 87.25 × 104 | 5.67 |
Minimum | 7.20 | 12.44 | 5.23 |
Maximum | 1207.56 | 26.13 | 30.68 |
MMP | ABVG Sim. | ABVG Obs. | SOCD Sim. | |
---|---|---|---|---|
MMP | ||||
ABVG Sim. | 0.57 | |||
ABVG Obs. | 0.67 | 0.50 | ||
SOCD Sim. | 0.89 | 0.58 | 0.82 | |
SOCD Obs. | 0.71 | 0.64 | 0.56 | 0.76 |
Mean Precipitation (mm) | Aboveground C Observed (t C/ha) | Aboveground C Simulated (t C/ha) | SOCD Observed (t C/ha) | ||
---|---|---|---|---|---|
Aboveground C Observed (t C/ha) | p-value | *** | |||
SE | 0.083 | ||||
Aboveground C Simulated (t C/ha) | p-value | *** | *** | ||
SE | 0.093 | 0.098 | |||
MAPE | --- | 0.1411783 | |||
SOCD Observed (t C/ha) | p-value | *** | *** | *** | |
SE | 0.079 | 0.093 | 0.087 | ||
SOCD Simulated (t C/ha) | p-value | *** | *** | *** | *** |
SE | 0.052 | 0.064 | 0.092 | 0.073 | |
MAPE | --- | --- | ---- | 0.0824219 |
Soil Organic Carbon Density (SOCD) t C/ha | SOC Storage (SOCS) (×106 t C) | Aboveground Biomass (ABVG) (g cm−2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Zone | No. of Sites | Min | Max | Av | Std | Min | Max | Av | Std | Min | Max | Av | Std |
A | 8 | 5.23 | 12.67 | 8.67 | 1.89 | 11.61 | 19.73 | 16.66 | 6.14 | 7.2 | 250.34 | 80.69 | 72.14 |
B | 12 | 7.52 | 15.55 | 10.4 | 2.03 | 15.96 | 34.91 | 30.44 | 5.04 | 90.89 | 234.56 | 125.24 | 34.33 |
C | 12 | 9.38 | 17.45 | 13.4 | 2.44 | 30.46 | 35.05 | 34.86 | 1.25 | 300.5 | 790.78 | 500.25 | 149.22 |
D | 4 | 10.45 | 20.23 | 15.53 | 3.01 | 25.76 | 45.42 | 45.46 | 5.71 | 275.34 | 1004.01 | 800.3 | 199.89 |
E | 8 | 13.44 | 23.78 | 19.21 | 2.01 | 49.5 | 53.39 | 51.87 | 1.08 | 359.3 | 1575.05 | 900.45 | 384.18 |
F | 7 | 16.55 | 30.68 | 23.17 | 4.21 | 95.7 | 112.5 | 89.62 | 4.15 | 464.34 | 1207.56 | 790.5 | 209.29 |
G | 9 | 15.67 | 29.56 | 22.8 | 3.85 | 83.29 | 96.89 | 75.46 | 3.79 | 87.05 | 400.58 | 284.23 | 104.19 |
H | 6 | 11.25 | 21.56 | 16.68 | 2.98 | 42.91 | 48.41 | 48.82 | 1.64 | 314.6 | 689.45 | 505.4 | 124.22 |
I | 15 | 14.3 | 22.75 | 19.13 | 2.27 | 46.72 | 51.36 | 42.91 | 1.28 | 45.5 | 945.05 | 300.9 | 248.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Nazieh, S.; Nkrumah, T.; Wang, X. Simulating Grassland Carbon Dynamics in Gansu for the Past Fifty (50) Years (1968–2018) Using the Century Model. Sustainability 2021, 13, 9434. https://doi.org/10.3390/su13169434
Zhang M, Nazieh S, Nkrumah T, Wang X. Simulating Grassland Carbon Dynamics in Gansu for the Past Fifty (50) Years (1968–2018) Using the Century Model. Sustainability. 2021; 13(16):9434. https://doi.org/10.3390/su13169434
Chicago/Turabian StyleZhang, Meiling, Stephen Nazieh, Teddy Nkrumah, and Xingyu Wang. 2021. "Simulating Grassland Carbon Dynamics in Gansu for the Past Fifty (50) Years (1968–2018) Using the Century Model" Sustainability 13, no. 16: 9434. https://doi.org/10.3390/su13169434
APA StyleZhang, M., Nazieh, S., Nkrumah, T., & Wang, X. (2021). Simulating Grassland Carbon Dynamics in Gansu for the Past Fifty (50) Years (1968–2018) Using the Century Model. Sustainability, 13(16), 9434. https://doi.org/10.3390/su13169434