A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy
Abstract
:1. Introduction
2. Analytical Framework and Related Literature
3. Methodology
3.1. Phase 1: Planning the Review
3.2. Phases 2 and 3: Location, Selection, and Evaluation of Studies
3.2.1. Location
3.2.2. Selection and Evaluation
3.3. Phase 4: Data Analysis and Coding Scheme
4. Analysis and Results: Descriptive Analysis
4.1. Number and Sources of Publications
4.2. Methodological Trends
4.3. Geographical Trends
5. Analysis and Results: Discussion
5.1. Upstream PV Value Chain
5.1.1. Research and Development (R&D)
5.1.2. Solar Grade Silicon Production
5.1.3. Crystallization, Ingot Molding, and Wafering
5.1.4. Solar Cell Manufacturing
Silicon-Based
Thin-Film
Emerging PV Cell Technologies
5.1.5. Module Manufacturing and Balance of Systems (BOS)
5.1.6. PV Installations
5.1.7. Geography and Composition of the Global PV Supply Chain
5.2. Midstream PV Value Chain: Business Models
5.2.1. Home-Owned Systems and Feed-in-Tariffs (FITs)
5.2.2. Third-Party Ownership Models (TPOs)
5.2.3. Community Solar Model
5.3. Downstream: End-of-Life Management of PV Systems
5.3.1. PV Panel Reuse
5.3.2. PV Panel Recycling
Environmental Issues Related to the Disposal of PV Panels
Cost
5.4. Electric Vehicle (EV) Batteries for PV Energy Storage
6. Discussion and Conclusions
7. Future Research
- What will be the impacts of raw material scarcity, price fluctuations, or other external shocks such as pandemics or extreme weather events on the resilience of the PV and battery supply chain? Additionally, what are the implications of scarcity and fluctuating prices for R&D activities and high-value material recovery activities at EOL (i.e., at the raw material stage)?
- Which PV technologies and battery chemistries will triumph over others in the quest to dominate market share over the medium and the long term? Additionally, what are the effects of these trajectories on the adoption, uptake, second life use, and decommissioning of PV systems and LIBs (i.e., PV and EV battery cell/module manufacturing stage)?
- How will the mix of dominant PV and battery technologies affect different policy options and industry arrangements for the deployment of innovative business models (that facilitate monitoring, collection, reuse, and recycling)? How do new BMs create simultaneous value for manufacturers, service providers, end-customers, and utilities (i.e., at the deployment and business model stage)?
- For both reuse and recycling scenarios, what are the estimated recovery rates, costs, and performance indicators for each PV technology? Additionally, at what rate will the recovered materials be used in new manufacturing cycles? Moreover, with new “circular tasks” to be performed (i.e., refurbishment for reuse, recycling, and so on) new ecosystem actors are likely to emerge. If so, what will be the nature of the work performed by these actors and what is their connection with the traditional actor network of the PV and LIB value chain (i.e., circular economy strategies)?
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Alternating current |
BESS | Battery energy storage systems |
BEV | Battery electric vehicle |
BMs | Business models |
BMS | Battery management system |
C | Carbon |
Cd | Cadmium |
CdTe | Cadmium telluride |
CE | Circular economy |
Co | Cobalt |
CO2 | Carbon dioxide |
Cr | Chromium |
c-Si | Crystalline silicon |
CSP | Concentrating solar power |
Cu | Copper |
DC | Direct current |
EOL | End-of-life |
EV | Electric vehicle |
FIT | Feed-in-tariff |
GW | Gigawatts |
GWh | Gigawatt hours |
LbD | Learning by doing |
LIB/Li-ion | Lithium-ion battery |
mc-Si | Multicrystalline silicon |
MG-Si | Metallurgical-grade silicon |
MW | Megawatt |
N/A | Not available |
OEM | Original equipment manufacturer |
Pb | Lead |
PPA | Power purchase agreement |
PV | Photovoltaic |
R&D | Research and development |
SLR | Systematic literature review |
SOG-Si | Solar-grade silicon |
TPO | Third-party owned |
WEEE | Waste electrical and electronic equipment |
References
- IRENA. Future of Solar Photovoltaic: Deployment, investment, technology, grid integration and socio-economic aspects. A Glob. Energy Transform. Pap. 2019.
- IRENA. Global Energy Transformation: A Roadmap to 2050, 2019 ed.; IRENA: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- IRENA. End-of-Life Management: Solar Photovoltaic Panels International Renewable Energy Agency. 2016. Available online: http://www.irena.org/DocumentDownloads/Publications/IRENA_IEAPVPS_End-of-Life_Solar_PV_Panels_2016.pdf (accessed on 8 September 2018).
- Kumar, A.; Holuszko, M.; Espinosa, D.C.R. E-waste: An overview on generation, collection, legislation and recycling practices. Resour. Conserv. Recy. 2017, 122, 32–42. [Google Scholar] [CrossRef]
- Besiou, M.; Wassenhove, L.N. Closed-Loop Supply Chains for Photovoltaic Panels: A Case-Based Approach. J. Ind. Ecol. 2016, 20, 929–937. [Google Scholar] [CrossRef]
- Jia, F.; Sun, H.; Koh, L. Global solar photovoltaic industry: An overview and national competitiveness of Taiwan. J. Clean. Prod. 2016, 126, 550–562. [Google Scholar] [CrossRef]
- Olson, E.L. Green Innovation Value Chain analysis of PV solar power. J. Clean. Prod. 2014, 64, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Zobel, A.-K.; Balsmeier, B.; Chesbrough, H. Does patenting help or hinder open innovation? Evidence from new entrants in the solar industry. Ind. Corp. Chang. 2016, 25, 307–331. [Google Scholar] [CrossRef]
- Overholm, H. Collectively created opportunities in emerging ecosystems: The case of solar service ventures. Technovation 2015, 39, 14–25. [Google Scholar] [CrossRef]
- Sica, D.; Malandrino, O.; Supino, S.; Testa, M.; Lucchetti, M.C. Management of end-of-life photovoltaic panels as a step towards a circular economy. Renew. Sustain. Energy Rev. 2018, 82, 2934–2945. [Google Scholar] [CrossRef]
- Bustamante, M.L.; Gaustad, G. Challenges in assessment of clean energy supply-chains based on byproduct minerals: A case study of tellurium use in thin film photovoltaics. Appl. Energy 2014, 123, 397–414. [Google Scholar] [CrossRef]
- Gaustad, G.; Krystofik, M.; Bustamante, M.; Badami, K. Circular economy strategies for mitigating critical material supply issues. Resour. Conserv. Recy. 2018, 135, 24–33. [Google Scholar] [CrossRef]
- Kaplinsky, R.; Morris, M. A Handbook for Value Chain Research; International Development Research Centre: Ottawa, ON, Canada, 2001. [Google Scholar]
- Porter, M.E. Competitive Strategy: Techniques for Analyzing Industries and Competitors; Schuster, S., Ed.; Free Press: New York, NY, USA, 2008. [Google Scholar]
- Yan, L.; Wang, A. Based on material flow analysis: Value chain analysis of China iron resources. Resour. Conserv. Recy. 2014, 91, 52–61. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S. How Can Big Data Complement Expert Analysis? A Value Chain Case Study. Sustainability 2018, 10, 709. [Google Scholar] [CrossRef] [Green Version]
- D’heur, M. Sustainable Value Chain Management; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Fonteyn, P.; Lizin, S.; Maes, W. The evolution of the most important research topics in organic and perovskite solar cell research from 2008 to 2017: A bibliometric literature review using bibliographic coupling analysis. Sol. Energy Mater. Sol. Cells 2020, 207, 110325. [Google Scholar] [CrossRef]
- Theelen, M.; Daume, F. Stability of Cu (In,Ga)Se2 solar cells: A literature review. Sol. Energy 2016, 133, 586–627. [Google Scholar] [CrossRef]
- Osterwald, C.R.; McMahon, T.J. History of accelerated and qualification testing of terrestrial photovoltaic modules: A literature review. Prog. Photovolt. Res. Appl. 2009, 17, 11–33. [Google Scholar] [CrossRef]
- Shubbak, M.H. Advances in solar photovoltaics: Technology review and patent trends. Renew. Sustain. Energy Rev. 2019, 115, 109383. [Google Scholar] [CrossRef]
- Pawluk, R.E.; Chen, Y.; She, Y. Photovoltaic electricity generation loss due to snow—A literature review on influence factors, estimation, and mitigation. Renew. Sustain. Energy Rev. 2019, 107, 171–182. [Google Scholar] [CrossRef]
- Ndiaye, A.; Charki, A.; Kobi, A.; Kébé, C.M.F.; Ndiaye, P.A.; Sambou, V. Degradations of silicon photovoltaic modules: A literature review. Sol. Energy 2013, 96, 140–151. [Google Scholar] [CrossRef]
- Sanz Saiz, C.; Polo Martínez, J.; Martín Chivelet, N. Influence of Pollen on Solar Photovoltaic Energy: Literature Review and Experimental Testing with Pollen. Appl. Sci. 2020, 10, 4733. [Google Scholar] [CrossRef]
- De Freitas Viscondi, G.; Alves-Souza, S.N. A Systematic Literature Review on big data for solar photovoltaic electricity generation forecasting. Sustain. Energy Technol. Assess. 2019, 31, 54–63. [Google Scholar] [CrossRef]
- Qazi, A.; Fayaz, H.; Wadi, A.; Raj, R.G.; Rahim, N.A.; Khan, W.A. The artificial neural network for solar radiation prediction and designing solar systems: A systematic literature review. J. Clean. Prod. 2015, 104, 1–12. [Google Scholar] [CrossRef]
- Kurukuru, V.S.B.; Haque, A.; Khan, M.A.; Sahoo, S.; Malik, A.; Blaabjerg, F. A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems. Energies 2021, 14, 4690. [Google Scholar] [CrossRef]
- Nain, P.; Kumar, A. Initial metal contents and leaching rate constants of metals leached from end-of-life solar photovoltaic waste: An integrative literature review and analysis. Renew. Sustain. Energy Rev. 2020, 119, 109592. [Google Scholar] [CrossRef]
- Nain, P.; Kumar, A. Understanding the possibility of material release from end-of-life solar modules: A study based on literature review and survey analysis. Renew. Energy 2020, 160, 903–918. [Google Scholar] [CrossRef]
- Kihlström, V.; Elbe, J. Constructing Markets for Solar Energy—A Review of Literature about Market Barriers and Government Responses. Sustainability 2021, 13, 3273. [Google Scholar] [CrossRef]
- Lazdins, R.; Mutule, A.; Zalostiba, D. PV Energy Communities—Challenges and Barriers from a Consumer Perspective: A Literature Review. Energies 2021, 14, 4873. [Google Scholar] [CrossRef]
- Alipour, M.; Salim, H.; Stewart, R.A.; Sahin, O. Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review. Renew. Sustain. Energy Rev. 2020, 123, 109749. [Google Scholar] [CrossRef]
- Sampaio, P.G.V.; González, M.O.A. Photovoltaic solar energy: Conceptual framework. Renew. Sustain. Energy Rev. 2017, 74, 590–601. [Google Scholar] [CrossRef]
- Mahmoudi, S.; Huda, N.; Alavi, Z.; Islam, M.T.; Behnia, M. End-of-life photovoltaic modules: A systematic quantitative literature review. Resour. Conserv. Recy. 2019, 146, 1–16. [Google Scholar] [CrossRef]
- Salim, H.K.; Stewart, R.A.; Sahin, O.; Dudley, M. Drivers, barriers and enablers to end-of-life management of solar photovoltaic and battery energy storage systems: A systematic literature review. J. Clean. Prod. 2019, 211, 537–554. [Google Scholar] [CrossRef]
- Denyer, D.; Tranfield, D. Producing a systematic review. In The Sage Handbook of Organizational Research Methods; Buchanan, D., Bryman, A., Eds.; Sage Publications Ltd.: London, UK, 2009; pp. 671–689. [Google Scholar]
- Tranfield, D.; Denyer, D.; Smart, P. Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. Br. J. Manag. 2003, 14, 207–222. [Google Scholar] [CrossRef]
- Cook, D.J.; Mulrow, C.D.; Haynes, R.B. Systematic reviews: Synthesis of best evidence for clinical decisions. Ann. Intern. Med. 1997, 126, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.; Watson, R.T. Analyzing the Past to Prepare for the Future: Writing a Literature Review. MIS Q. 2002, 26, xiii–xxiii. [Google Scholar]
- Timilsina, G.R.; Kurdgelashvili, L.; Narbel, P.A. Solar energy: Markets, economics and policies. Renew. Sustain. Energy Rev. 2012, 16, 449–465. [Google Scholar] [CrossRef]
- Corbin, J.M.; Strauss, A. Grounded theory research: Procedures, canons, and evaluative criteria. Qual. Sociol. 1990, 13, 3–21. [Google Scholar] [CrossRef]
- Yuan, H.; Shen, L. Trend of the research on construction and demolition waste management. Waste Manag. 2011, 31, 670–679. [Google Scholar] [CrossRef]
- Zeng, K. Domestic Politics and US-China Trade Disputes over Renewable Energy. J. East Asian Stud. 2015, 15, 423–454. [Google Scholar] [CrossRef] [Green Version]
- Cowern, N.E.B. Silicon-based photovoltaic solar cells. In Functional Materials for Sustainable Energy Applications; Woodhead Publishing: Cambridge, UK, 2012; pp. 3–22e. [Google Scholar]
- Frenzel, M.; Tolosana-Delgado, R.; Gutzmer, J. Assessing the supply potential of high-tech metals—A general method. Resour. Policy 2015, 46, 45–58. [Google Scholar] [CrossRef]
- Fthenakis, V.; Anctil, A. (Eds.) Direct Te mining: Resource availability and impact on cumulative energy demand of CdTe PV life cycles. In Proceedings of the 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, Austin, TX, USA, 3–8 June 2012. [Google Scholar]
- Hancock, L.; Ralph, N.; Armand, M.; Macfarlane, D.; Forsyth, M. In the lab: New ethical and supply chain protocols for battery and solar alternative energy laboratory research policy and practice. J. Clean. Prod. 2018, 187, 485–495. [Google Scholar] [CrossRef]
- Kaja, H.; Barki, D.T. (Eds.) Solar PV technology value chain in respect of new silicon feedstock materials: A context of India and its ambitious National Solar Mission. In Proceedings of the 2011 Annual IEEE India Conference, Hyderabad, India, 16–18 December 2011. [Google Scholar]
- Werner, T.T.; Mudd, G.M.; Jowitt, S.M. The world’s by-product and critical metal resources part III: A global assessment of indium. Ore Geol. Rev. 2017, 86, 939–956. [Google Scholar] [CrossRef]
- Woodhouse, M.; Goodrich, A.; Margolis, R.; James, T.L.; Lokanc, M.; Eggert, R. (Eds.) Supply-chain dynamics of tellurium, indium and gallium within the context of PV module manufacturing costs. In Proceedings of the 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, Austin, TX, USA, 3–8 June 2012. [Google Scholar]
- Di Sabatino, M.; Stokkan, G. Defect generation, advanced crystallization, and characterization methods for high-quality solar-cell silicon. Appl. Mater. Sci. 2013, 210, 641–648. [Google Scholar] [CrossRef]
- Goodrich, A.; Hacke, P.; Wang, Q.; Sopori, B.; Margolis, R.; James, T.; Woodhouse, M. A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs. Sol. Energy Mater. Sol. Cells 2013, 114, 110–135. [Google Scholar] [CrossRef]
- Long, S.; Geng, S. Decision framework of photovoltaic module selection under interval-valued intuitionistic fuzzy environment. Energy Convers. Manag. 2015, 106, 1242–1250. [Google Scholar] [CrossRef]
- Luo, W.; Khoo, Y.S.; Kumar, A.; Low, J.S.C.; Li, Y.M.; Tan, Y.S.; Ramakrishna, S. A comparative life-cycle assessment of photovoltaic electricity generation in Singapore by multicrystalline silicon technologies. Sol. Energy Mater. Sol. Cells 2018, 174, 157–162. [Google Scholar] [CrossRef]
- Moser, D.; Del Buono, M.; Jahn, U.; Herz, M.; Richter, M.; De Brabandere, K. Identification of technical risks in the photovoltaic value chain and quantification of the economic impact. Prog. Photovolt. Res. Appl. 2017, 25, 592–604. [Google Scholar] [CrossRef]
- Sheikh, N.J.; Park, Y.J.; Kocaoglu, D.F. (Eds.) Assessment of solar photovoltaic technologies using multiple perspectives and hierarchical decision modeling: Manufacturers worldview. In Proceedings of the PICMET’14 Conference: Portland International Center for Management of Engineering and Technology; Infrastructure and Service Integration, Kanazawa, Japan, 27–31 July 2014. [Google Scholar]
- Steeman, R.; Yong, J.; Mjøs, Ø.; Song, A. Integrating the value chain: The impact of silicon quality on cell performance. Energy Procedia 2012, 15, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Dominguez Lacasa, I.; Shubbak, M.H. Drifting towards innovation: The co-evolution of patent networks, policy, and institutions in China’s solar photovoltaics industry. Energy Res. Soc. Sci. 2018, 38, 87–101. [Google Scholar] [CrossRef]
- Breukel, A.; Zeegers, H. Breakthrough innovations by locally embedded start-ups and SMEs in a global network. In Global Innovation and Entrepreneurship: Challenges and Experiences from East and West; Palgrave Macmillan: Cham, Switzerland, 2017; pp. 113–137. [Google Scholar]
- Chen, H.H.; Lee, A.H.I.; Chen, S. Strategic policy to select suitable intermediaries for innovation to promote PV solar energy industry in China. Appl. Energy 2014, 115, 429–437. [Google Scholar] [CrossRef]
- Davies, J.; Joglekar, N. Supply Chain Integration, Product Modularity, and Market Valuation: Evidence from the Solar Energy Industry. Prod. Oper. Manag. 2013, 22, 1494–1508. [Google Scholar] [CrossRef] [Green Version]
- Jayanthi, S.; Witt, E.C.; Singh, V. Evaluation of Potential of Innovations: A DEA-Based Application to U.S. Photovoltaic Industry. IEEE Trans. Eng. Manag. 2009, 56, 478–493. [Google Scholar] [CrossRef]
- Wang, C.N.; Chang, Y.L.; Wu, T.C. A novel decision approach on selecting alliance partners of supply chain in photovoltaic industry. Afr. J. Bus. Manag. 2011, 5, 12702–12710. [Google Scholar]
- Wang, R.; Mu, Y. (Eds.) The Impacts of Supply Chain Cooperation Activities on Firm’s Market Value. In Proceedings of the 2019 16th International Conference on Service Systems and Service Management (ICSSSM), Shenzhen, China, 13–15 July 2019. [Google Scholar]
- Aziz, S.; Chowdhury, S.A. (Eds.) A description of human resource development in the Solar Home System industry in Bangladesh. In Proceedings of the 2nd International Conference on the Developments in Renewable Energy Technology (ICDRET 2012), Dhaka, Bangladesh, 5–7 January 2012. [Google Scholar]
- Llera, E.; Scarpellini, S.; Aranda, A.; Zabalza, I. Forecasting job creation from renewable energy deployment through a value-chain approach. Renew. Sustain. Energy Rev. 2013, 21, 262–271. [Google Scholar] [CrossRef]
- Hanna, R.; Leach, M.; Torriti, J. Microgeneration: The installer perspective. Renew. Energy 2018, 116, 458–469. [Google Scholar] [CrossRef]
- Shum, K.L.; Watanabe, C. Towards a local learning (innovation) model of solar photovoltaic deployment. Energy Policy 2008, 36, 508–521. [Google Scholar] [CrossRef]
- Horváth, D.; Szabó, R.Z. Evolution of photovoltaic business models: Overcoming the main barriers of distributed energy deployment. Renew. Sustain. Energy Rev. 2018, 90, 623–635. [Google Scholar] [CrossRef]
- Huijben, J.C.C.M.; Verbong, G.P.J. Breakthrough without subsidies? PV business model experiments in the Netherlands. Energy Policy 2013, 56, 362–370. [Google Scholar] [CrossRef]
- Strupeit, L.; Palm, A. Overcoming barriers to renewable energy diffusion: Business models for customer-sited solar photovoltaics in Japan, Germany and the United States. J. Clean. Prod. 2016, 123, 124–136. [Google Scholar] [CrossRef]
- Zhang, F.; Gallagher, K.S. Innovation and technology transfer through global value chains: Evidence from China’s PV industry. Energy Policy 2016, 94, 191–203. [Google Scholar] [CrossRef]
- Curtius, H.C. The adoption of building-integrated photovoltaics: Barriers and facilitators. Renew. Energy 2018, 126, 783–790. [Google Scholar] [CrossRef]
- Davies, G. Clean energy product markets in sub-Saharan Africa: Complex market devices and power asymmetries. Energy Res. Soc. Sci. 2018, 42, 80–89. [Google Scholar] [CrossRef]
- Grau, T.; Huo, M.; Neuhoff, K. Survey of photovoltaic industry and policy in Germany and China. Energy Policy 2012, 51, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J. Established industries as foundations for emerging technological innovation systems: The case of solar photovoltaics in Norway. Environ. Innov. Soc. Transit. 2018, 26, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, W. PV solar electricity industry: Market growth and perspective. Sol. Energy Mater. Sol. Cells 2006, 90, 3285–3311. [Google Scholar] [CrossRef]
- Hu, J.L.; Yeh, F.Y. The Value Migration and Innovative Capacity of Taiwan’s Photovoltaic Industry. Energy Sources Part B Econ. Plan. Policy 2013, 8, 190–199. [Google Scholar] [CrossRef]
- Huo, M.-L.; Zhang, D.-W. Lessons from photovoltaic policies in China for future development. Energy Policy 2012, 51, 38–45. [Google Scholar] [CrossRef]
- Kebede, K.Y.; Mitsufuji, T. Diffusion of solar innovations in Ethiopia: Exploring systemic problems. Int. J. Technol. Manag. Sustain. Dev. 2014, 13, 53–72. [Google Scholar] [CrossRef]
- Kemeny, P.; Munro, P.G.; Schiavone, N.; van der Horst, G.; Willans, S. Community Charging Stations in rural sub-Saharan Africa: Commercial success, positive externalities, and growing supply chains. Energy Sustain. Dev. 2014, 23, 228–236. [Google Scholar] [CrossRef]
- Klitkou, A.; Coenen, L. The Emergence of the Norwegian Solar Photovoltaic Industry in a Regional Perspective. Eur. Plan. Stud. 2013, 21, 1796–1819. [Google Scholar] [CrossRef]
- Lam, L.T.; Branstetter, L.; Azevedo, I.L. A sunny future: Expert elicitation of China’s solar photovoltaic technologies. Environ. Res. Lett. 2018, 13, 034038. [Google Scholar] [CrossRef]
- Li, H.L.; Chen, D.P.; Zhao, L.; Zhou, C.L.; Liu, Z.G.; Wang, W.J. PV demand and supply in China. Prog. Photovolt. Res. Appl. 2013, 21, 1286–1291. [Google Scholar] [CrossRef]
- Newman, S.; Doig, S.; Hansen, L.; Lacy, V. (Eds.) Accelerating solar power adoption: Compounding cost savings across the value chain. In Proceedings of the 38th ASES National Solar Conference 2009, SOLAR 2009, Buffalo, NY, USA, 11–16 May 2009. [Google Scholar]
- Nygaard, I.; Hansen, U.E.; Mackenzie, G.; Pedersen, M.B. Measures for diffusion of solar PV in selected African countries. Int. J. Sustain. Energy 2017, 36, 707–721. [Google Scholar] [CrossRef] [Green Version]
- Pinkse, J.; van den Buuse, D. The development and commercialization of solar PV technology in the oil industry. Energy Policy 2012, 40, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Sekhar, K.; Mukundan, R.; Mohan, R.; Sharma, S.; Udayarajan, V.; Jain, K.; Momaya, K. (Eds.) Aligning technology licensing strategies and business competitiveness: A case of photovoltaic technology firms in India. In Proceedings of the 2011 Proceedings of PICMET ‘11: Technology Management in the Energy Smart World (PICMET), Portland, OR, USA, 31 July–4 August 2011. [Google Scholar]
- Su, Y.-S. Competing in the Global Solar Photovoltaic Industry: The case of Taiwan. Int. J. Photoenergy 2013, 2013, 11. [Google Scholar] [CrossRef] [Green Version]
- Votteler, R.; Hough, J.; Venter, C. An analysis of the solar service provider industry in the Western Cape, South Africa. J. Energy S. Afr. 2014, 25, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Xiaohua, L. Institutional and economic support for renewable energy companies in China and EU member states: Conflicting or cooperative industrial policies? Perspect. Glob. Dev. Technol. 2014, 13, 728–754. [Google Scholar] [CrossRef]
- Yu, Z. China’s photovoltaic industry policy performance from the perspective of global value chain. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 1737–1742. [Google Scholar] [CrossRef]
- Fang, H.; Wang, B.; Song, W. Analyzing the interrelationships among barriers to green procurement in photovoltaic industry: An integrated method. J. Clean. Prod. 2020, 249, 119408. [Google Scholar] [CrossRef]
- Papageorgiou, K.; Carvalho, G.; Papageorgiou, E.I.; Bochtis, D.; Stamoulis, G. Decision-Making Process for Photovoltaic Solar Energy Sector Development using Fuzzy Cognitive Map Technique. Energies 2020, 13, 1427. [Google Scholar] [CrossRef] [Green Version]
- Hipp, A.; Binz, C. Firm survival in complex value chains and global innovation systems: Evidence from solar photovoltaics. Res. Pol. 2020, 49, 103876. [Google Scholar] [CrossRef]
- Matsuo, T. Fostering grid-connected solar energy in emerging markets: The role of learning spillovers. Energy Res. Soc. Sci. 2019, 57, 101227. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, Z.; Wang, L. From the Host to the Home Country, the International Upgradation of EMNEs in Sustainability Industries—The Case of a Chinese PV Company. Sustainability 2019, 11, 5269. [Google Scholar] [CrossRef] [Green Version]
- Shum, R.Y. Heliopolitics: The international political economy of solar supply chains. Energy Strategy Rev. 2019, 26, 100390. [Google Scholar] [CrossRef]
- Strielkowski, W.; Volkova, E.; Pushkareva, L.; Streimikiene, D. Innovative Policies for Energy Efficiency and the Use of Renewables in Households. Energies 2019, 12, 1392. [Google Scholar] [CrossRef] [Green Version]
- Hughes, L.; Meckling, J. Policy competition in clean technology: Scaling up or innovating up? Bus. Politics 2018, 20, 588–614. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, J.; Wang, L. Research on Self-Organizing Evolution Level of China’s Photovoltaic Industry Chain System. Sustainability 2020, 12, 1792. [Google Scholar] [CrossRef] [Green Version]
- Shubbak, M.H. The technological system of production and innovation: The case of photovoltaic technology in China. Res. Pol. 2019, 48, 993–1015. [Google Scholar] [CrossRef]
- Denes_Santos, D.; da Cunha, S.K. Transformative innovation policy for solar energy: Particularities of a developing country. Clean Technol. Environ. Policy 2020, 22, 43–57. [Google Scholar] [CrossRef]
- Binz, C.; Anadon, L.D. Unrelated diversification in latecomer contexts: Emergence of the Chinese solar photovoltaics industry. Environ. Innov. Soc. Transit. 2018, 28, 14–34. [Google Scholar] [CrossRef] [Green Version]
- Brock, A.; Sovacool, B.K.; Hook, A. Volatile Photovoltaics: Green Industrialization, Sacrifice Zones, and the Political Ecology of Solar Energy in Germany. Ann. Am. Assoc. Geogr. 2021, 1–23. [Google Scholar] [CrossRef]
- Hajdukiewicz, A.; Pera, B. International Trade Disputes over Renewable Energy—The Case of the Solar Photovoltaic Sector. Energies 2020, 13, 500. [Google Scholar] [CrossRef] [Green Version]
- Cliburn, J.K.; Robertson, C. (Eds.) Integrated Utility-Driven Solar PV: Key to Keeping Clean Distributed Resources in the Race to Meet Carbon-Reduction Goals. In Proceedings of the 35th ASES National Solar Conference, Denver, CO, USA, 9–13 July 2006. [Google Scholar]
- Corsatea, T.D.; Giaccaria, S.; Covrig, C.-F.; Zaccarelli, N.; Ardelean, M. RES diffusion and R&D investments in the flexibilisation of the European electricity networks. Renew. Sustain. Energy Rev. 2016, 55, 1069–1082. [Google Scholar]
- Fridgen, G.; Kahlen, M.; Ketter, W.; Rieger, A.; Thimmel, M. One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids. Appl. Energy 2018, 210, 800–814. [Google Scholar] [CrossRef] [Green Version]
- Mills, A.D.; Wiser, R.H. (Eds.) An evaluation of solar valuation methods used in utility planning and procurement processes. In Proceedings of the 42nd ASES National Solar Conference 2013, SOLAR 2013, Baltimore, MD, USA, 16–20 April 2013. [Google Scholar]
- Munson, K. Solar + storage: A holistic view. Renew. Energy Focus 2015, 16, 34–35. [Google Scholar] [CrossRef]
- Tayal, D. Leveraging innovation for electricity utilities. Electr. J. 2017, 30, 23–29. [Google Scholar] [CrossRef]
- Funcke, S. Municipal Added Value through Solar Power Systems in the City of Freiburg. Sustainability 2012, 4, 819. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.; Rice, J. Solar Feed-In Tariffs: Examining fair and reasonable retail rates using cost avoidance estimates. Energy Policy 2018, 112, 19–28. [Google Scholar] [CrossRef]
- Migendt, M.; Polzin, F.; Schock, F.; Täube, F.A.; Flotow, P. Beyond venture capital: An exploratory study of the finance-innovation-policy nexus in cleantech. Ind. Corp. Chang. 2017, 26, 973–996. [Google Scholar] [CrossRef]
- Shum, K.L.; Watanabe, C. Photovoltaic deployment strategy in Japan and the USA—An institutional appraisal. Energy Policy 2007, 35, 1186–1195. [Google Scholar] [CrossRef]
- Dehghani Madvar, M.; Alhuyi Nazari, M.; Tabe Arjmand, J.; Aslani, A.; Ghasempour, R.; Ahmadi, M.H. Analysis of stakeholder roles and the challenges of solar energy utilization in Iran. Int. J. Low-Carbon Technol. 2018, 13, 438–451. [Google Scholar] [CrossRef]
- Chen, Z.; Ivan Su, S.-I. Social welfare maximization with the least subsidy: Photovoltaic supply chain equilibrium and coordination with fairness concern. Renew. Energy 2019, 132, 1332–1347. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Tan, Q.; Peters, A.L.; Yang, C. Global status of recycling waste solar panels: A review. Waste Manag. 2018, 75, 450–458. [Google Scholar] [CrossRef]
- D’Adamo, I.; Miliacca, M.; Rosa, P. Economic Feasibility for Recycling of Waste Crystalline Silicon Photovoltaic Modules. Int. J. Photoenergy 2017, 2017, 6. [Google Scholar] [CrossRef]
- Corcelli, F.; Ripa, M.; Leccisi, E.; Cigolotti, V.; Fiandra, V.; Graditi, G.; Sannino, L.; Tammaro, M.; Ulgiati, S. Sustainable urban electricity supply chain—Indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life. Ecol. Indic. 2018, 94, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Hsueh, J.-T.; Lin, C.-Y. Constructing a network model to rank the optimal strategy for implementing the sorting process in reverse logistics: Case study of photovoltaic industry. Clean Technol. Environ. Policy 2015, 17, 155–174. [Google Scholar] [CrossRef]
- Kim, S.; Jeong, B. Closed-Loop Supply Chain Planning Model for a Photovoltaic System Manufacturer with Internal and External Recycling. Sustainability 2016, 8, 596. [Google Scholar] [CrossRef] [Green Version]
- Shiue, Y.C.; Lin, C.Y. Applying analytic network process to evaluate the optimal recycling strategy in upstream of solar energy industry. Energy Build. 2012, 54, 266–277. [Google Scholar] [CrossRef]
- Kharaji Manouchehrabadi, M.; Yaghoubi, S. A game theoretic incentive model for closed-loop solar cell supply chain by considering government role. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–25. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.; Xu, Z. Research on China’s photovoltaic modules recycling models under extended producer responsibility. Int. J. Sustain. Eng. 2019, 12, 423–432. [Google Scholar] [CrossRef]
- Li, Q.; Liu, K.; Zhang, Z.-H. Robust design of a strategic network planning for photovoltaic module recycling considering reclaimed resource price uncertainty. IISE Trans. 2019, 51, 691–708. [Google Scholar] [CrossRef]
- Quansah, D.A.; Adaramola, M.S. Ageing and degradation in solar photovoltaic modules installed in northern Ghana. Sol. Energy 2018, 173, 834–847. [Google Scholar] [CrossRef]
- Guo, X.; Lin, K.; Huang, H.; Li, Y. Carbon footprint of the photovoltaic power supply chain in China. J. Clean. Prod. 2019, 233, 626–633. [Google Scholar] [CrossRef]
- Jäger-Waldau, A.; Kougias, I.; Taylor, N.; Thiel, C. How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030. Renew. Sustain. Energy Rev. 2020, 126, 109836. [Google Scholar] [CrossRef]
- Agnew, S.; Smith, C.; Dargusch, P. Causal loop modelling of residential solar and battery adoption dynamics: A case study of Queensland, Australia. J. Clean. Prod. 2018, 172, 2363–2373. [Google Scholar] [CrossRef]
- Bulman, P. Tesla’s Powerwall battery production requires ‘super-charged’ supply chain. Renew. Energy Focus 2015, 16, 126–127. [Google Scholar] [CrossRef]
- Canals Casals, L.; Amante García, B.; Cremades, L.V. Electric vehicle battery reuse: Preparing for a second life. J. Ind. Eng. Manag. 2017, 10, 266–285. [Google Scholar] [CrossRef] [Green Version]
- Gaines, L. Lithium-ion battery recycling processes: Research towards a sustainable course. Sustain. Mater. Technol. 2018, 17, e00068. [Google Scholar] [CrossRef]
- Golembiewski, B.; vom Stein, N.; Sick, N.; Wiemhöfer, H.-D. Identifying trends in battery technologies with regard to electric mobility: Evidence from patenting activities along and across the battery value chain. J. Clean. Prod. 2015, 87, 800–810. [Google Scholar] [CrossRef]
- Huang, B.; Pan, Z.; Su, X.; An, L. Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Sources 2018, 399, 274–286. [Google Scholar] [CrossRef]
- Jiao, N.; Evans, S. Business Models for Sustainability: The Case of Second-life Electric Vehicle Batteries. In Proceedings of the 13th Global Conference on Sustainable Manufacturing, Binh Duong, Vietnam, 16–18 September 2015; pp. 250–255. [Google Scholar]
- Martinez-Laserna, E.; Gandiaga, I.; Sarasketa-Zabala, E.; Badeda, J.; Stroe, D.I.; Swierczynski, M.; Goikoetxea, A. Battery second life: Hype, hope or reality? A critical review of the state of the art. Renew. Sustain. Energy Rev. 2018, 93, 701–718. [Google Scholar] [CrossRef]
- Neubauer, J.; Wood, E.; Pesaran, A. A Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value. SAE Int. J. Mater. Manuf. 2015, 8, 544–553. [Google Scholar] [CrossRef] [Green Version]
- Olsson, L.; Fallahi, S.; Schnurr, M.; Diener, D.; van Loon, P. Circular Business Models for Extended EV Battery Life. Batteries 2018, 4, 57. [Google Scholar] [CrossRef] [Green Version]
- Ordoñez, J.; Gago, E.J.; Girard, A. Processes and technologies for the recycling and recovery of spent lithium-ion batteries. Renew. Sustain. Energy Rev. 2016, 60, 195–205. [Google Scholar] [CrossRef]
- Ramoni, M.O.; Zhang, H.-C. End-of-life (EOL) issues and options for electric vehicle batteries. Clean Technol. Environ. Policy 2013, 15, 881–891. [Google Scholar] [CrossRef]
- Schneider, M.; Biel, K.; Pfaller, S.; Schaede, H.; Rinderknecht, S.; Glock, C.H. Using inventory models for sizing energy storage systems: An interdisciplinary approach. J. Energy Storage 2016, 8, 339–348. [Google Scholar] [CrossRef]
- Sick, N.; Bröring, S.; Figgemeier, E. Start-ups as technology life cycle indicator for the early stage of application: An analysis of the battery value chain. J. Clean. Prod. 2018, 201, 325–333. [Google Scholar] [CrossRef]
- Stenzel, P.; Baumann, M.; Fleer, J.; Zimmermann, B.; Weil, M. (Eds.) Database development and evaluation for techno-economic assessments of electrochemical energy storage systems. In Proceedings of the Energycon 2014-IEEE International Energy Conference, Cavtat, Croatia, 13–16 May 2014. [Google Scholar]
- Sun, S.I.; Chipperfield, A.J.; Kiaee, M.; Wills, R.G.A. Effects of market dynamics on the time-evolving price of second-life electric vehicle batteries. J. Energy Storage 2018, 19, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Zhu, Z.; Lin, X.; Zhang, Y.; He, Y.; Cao, H.; Sun, Z. A Mini-Review on Metal Recycling from Spent Lithium Ion Batteries. Engineering 2018, 4, 361–370. [Google Scholar] [CrossRef]
- Retna Kumar, A.; Shrimali, G. Battery storage manufacturing in India: A strategic perspective. J. Energy Storage 2020, 32, 101817. [Google Scholar] [CrossRef]
- Chen, M.; Ma, X.; Chen, B.; Arsenault, R.; Karlson, P.; Simon, N.; Wang, Y. Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries. Joule 2019, 3, 2622–2646. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Lu, Y.; Yan, S. Study on coupling optimization model of node enterprises for energy storage-involved photovoltaic value chain in China. Energy Rep. 2020, 6, 69–81. [Google Scholar] [CrossRef]
- Agnew, S.; Smith, C.; Dargusch, P. Understanding transformational complexity in centralized electricity supply systems: Modelling residential solar and battery adoption dynamics. Renew. Sustain. Energy Rev. 2019, 116, 109437. [Google Scholar] [CrossRef]
- Abdallah, T.; Diabat, A.; Rigter, J. Investigating the option of installing small scale PVs on facility rooftops in a green supply chain. Int. J. Product. Econ. 2013, 146, 465–477. [Google Scholar] [CrossRef]
- Basore, P.A.; Cole, W.J. Comparing supply and demand models for future photovoltaic power generation in the USA. Prog. Photovolt. Res. Appl. 2018, 26, 414–418. [Google Scholar] [CrossRef]
- Castellanos, S.; Santibañez-Aguilar, J.E.; Shapiro, B.B.; Powell, D.M.; Peters, I.M.; Buonassisi, T.; Kammen, D.M.; Flores-Tlacuahuac, A. Sustainable silicon photovoltaics manufacturing in a global market: A techno-economic, tariff and transportation framework. Appl. Energy 2018, 212, 704–719. [Google Scholar] [CrossRef]
- Chen, Z.; Su, S.-I.I. Photovoltaic supply chain coordination with strategic consumers in China. Renew. Energy 2014, 68, 236–244. [Google Scholar] [CrossRef]
- Chen, Z.; Su, S.-I.I. Dual Competing Photovoltaic Supply Chains: A Social Welfare Maximization Perspective. Int. J. Environ. Res. Public Health 2017, 14, 1416. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Su, S.-I.I. Multiple competing photovoltaic supply chains: Modeling, analyses and policies. J. Clean. Prod. 2018, 174, 1274–1287. [Google Scholar] [CrossRef]
- Chiaroni, D.; Chiesa, V.; Colasanti, L.; Cucchiella, F.; D’Adamo, I.; Frattini, F. Evaluating solar energy profitability: A focus on the role of self-consumption. Energy Convers. Manag. 2014, 88, 317–331. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M.; Koh, S.C.L. Renewable energy options for buildings: Performance evaluations of integrated photovoltaic systems. Energy Build. 2012, 55, 208–217. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Lenny Koh, S.C. Environmental and economic analysis of building integrated photovoltaic systems in Italian regions. J. Clean. Prod. 2015, 98, 241–252. [Google Scholar] [CrossRef]
- Dehghani, E.; Jabalameli, M.S.; Jabbarzadeh, A.; Pishvaee, M.S. Resilient solar photovoltaic supply chain network design under business-as-usual and hazard uncertainties. Comput. Chem. Eng. 2018, 111, 288–310. [Google Scholar] [CrossRef]
- Goodrich, A.; Powell, D.; James, T.; Woodhouse, M.; Buonassisi, T. Assessing the drivers of regional trends in solar photovoltaic manufacturing. Energy Environ. Sci. 2013, 6, 2811–2821. [Google Scholar] [CrossRef] [Green Version]
- Koppelaar, R.H.E.M. Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization. Renew. Sustain. Energy Rev. 2017, 72, 1241–1255. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Klassen, R.D. Drivers and Enablers That Foster Environmental Management Capabilities in Small- and Medium-Sized Suppliers in Supply Chains. Prod. Oper. Manag. 2008, 17, 573–586. [Google Scholar] [CrossRef]
- Liu, J.; Xu, F.; Lin, S. Site selection of photovoltaic power plants in a value chain based on grey cumulative prospect theory for sustainability: A case study in Northwest China. J. Clean. Prod. 2017, 148, 386–397. [Google Scholar] [CrossRef]
- Loomis, D.G.; Jo, J.H.; Aldeman, M.R. Economic impact potential of solar photovoltaics in Illinois. Renew. Energy 2016, 87, 253–258. [Google Scholar] [CrossRef]
- Meckling, J.; Hughes, L. Globalizing Solar: Global Supply Chains and Trade Preferences. Int. Stud. Q. 2017, 61, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Sawhney, R.; Thakur, K.; Venkatesan, B.; Ji, S.; Upreti, G.; Sanseverino, J. Empirical analysis of the solar incentive policy for Tennessee solar value chain. Appl. Energy 2014, 131, 368–376. [Google Scholar] [CrossRef]
- Tanaka, K.; Inoue, T.; Matsuhashi, R.; Yamada, K. Global value chain assessment based on retrospectively induced economic costs associated with technology application: A case study of photovoltaic power system in Japan. J. Clean. Prod. 2018, 181, 460–472. [Google Scholar] [CrossRef]
- Yang, R.J.; Zou, P.X.W. Building integrated photovoltaics (BIPV): Costs, benefits, risks, barriers and improvement strategy. Int. J. Constr. Manag. 2016, 16, 39–53. [Google Scholar] [CrossRef]
- Zanoni, S.; Mazzoldi, L. Long term analysis of energy payback time for pv systems. In Proceedings of the IFIP WG 5.7 International Conference, APMS 2013, State College, PA, USA, 9–12 September 2013; pp. 395–401. [Google Scholar]
- Zhang, Y.H.; Wang, Y. The impact of government incentive on the two competing supply chains under the perspective of Corporation Social Responsibility: A case study of Photovoltaic industry. J. Clean. Prod. 2017, 154, 102–113. [Google Scholar] [CrossRef]
- Hoang, P.; Goffe, B.; Jacquemin, L.; Billaudot, H.A.; Archambault, V. What metrics to evaluate sustainability of photovoltaic systems? Metall. Res. Technol. 2014, 111, 201–210. [Google Scholar] [CrossRef]
- Dehghani, E.; Jabalameli, M.S.; Naderi, M.J.; Safari, A. An environmentally conscious photovoltaic supply chain network design under correlated uncertainty: A case study in Iran. J. Clean. Prod. 2020, 262, 121434. [Google Scholar] [CrossRef]
- Albrecht, W.; Steinrücke, M. Continuous-time scheduling of production, distribution and sales in photovoltaic supply chains with declining prices. Flex. Serv. Manuf. J. 2020, 32, 629–667. [Google Scholar] [CrossRef]
- Santibañez-Aguilar, J.E.; Castellanos, S.; Flores-Tlacuahuac, A.; Shapiro, B.B.; Powell, D.M.; Buonassisi, T.; Kammen, D.M. Design of domestic photovoltaics manufacturing systems under global constraints and uncertainty. Renew. Energy 2020, 148, 1174–1189. [Google Scholar] [CrossRef]
- Liu, J.; Lin, X. Empirical analysis and strategy suggestions on the value-added capacity of photovoltaic industry value chain in China. Energy 2019, 180, 356–366. [Google Scholar] [CrossRef]
- Chen, Z.; Su, S.-I.I. International competition and trade conflict in a dual photovoltaic supply chain system. Renew. Energy 2020, 151, 816–828. [Google Scholar] [CrossRef]
- Kharaji Manouchehrabadi, M.; Yaghoubi, S.; Tajik, J. Optimal scenarios for solar cell supply chain considering degradation in powerhouses. Renew. Energy 2020, 145, 1104–1125. [Google Scholar] [CrossRef]
- Kharaji Manouchehrabadi, M.; Yaghoubi, S. Solar cell supply chain coordination and competition under government intervention. J. Renew. Sustain. Energy 2019, 11, 023701. [Google Scholar] [CrossRef]
- Yadav, S.; Chattopadhyay, K.; Singh, C.V. Solar grade silicon production: A review of kinetic, thermodynamic and fluid dynamics based continuum scale modeling. Renew. Sustain. Energy Rev. 2017, 78, 1288–1314. [Google Scholar] [CrossRef]
- Boons, F.; Lüdeke-Freund, F. Business models for sustainable innovation: State-of-the-art and steps towards a research agenda. J. Clean. Prod. 2013, 45, 9–19. [Google Scholar] [CrossRef]
SLR Phase | Steps | Description | Article Section |
---|---|---|---|
Phase 1 Formulate the research question | N/A |
| Section 1 |
Preliminary literature scan | |||
Phase 2 Locate studies |
|
| Section 3.2 |
|
| ||
|
| ||
Phase 3 Select and evaluate studies |
|
| Section 3.2 |
|
| ||
Phase 4 Analyze and synthesize |
|
| Supplementary file Supplementary file |
|
| ||
Phase 5 Report the findings | N/A |
| Section 4 Section 5 |
|
Keywords | Database | Type of Document | Language | Quantity |
---|---|---|---|---|
TITLE-ABS-KEY ((“supply chain*” OR “value chain*”) AND (“photovoltaic*” OR “solar” OR “pv”) AND NOT (“wind*” OR “biomass” OR “biofuel” OR “biogas” OR “hydro”)) AND PUBYEAR > 1999 AND LANGUAGE (“English”) | Scopus | Journal articles and conference papers | English | 179 |
(TS = ((“supply chain*” OR “value chain*”) AND (photovoltaic* OR solar OR pv) NOT (wind* OR biomass OR biofuel OR biogas OR hydro*))) AND LANGUAGE: (English) AND DOCUMENT TYPES: (Article) Timespan: 2000–2018. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC. | Web of Science | Journal articles and conference papers | English | 192 |
Journal | Articles |
---|---|
Journal of Cleaner Production | 15 |
Energy Policy | 9 |
Renewable and Sustainable Energy Reviews | 8 |
Renewable Energy | 8 |
Sustainability | 6 |
Applied Energy | 5 |
Clean Technologies and Environmental Policy | 3 |
Solar Energy Materials and Solar Cells | 3 |
Journal of Energy Storage | 3 |
Progress in Photovoltaics | 3 |
Energy Research and Social Science | 3 |
Energies | 3 |
Renewable Energy Focus | 2 |
International Journal of Photoenergy | 2 |
Ecological Indicators | 2 |
Energy for Sustainable Development | 1 |
Energy and Buildings | 2 |
Energy Conversion and Management | 2 |
Industrial and Corporate Change | 2 |
Environmental Innovation and Societal Transitions | 2 |
IEEE Journal of Photovoltaics | 2 |
Research Policy | 2 |
Journal of Energy in Southern Africa | 1 |
Waste Management | 1 |
Energy Sources Part B-Economics Planning and Policy | 1 |
International Journal of Production Economics | 1 |
Journal of Industrial Engineering and Management | 1 |
International Journal of Sustainable Energy | 1 |
International Journal of Low-Carbon Technologies | 1 |
International Journal of Technology Management and Sustainable Development | 1 |
International Journal of Construction Management | 1 |
International Studies Quarterly | 1 |
SAE International Journal of Manufacturing | 1 |
Energy Sources, Part A: Recovery, Utilization and Environmental Effects | 1 |
Journal of Power Sources | 1 |
Journal of East Asian Studies | 1 |
Solar Energy | 1 |
Computers & Chemical Engineering | 1 |
International Journal of Environmental Research and Public Health | 1 |
Energy | 1 |
Electricity Journal | 1 |
Energy Strategy Reviews | 1 |
Technovation | 1 |
Joule | 1 |
Engineering | 1 |
IISE Transactions | 1 |
Batteries | 1 |
Energy Reports | 1 |
Sustainable Materials and Technologies | 1 |
Annals of The American Association of Geographers | 1 |
Energy Sources | 1 |
Environmental Research Letters | 1 |
European Planning Studies | 1 |
Energy and Environmental Science | 1 |
Flexible Services and Manufacturing Journal | 1 |
IEEE Transactions on Engineering Management | 1 |
Resources Conservation and Recycling | 1 |
Resources Policy | 1 |
Journal of Industrial Ecology | 1 |
Business and Politics | 1 |
Metallurgical Research & Technology | 1 |
International Journal of Sustainable Engineering | 1 |
Ore Geology Reviews | 1 |
Journal of Renewable and Sustainable Energy | 1 |
Perspectives on Global Development and Technology | 1 |
Physica Status Solidi A-Applications and Materials Science | 1 |
African Journal of Business Management | 1 |
Production and Operations Management | 1 |
Conference | Articles |
---|---|
ASES National Solar Conference | 3 |
PICMET Portland International Center for Management of Engineering and Technology | 2 |
IEEE India Conference | 1 |
Global Conference on Sustainable Manufacturing | 1 |
ICDRET International Conference on The Developments in Renewable Energy Technology | 1 |
International Conference on Service Systems and Service Management | 1 |
IFIP Advances in Information and Communication Technology | 1 |
Energy Procedia | 1 |
IEEE International Energy Conference | 1 |
Category | No. of Articles | % |
---|---|---|
Research subject | 148 | 100% |
PV panels | 127 | 86% |
EV batteries | 14 | 9% |
Both | 7 | 5% |
Research methodology | ||
Modelling and simulation | 71 | 48% |
Theoretical and conceptual | 48 | 32% |
Case study | 23 | 16% |
Literature review | 6 | 4% |
Geographical context | ||
Europe | 58 | 39% |
Germany | 14 | |
UK | 10 | |
Italy | 9 | |
Norway | 5 | |
Spain | 4 | |
Switzerland | 4 | |
Netherlands | 4 | |
Denmark | 1 | |
Sweden | 2 | |
Czech Republic | 1 | |
Greece | 1 | |
Poland | 1 | |
Hungary | 1 | |
France | 1 | |
Asia | 51 | 35% |
China | 28 | |
Iran | 6 | |
Taiwan | 5 | |
Korea | 4 | |
Japan | 3 | |
India | 2 | |
Singapore | 2 | |
Bangladesh | 1 | |
North America | 27 | 18% |
USA | 25 | |
Canada | 1 | |
Mexico | 1 | |
Australia | 10 | 7% |
Other developing countries | 2 | 1% |
Stage of the PV Value Chain | Category | Description | % | Reference |
---|---|---|---|---|
Upstream | Raw material | Issues related to the raw materials used in the manufacturing of silicon and thin-film PV cells | 6% | [11,12,44,45,46,47,48,49,50] |
Technologies | Engineering processes in wafer, cell, and module manufacturing | 5% | [51,52,53,54,55,56,57] | |
Supply chain collaboration | Collaboration among supply chain partners for innovation in PV manufacturing or service provision | 7% | [7,8,9] *, [58,59,60,61,62,63,64] | |
Human resources | Job markets and job creation in the PV industry | 1% | [65,66] | |
PV system installation | Issues related to BOS components and the installation of PV systems | 1% | [67,68] | |
Midstream | Business models | Business models used in the PV industry | 2% | [69,70,71] * |
PV energy diffusion and industry evolution | Enablers and barriers for the diffusion of PV energy at the country, regional, or industrial and firm level | 26% | [6,16,43,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106] | |
Electricity networks | Interactions between distributed PV providers and utilities | 4% | [107,108,109,110,111,112] | |
Government and other institutions | Role of governments and other institutions in supporting PV deployment | 5% | [113,114,115,116,117,118] | |
Downstream | Closed-loop supply chain | Descriptive and modeling representations of PV panels at end-of-life (for reuse or recycling) | 7% | [5], [119,120] *, [121,122,123,124,125,126,127] |
Performance issues and environmental performance of the value chain | Degradation of PV modules, life cycle analysis of PV installations throughout lifetime or at EOL, contribution of PV towards decarbonization | 3% | [128,129,130] | |
EV batteries | PV systems and EV batteries | Studies combining the use of LIBs for stationary PV energy storage and issues at battery EOL | 14% | [131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147] *, [148,149,150,151] |
Others | Economic modelling | Various types of economic analyses, including: cost-benefit analysis, foreign trade, competing PV supply chains, manufacturing plant locations, and energy payback time calculations | 19% | [152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180] |
Design and Manufacturing | Business Models | Reuse (PV and EV Batteries) | Disposal | Recycling | |
---|---|---|---|---|---|
Technical |
|
|
|
|
|
Collaborative |
|
| |||
Customer |
|
|
| ||
Infrastructure |
|
|
| ||
Financial |
|
| |||
Government regulations |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, M.A.; Groesser, S.N. A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy. Sustainability 2021, 13, 9615. https://doi.org/10.3390/su13179615
Franco MA, Groesser SN. A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy. Sustainability. 2021; 13(17):9615. https://doi.org/10.3390/su13179615
Chicago/Turabian StyleFranco, Maria A., and Stefan N. Groesser. 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy" Sustainability 13, no. 17: 9615. https://doi.org/10.3390/su13179615
APA StyleFranco, M. A., & Groesser, S. N. (2021). A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy. Sustainability, 13(17), 9615. https://doi.org/10.3390/su13179615