Mineral Fertilizers Improves the Quality of Turmeric and Soil
Abstract
:1. Introduction
2. Materials and methods
2.1. Design of Experiments
2.2. Estimation of macro and micronutrients
2.3. Estimation of Mechanical Properties and Nutrients of Soil
2.4. Estimation of Enzyme Activities of Soil
2.5. Statistical Analyses
3. Results
3.1. Measurement of Plant Nutrients
3.2. Estimation of Physicochemical and Soil Nutrient Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Egamberdieva, D.; Jabborova, D. Medicinal plants of Uzbekistan and their traditional uses. In Vegetation of Central Asia and Environs; Springer Nature: Cham, Switzerland, 2018; pp. 211–237. [Google Scholar]
- Jabborova, D.; Davranov, K.; Egamberdieva, D. Antibacterial, antifungal, and antiviral properties of medicinal plants. In Medically Important Plant Biomes: Source of Secondary Metabolites; Egamberdieva, D., Tiezzi, A., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 51–65. [Google Scholar]
- Egamberdieva, D.; Jabborova, D. Plant microbiome: The source for biologically active compounds. In Biodiversity and Biomedicine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–9. [Google Scholar]
- Jabborova, D.; Annapurna, K.; Fayzullaeva, M.; Sulaymonov, K.; Kadirova, D.; Jabbarov, Z.; Sayyed, R.Z. Isolation and characterization of endophytic bacteria from ginger (Zingiber officinale Rosc.). Ann. Phytomed. 2020, 9, 116–121. [Google Scholar] [CrossRef]
- Mamarasulov, B.; Davranov, K.; Jabborova, D. Phytochemical, pharmacological and biological properties of Ajuga turkestanica (Rgl.) Brig (Lamiaceae). Ann. Phytomed. 2020, 9, 44–57. [Google Scholar] [CrossRef]
- Jabborova, D.; Enakiev, Y.; Sulaymanov, K.; Kadirova, D.; Ali, A.; Annapurna, K. Plant growth-promoting bacteria Bacillus subtilis promote growth and physiological parameters of Zingiber officinale Roscoe. Plant Sci. Today 2021, 8, 66–71. [Google Scholar] [CrossRef]
- Velayhudan, K.C.; Muralidharan, V.K.; Amalraj, V.A.; Gautam, P.L.; Mandal, S.; Kumar, D. Curcuma Genetic Resources. Scientific Monograph №4; National Bureau of Plant Genetic Resources: New Delhi, India, 1999; Volume 4, pp. 1–5. [Google Scholar]
- Krup, V.; Prakash, H.L.; Harini, A. Pharmacological activities of turmeric (Curcuma longa Linn): A review. J. Tradit. Med. Clin. Naturop. 2013, 2, 133. [Google Scholar] [CrossRef]
- Kulpapangkorna, W.; Mai-leang, S. Effect of plant nutrition on turmeric production. Procedia Eng. 2012, 32, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, K.V. Postharvest and Industrial Processing of Ginger. In Ginger-the Genus Zingiber’; Ravindran, P.N., Nirmal Babu, K., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 391–468. [Google Scholar]
- Li, L.; Qin, S. Effect of organic fertilizer and mineral fertilizer on the tuber yield of Curcuma longa L. Chung Kuo Chung Tsa Chih. 1996, 21, 654–662. [Google Scholar]
- Ruby, A.J.; Kuttan, G.; Dinesh, B.K. Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett. 1995, 94, 79–83. [Google Scholar] [CrossRef]
- Chavalittumrong, P.; Jirawattanapong, W. Variation of active constituents of Curcuma domestica rhizome at different age. Thai J. Pharm. Sci. 1992, 16, 165–177. [Google Scholar]
- Alori, E.T.; Aboyeji, C.M.; Dunsin, O.; Adegbite, K.A.; Aremu, C.O.; Bamiro, O.; Ejue, W.S.; Okunlola, F.O.; Adesola, O.O. MgO Fertilizer Sole and Combined with Organic and Inorganic Fertilizers: Effect on Soil Chemical Properties, Turmeric Performance, and Quality in a Tropical Alfisol”. Sci. World J. 2019. [Google Scholar] [CrossRef]
- Tomori, W.B.; Obijole, O.A.; Aiyesanmi, A.F. Evaluation of nutrient status of cropped and degraded soils—Research note. Niger. J. Soil Sci. 2006, 16, 178–180. [Google Scholar]
- Sanghamithre, V.K.; Menon, M.V. Effect of S, Ca and Mg on fresh rhizome yield of turmeric (Curcuma longa L.). J. Trop. Agric. 2014, 52, 158–161. [Google Scholar]
- Qazi, M.A.; Iqbal, M.N.; Ashraf, M.; Khan, N.I.; Ahmad, R.; Umar, F.; Naeem, U.; Mughal, K.M.; Khalid, M.; Iqbal, Z. NPK requirements of turmeric for cultivation in Punjab. Pak. J. Sci. 2020, 72, 365. [Google Scholar]
- Srinivasan, V.; Thankamani, C.K.; Dinesh, R.; Kandiannan, K.; Zachariah, T.J.; Leela, N.K.; Hamza, S.; Shajina, O.; Ansha, O. Nutrient management systems in turmeric: Effects on soil quality, rhizome yield, and quality. Ind. Crops Prod. 2016, 85, 241–250. [Google Scholar] [CrossRef]
- Zhang, M.; Geng, Y.; Cao, G.; Zou, X.; Qi, X.; Stephano, M.F. Effect of magnesium fertilizer combined with straw return on nitrogen use efficiency. Agron. J. 2021, 113, 345–357. [Google Scholar] [CrossRef]
- Akamine, H.; Hossain, A.; Ishimine, Y.; Yogi, K.; Hokama, K.; Iraha, Y.; Aniya, Y. Effects of Application of N, P and K Alone Or In Combination on Growth, Yield And Curcumin Content of Turmeric (Curcuma Longa L.). Plant Prod. Sci. 2007, 10, 151–154. [Google Scholar] [CrossRef] [Green Version]
- El-Hawaz, R.F.; Grace, M.H.; Janbey, A.; Lila, M.A.; Adelberg, J.W. In vitro mineral nutrition of Curcuma longa L. affects the production of volatile compounds in rhizomes after transfer to the greenhouse [published correction appears in BMC Plant Biol. 2018 Jul 17;18(1):148]. BMC Plant Biol. 2018, 18, 122. [Google Scholar] [CrossRef]
- Nwokocha, C.C.; Mbagwu, J.S.C.; Olojede, A.O.; Ano, A.O. Mulching an arenic hapludult in southeastern nigeria: Effects on selected soil properties and rhizome yield of turmeric. Agro Sci. J. Trop. Agric. Food Environ. Ext. 2009, 8, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Sarabekov, A.; Matchanov, A.; Gofurov, M.B.; Xamidova, G.; Maulyanov, S.; Babaev, B.; Jabborova, D. Element analysis of Helichrysum maracandicum collected in different regions of Uzbekistan. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 53–59. [Google Scholar]
- Tursunov, L. Soil Physics. In Determination of the Mechanical Composition of Soils by the Kachinsky Method; National Unversity of Uzbekistan Press: Tashkent, Uzbekistan, 2010; p. 358. [Google Scholar]
- Soils. Determination of organic matter by the method Tyurin modified by CINAO. In Methods for Determination of the Organic Matter; GOST 26213-91, M; Publishing House of Standards: Minsk, Belarus, 2003; p. 11. [Google Scholar]
- Soils. Determination of Mobile Compounds of Phosphorus and Potassium by Machigin Method Modified by CINAO; GOST 26205-91, M; Publishing House of Standards: Minsk, Belarus, 2005; p. 10. [Google Scholar]
- GOST of Commonwealth of Independent States. Methods for Determining Total Phosphorus and Total Potassium; GOST 26261–84, M; Publishing House of Standards: Minsk, Belarus, 2005; pp. 1–10. [Google Scholar]
- GOST of Commonwealth of Independent States. Methods for Determination of Total Nitrogen; GOST 26107–84, M., Ed.; Publishing House of Standards: Minsk, Belarus, 2002; p. 9. [Google Scholar]
- Pancu, M.; Gautheyrou, J. Handbook pf Soil Analysis Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2003; p. 993. [Google Scholar]
- Guo, H.; Yao, J.; Cai, M.; Qian, Y.; Guo, Y.; Richnow, H.H.; Ceccanti, B. Effects of petroleum contamination on soil microbial numbers, metabolic activity, and urease activity. Chemosphere 2012, 87, 1273–1280. [Google Scholar] [CrossRef]
- Xaziev, F.X. Methods of Soil Enzymology; Publishing Nauka: Moscow, Russia, 2005; pp. 1–252. ISBN 5020339407. [Google Scholar]
- Egamberdieva, D.; Jabborova, D.; Berg, G. Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth and nodulation of soybean under salt stress. Plant Soil 2016, 405, 35–45. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.; Jabborova, D.; Räsänen, L.A.; Liao, H. Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress soybean through altering root system architecture. J. Plant Interact. 2017, 12, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Egamberdieva, D.; Jabborova, D.; Wirth, S.; Pravej, A.; Alyemeni, M.N.; Parvaiz, A. Interaction of magnesium with nitrogen and phosphorus modulates symbiotic performance of soybean with Bradyrhizobium japonicum and its root architecture. Front. Microbiol. 2018, 9, 1–11. [Google Scholar]
- Jabborova, D.; Enakiev, Y.; Kakhramon, D.; Begmatov, S. Effect of coinoculation with Bradyrhizobium japonicum and Pseudomonas putida on root morph-architecture traits, nodulation, and growth of soybean in response to phosphorus supply under hydroponic conditions. Bulg. J. Agric. Sci. 2018, 24, 1004–1011. [Google Scholar]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, S.; Sayyed, R.; Sonawane, M.; Trivedi, M.; Thivakaran, G. Neurospora sp SR8, a novel phosphate solubiliser from rhizosphere of soil of Sorghum in Kachh, Gujarat. Indian J. Exp. Biol. 2016, 54, 644–649. [Google Scholar]
- Jabborova, D.; Wirth, S.; Kannepalli, A.; Narimanov, A.; Desouky, S.; Davranov, K.; Sayyed, R.Z.; Enshasy, H.; AbdMalek, R.; Syed, A.; et al. Co-Inoculation of Rhizobacteria and Biochar Application Improves Growth and Nutrientsin Soybean and Enriches Soil Nutrients and Enzymes. Agronomy 2020, 10, 1142. [Google Scholar] [CrossRef]
- Ajayi, O.B.; Akomolafe, S.F.; Akinyemi, F.T. Food value of two varieties of ginger (Zingiber officinale) commonly consumed in Nigeria. Int. Sch. Res. Not. 2013, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.A.; Ishimine, Y.; Akamine, H.; Motomura, K. Effects of Seed Rhizome Size on Growth and Yield of Turmeric (Curcuma longa L.). Plant Prod. Sci. 2005, 8, 86–94. [Google Scholar] [CrossRef]
- Jabborova, D.; Choudhary, R.; Karunakaran, R.; Ercisli, S.; Ahlawat, J.; Sulaymanov, K.; Azimov, A.; Jabbarov, Z. The Chemical Element Composition of Turmeric Grown in Soil–Climate Conditions of Tashkent Region, Uzbekistan. Plants 2021, 10, 1426. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Ishimine, Y.; Motomura, K.; Akamine, H. Effects of Planting Pattern and Spacing on Growth and Yield of Turmeric (Curcuma longa L.). Plant Prod. Sci. 2005, 8, 95–105. [Google Scholar] [CrossRef]
- Imoru, A.; Onibi, G.E.; Osho, I.B. Nutritional and Biochemical Compositions of Turmeric (Curcuma longa Linn) Rhizome powder—A Promising Animal Feed Additive. Int. J. Sci. Eng. Res. 2018, 9, 424–429. [Google Scholar]
- Jabborova, D.; Sayyed, R.Z.; Azimov, A.; Jabbarov, Z.; Matchanov, A.; Enakiev, Y.; Baazeem, A.; Sabagh, A.E.; Danish, S.; Datta, R. Impact of mineral fertilizers on mineral nutrients in the ginger rhizome and on soil enzymes activities and soil properties. Saudi J. Biol. Sci. 2021. [Google Scholar] [CrossRef]
- Obiajunwa, E.I.; Adebajo, A.C.; Omobuwajo, O.R. Essential and trace element contents of some Nigerian medicinal plants. J. Radioanal. Nucl. Chem. 2002, 252, 473–476. [Google Scholar] [CrossRef]
- Ogunwandea, I.A.; Olawore, N.O. Heavy trace metals and macronutrients status in herbal plants of Nigeria. Food Chem. 2004, 85, 67–71. [Google Scholar]
- Al-Eed, M.A.; Assubaie, F.N.; El-Garawany, M.M.; El-Hamshary, H.; Eltayeb, Z.M. Determination of heavy metal levels in common spices. J. Appl. Sci. 2002, 17, 87–98. [Google Scholar]
- Yanthan, L.; Singh, A.K.; Singh, V.B. Effect of INM on yield, quality, and uptake of N., P and K by ginger. School Agricultural Sciences and Rural Development, Nagaland University, Medziphema. 797106. Nagaland, India. Agropedology 2010, 20, 74–79. [Google Scholar]
- Jabborova, D.; Baboev, S.; Davranov, K.; Jabbarov, Z. Improvement of plant growth, nodulation, and yield of common bean (Phaseolus vulgaris L.) by microbiological preparations. J. Biol. Chem. Res. 2019, 36, 52–57. [Google Scholar]
- Monaco, S.; Hatch, D.J.; Sacco, D.; Bertora, C.; Grignani, C. Changes in chemical and biochemical soil properties induced by 11-yr repeated additions of different organic materials in maize-based forage systems. Soil Biol. Biochem. 2008, 40, 608–615. [Google Scholar] [CrossRef]
- Ferreras, L.; Gomez, E.; Toresani, S.; Firpo, I.; Rotondo, R. Effect of organic amendments on physical, chemical and biological properties in a horticultural soil. Bioresour. Technol. 2006, 97, 635–640. [Google Scholar] [CrossRef]
- McDowell, W.H.; Magill, A.H.; Aitkenhead-Peterson, J.A.; Aber, J.D.; Merriam, J.L.; Kaushal, S.S. Effects of chronic nitrogen amendment on dissolved organic matter inorganic nitrogen in soil solution. For. Ecol. Manag. 2004, 196, 29–41. [Google Scholar] [CrossRef]
- Dinesh, R.; Srinivasan, V.; Hamza, S. Nutrition. In Zingiberaceae Crops-Present and Future; Singh, H.P., Parthasarathy, V.A., Kandiannan, K., Krishnamurthy, K.S., Eds.; Westville Publishing House: New Delhi, India, 2012; pp. 255–287. [Google Scholar]
- Srinivasan, V.; Thankamani, C.K.; Dinesh, R.; Kandiannan, K.; Hamza, S.; Leela, N.K.; Zachariah, T.J. Variations in soil properties, rhizome yield, and quality as influenced by different nutrient management schedules in rainfed ginger. Agric. Res. 2019, 8, 218–230. [Google Scholar] [CrossRef]
- Reddy, R.; VR, R.P. Bio-associative influence of secondary metabolites of turmeric on microbial and biochemical changes in rhizosphere and non-rhizosphere soils under various nutrient management practices. J. Pharmacogn. Phytochem. 2018, 7, 781–785. [Google Scholar]
- Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Khan, M.J.; Fahad, S.; Datta, R.; Brtnicky, M.; Kintl, A.; Hussain, G.S.; El-Esawi, M.A. Effect of Cadmium-Tolerant Rhizo-bacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity. Plants 2020, 9, 1386. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Tahzeeb-ul-Hassan, M.; Abid, M.; Fahad, S.; Brtnicky, M.; Dokulilova, T.; Datta, R.; Danish, S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci. Rep. 2020, 10, 1–12. [Google Scholar]
- Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Fahad, S.; Datta, R.; Abbas, M.; Rahi, A.A.; Brtnicky, M.; Holátko, J.; Tarar, Z.H.; et al. Alleviation of Cadmium Adverse Effects by Improving Nutrients Uptake in Bitter Gourd through Cadmium Tolerant Rhizobacteria. Environments 2020, 7, 54. [Google Scholar] [CrossRef]
- Danish, S.; Zafar-ul-Hye, M.; Fahad, S.; Saud, S.; Brtnicky, M.; Hammerschmiedt, T.; Datta, R. Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without Timber Waste Biochar in Maize. Sustainability 2020, 12, 6286. [Google Scholar] [CrossRef]
- Abbas, M.; Anwar, J.; Zafar-ul-Hye, M.; Khan, R.I.; Saleem, M.; Rahi, A.A.; Danish, S.; Datta, R. Effect of Seaweed Extract on Productivity and Quality Attributes of Four Onion Cultivars. Horticulturae 2020, 6, 28. [Google Scholar] [CrossRef]
- Izhar Shafi, M.; Adnan, M.; Fahad, S.; Wahid, F.; Khan, A.; Yue, Z.; Danish, S.; Zafar-ul-Hye, M.; Brtnicky, M.; Datta, R. Application of Single Superphosphate with Humic Acid Improves the Growth, Yield and Phosphorus Uptake of Wheat (Triticum aestivum L.) in Calcareous Soil. Agronomy 2020, 10, 1224. [Google Scholar] [CrossRef]
- Ullah, A.; Ali, M.; Shahzad, K.; Ahmad, F.; Iqbal, S.; Habib, M.; Rahman, M.; Ahmad, S.; Iqbal, M.; Danish, S.; et al. Impact of Seed Dressing and Soil Application of Potassium Humate on Cotton Plants Productivity and Fiber Quality. Plants 2020, 9, 1444. [Google Scholar] [CrossRef] [PubMed]
- Zarei, T.; Danish, S. Effect of micronutrients foliar supplementation on the production and eminence of plum (Prunus domestica L.). Qual. Assur. Saf. Crop. Foods 2020, 12, 32–40. [Google Scholar] [CrossRef]
- Khan, M.J.; Muhammad, D.; Fahad, S.; Adnan, M.; Wahid, F.; Alamri, S.; Khan, F.; Dawar, K.M.; Irshad, I.; Danish, S.; et al. Phosphorus Nutrient Management through Synchronization of Application Methods and Rates in Wheat and Maize Crops. Plants 2020, 9, 1389. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant Growth Promoting Rhizobacteria (PGPR) as Green Bioinoculants: Recent Developments, Constraints, and Prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Hamid, B.; Zaman, M.; Farooq, S.; Fatima, S.; Sayyed, R.Z.; Baba, Z.A.; Sheikh, T.A.; Reddy, M.S.; Enshasy, H.E.; Gafur, A.; et al. Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. Sustainability 2021, 21, 2856. [Google Scholar] [CrossRef]
- Moradzadeh, S.; Moghaddam, S.S.; Rahimi, A.; Pourakbar, L.; Sayyed, R.Z. Combined bio-chemical fertilizers, ameliorate agro-biochemical attributes of black cumin (Nigella sativa L.). Sci. Rep. 2021, 11, 11399. [Google Scholar] [CrossRef] [PubMed]
Particle Size Distribution | Physical Mud | |||||||
---|---|---|---|---|---|---|---|---|
Land use types | 1–0.25 | 0.25–0.1 | 0.1–0.05 | 0.05–0.01 | 0.01–0.005 | 0.005–0.001 | <0.001 | <0.01 |
Cultivated land | 3.71 | 1.29 | 5.6 | 37.19 | 12.41 | 21.3 | 18.5 | 52.21 |
Elements | Treatments | |||
---|---|---|---|---|
Control | N75P50K50 | N125P100K100 | N100P75K75 + B3Zn6Fe6 | |
Macro-Elements (g/kg) | ||||
K | 18.31a | 19.82b | 23.34c | 22.26c |
Ca | 14.40a | 15.30b | 20.59cd | 19.85*b |
P | 5.41a | 5.81a | 8.33cd | 6.35b |
Mg | 4.81a | 4.86a | 4.88a | 4.96b |
Na | 1.50a | 1.50a | 1.51a | 1.52b |
Micro-elements (mg/kg) | ||||
Fe | 121.57a | 123.87a | 163.22d | 274.93f |
Mn | 59.18a | 60.11b | 81.56e | 63.43d |
Zn | 4.30a | 5.17b | 9.74d | 17.32h |
Cu | 2.69b | 2.50a | 1.88c | 2.81a |
Cr | 0.72a | 0.98c | 1.03e | 1.15g |
Mo | 0.06a | 0.06a | 0.07c | 0.08d |
Si | 411.06b | 521.12d | 550.23g | 537.44f |
Ultra-Microelements (mg/kg) | Treatments | |||
---|---|---|---|---|
Control | N75P50K50 | N125P100K100 | N100P75K75 + B3Zn6Fe6 | |
Li | 0.464a | 0.178b | 0.106a | 0.118a |
Be | 0.004a | 0.004 a | 0.004a | 0.004a |
V | 0.068a | 0.068a | 0.068a | 0.068a |
Co | 0.037a | 0.037a | 0.038b | 0.037a |
Ga | 0.198b | 0.192a | 0.199c | 0.140ad |
Ge | 0.000a | 0.000a | 0.000a | 0.000a |
Nb | 0.002a | 0.002a | 0.002a | 0.002a |
Ag | 0.032a | 0.037c | 0.039c | 0.086f |
Cd | 0.053a | 0.053a | 0.053a | 0.053a |
In | 0.000a | 0.000a | 0.000 a | 0.000a |
Sn | 0.055a | 0.054a | 0.055a | 0.055a |
Sb | 0.003a | 0.003a | 0.003a | 0.003a |
Cs | 0.001a | 0.001a | 0.001a | 0.000b |
Ta | 0.000a | 0.000a | 0.000a | 0.000a |
W | 0.001a | 0.001a | 0.001a | 0.001a |
Re | 0.000a | 0.000a | 0.000a | 0.000a |
pH | EC (ds/m) | Alkalinity (HCO3 mg/eq) | Cl (mg/ eq) | SO4 (mg/ eq) | Ca (mg/eq) | Mg (mg/eq) | N-NO3 (mg/kg) | Total P2O5 (mg/ eq) | Total K2O (mg/kg eq) | N (%) | Organic Matter (%) | C (%) | C/N Ratio | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Before treatment | 8.0 | 5.47 | 0.36 | 1.12 | 2.66 | 12.18 | 5.14 | 89.10 | 0.180 | 1.86 | 0.094 | 1.697 | 0.984 | 10.4 |
After treatment | 7.7 | 4.82 | 0.01 | 2.09 | 3.92 | 17.12 | 7.51 | 32.45 | 31.0 | 1.86 | 351.60 | 2.32 | 1.351 | 15.6 |
Treatments | Active P and K (mg/kg) | N-NO3, (mg/kg) | Total (%) | N, (%) | Organic Matter (%) | C, (%) | C/N Ratio | ||
---|---|---|---|---|---|---|---|---|---|
P2O5 | K2O | P2O5 | K2O | ||||||
T1-Control | 31.3a | 121.54a | 10.88a | 0.160a | 0.83a | 0.194a | 3.85a | 2.24b | 11.7b |
T2-N75P50K50 | 32.0b | 123.77a | 17.99c | 0.190c | 0.85a | 0.203d | 4.21b | 2.45a | 11.8a |
T3-N125P100K100 | 40.0d | 132.50b | 28.55e | 0.220e | 0.93d | 0.214g | 4.38d | 2.55d | 12.1e |
T4-N100P175K75+ B3Zn6Fe6 | 42.0e | 152.40f | 32.45h | 0.260h | 0.95e | 0.211g | 4.68h | 2.72f | 12.9f |
Treatments | CO2 % | Alkalinity | Cl | SO4 | Ca | Mg | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total HCO3, (%) | Total HCO3, (mg/eq) | (%) | (mg/eq) | (%) | (mg/eq) | (%) | (mg/eq) | (%) | (mg/eq) | ||
Control | 8.25e | 0.014a | 0.33d | 0.008a | 1.26f | 0.200a | 2.66d | 0.140f | 30.00e | 6.25f | 0.014f |
N75P50K50 | 6.01b | 0.012c | 0.28b | 0.008a | 1.21e | 0.28f | 2.14e | 0.13e | 28.77b | 6.01c | 0.012e |
N125P100K100 | 6.00b | 0.01e | 0.27c | 0.008a | 1.01b | 0.24e | 2.01c | 0.11d | 22.44a | 6.00c | 0.01b |
N100P75K75 + B3Zn6Fe6 | 5.80d | 0.009f | 0.25a | 0.007c * | 0.95a | 0.200a | 1.98a | 0.090a * | 28.75b | 5.80a | 0.009a * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabborova, D.; Sulaymanov, K.; Sayyed, R.Z.; Alotaibi, S.H.; Enakiev, Y.; Azimov, A.; Jabbarov, Z.; Ansari, M.J.; Fahad, S.; Danish, S.; et al. Mineral Fertilizers Improves the Quality of Turmeric and Soil. Sustainability 2021, 13, 9437. https://doi.org/10.3390/su13169437
Jabborova D, Sulaymanov K, Sayyed RZ, Alotaibi SH, Enakiev Y, Azimov A, Jabbarov Z, Ansari MJ, Fahad S, Danish S, et al. Mineral Fertilizers Improves the Quality of Turmeric and Soil. Sustainability. 2021; 13(16):9437. https://doi.org/10.3390/su13169437
Chicago/Turabian StyleJabborova, Dilfuza, Khurshid Sulaymanov, R. Z. Sayyed, Saad H. Alotaibi, Yuriy Enakiev, Abdulahat Azimov, Zafarjon Jabbarov, Mohammad Javed Ansari, Shah Fahad, Subhan Danish, and et al. 2021. "Mineral Fertilizers Improves the Quality of Turmeric and Soil" Sustainability 13, no. 16: 9437. https://doi.org/10.3390/su13169437
APA StyleJabborova, D., Sulaymanov, K., Sayyed, R. Z., Alotaibi, S. H., Enakiev, Y., Azimov, A., Jabbarov, Z., Ansari, M. J., Fahad, S., Danish, S., & Datta, R. (2021). Mineral Fertilizers Improves the Quality of Turmeric and Soil. Sustainability, 13(16), 9437. https://doi.org/10.3390/su13169437