Influence of Air Temperature on School Teachers’ Mood and the Perception of Students’ Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.2.1. Temperature and Humidity inside the Classes
2.2.2. Temperature and Humidity outside the School Building
2.2.3. Questionnaire for Teachers
2.3. Procedure
2.4. Statistical Analysis
3. Results
3.1. Analysis of the Conditions of Application of the Structural Equation Technique
3.2. Path Analysis
3.3. Adjustment Statistics (Validity of the Model)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maliva, R. Intergovernmental Panel on Climate Change and Global Climate Change Projections; Springer: Cham, Switzerland, 2021; pp. 71–88. [Google Scholar]
- Díaz, J. Cambio Climático y Salud: Adaptación a las Olas de Calor; Aranzadi: Cizur Menor, Spain, 2018. [Google Scholar]
- Settineri, S.; Mucciardi, M.; Valentina, L.; Stefan, S.; Gioffrè, M.; Fausto, F.; Muscatello, M.R.A.; Mento, C. Metereological conditions and Psychiatric Emergency Visits in Messina, Italy. Int. J. Psychol. Res. 2016, 9, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, D.; Carvalho, M.J.; Marta-Almeida, M.; Melo-Gonçalves, P.; Rocha, A. Recent trends of extreme temperature indices for the Iberian Peninsula. Phys. Chem. Earth Parts A/B/C 2016, 94, 66–76. [Google Scholar] [CrossRef]
- Dias, M.; Bernardo, H.; Ramos, J.; Egido, M. Indoor Environment and Energy Efficiency in School Buildings—Part 1: Indoor Air Quality. In Proceedings of the 3rd International Youth Conference on Energetics, Leiria, Portugal, 7–9 July 2011; pp. 1–7. [Google Scholar]
- D’Ambrosio Alfano, F.R.; Ianniello, E.; Palella, B.I. PMV–PPD and acceptability in naturally ventilated schools. Build. Environ. 2013, 67, 129–137. [Google Scholar] [CrossRef]
- Simanic, B.; Nordquist, B.; Bagge, H.; Johansson, D. Indoor air temperatures, CO2 concentrations and ventilation rates: Long-term measurements in newly built low-energy schools in Sweden. J. Build. Eng. 2019, 25, 100827. [Google Scholar] [CrossRef]
- Vaquero-Álvarez, M.; Álvarez-Theurer, E.; Romero Saldaña, M. Influencia de las condiciones de trabajo sobre la incapacidad temporal por contingencias comunes. Atención Primaria 2018, 50, 238–246. [Google Scholar] [CrossRef]
- Zomorodian, Z.S.; Tahsildoost, M.; Hafezi, M. Thermal comfort in educational buildings: A review article. Renew. Sustain. Energy Rev. 2016, 59, 895–906. [Google Scholar] [CrossRef]
- Rohat, G.; Flacke, J.; Dosio, A.; Pedde, S.; Dao, H.; van Maarseveen, M. Influence of changes in socioeconomic and climatic conditions on future heat-related health challenges in Europe. Glob. Planet. Chang. 2019, 172, 45–59. [Google Scholar] [CrossRef]
- De Giuli, V.; Da Pos, O.; De Carli, M. Indoor environmental quality and pupil perception in Italian primary schools. Build. Environ. 2012, 56, 335–345. [Google Scholar] [CrossRef]
- Dorizas, P.V.; Assimakopoulos, M.N.; Santamouris, M. A holistic approach for the assessment of the indoor environmental quality, student productivity, and energy consumption in primary schools. Environ. Monit. Assess. 2015, 187, 259. [Google Scholar] [CrossRef]
- Chatzidiakou, L.; Mumovic, D.; Summerfield, A.J. What do we know about indoor air quality in school classrooms? A critical review of the literature. Intell. Build. Int. 2012, 4, 228–259. [Google Scholar] [CrossRef]
- Chen, S.; Guo, C.; Huang, X. Air Pollution, Student Health, and School Absences: Evidence from China. J. Environ. Econ. Manag. 2018, 92, 465–497. [Google Scholar] [CrossRef]
- Wargocki, P.; Porras-Salazar, J.A.; Contreras-Espinoza, S. The relationship between classroom temperature and children’s performance in school. Build. Environ. 2019, 157, 197–204. [Google Scholar] [CrossRef]
- Smith, R.; Bradley, G. The Influence of Thermal Conditions on Teachers’ Work and Student Performance. J. Educ. Adm. 1994, 32, 34–42. [Google Scholar] [CrossRef]
- Xianglong, S.; Hu, Z.; Shumin, F.; Zhenning, L. Bus drivers mood states and reaction abilities at high temperatures. Transp. Res. Part F Traffic Psychol. Behav. 2018, 59, 436–444. [Google Scholar] [CrossRef]
- Kabirikopaei, A.; Lau, J.; Nord, J.; Bovaird, J. Identifying the K-12 classrooms’ indoor air quality factors that affect student academic performance. Sci. Total Environ. 2021, 786, 147498. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P. Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Build. Environ. 2017, 112, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Mazlan, A.N.; Saad, S.; Yahya, K.; Haron, Z.; Hasbollah, D.; Kasiman, E.H.; Rahim, N.; Salehudddin, A. Thermal comfort study for classroom in urban and rural schools in Selangor. IOP Conf. Ser. Mater. Sci. Eng. 2020, 849, 012016. [Google Scholar] [CrossRef]
- Lanniello, E.; D’Ambrosio Alfano, F. WS10: The REHVA Guidebook on Indoor Environment and Energy Efficiency in Schools—Part 1. Principles; REHVA: Brussels, Belgium, 2010; pp. 35–38. [Google Scholar]
- Li, D.; Sullivan, W. Impact of views to school landscapes on recovery from stress and mental fatigue. Landsc. Urban Plan. 2016, 148, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Fanger, P.O. Thermal Comfort. Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Humphreys, M.; Nicol, F.; Roaf, S. Adaptive Thermal Comfort: Foundations and Analysis; Routledge: London, UK, 2015. [Google Scholar]
- Teli, D.; Jentsch, M.F.; James, P.A.B. Naturally ventilated classrooms: An assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy Build. 2012, 53, 166–182. [Google Scholar] [CrossRef]
- de Dear, R.; Schiller Brager, G. The adaptive model of thermal comfort and energy conservation in the built environment. Int. J. Biometeorol. 2001, 45, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- International Organization for Standardization. (ISO7730) 2005-11-15 Ergonomics of the Thermal Environment: Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- Thevenard, D.J.; Humphries, R.G. The Calculation of Climatic Design Conditions in the 2005 ASHRAE Handbook—Fundamentals. Ashrae Trans. 2005, 111, 457–466. [Google Scholar]
- Kolokotsa, D.; Santamouris, M.; Synnefa, A.; Karlessi, T. 3.19—Passive Solar Architecture. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Oxford, UK, 2012; pp. 637–665. [Google Scholar]
- Candas, V.; Dufour, A. Thermal comfort: Multisensory interactions? J. Physiol. Anthr. Appl. Hum. Sci. 2005, 24, 33–36. [Google Scholar] [CrossRef] [Green Version]
- Bellia, L.; d’Ambrosio Alfano, F.R.; Fragliasso, F.; Palella, B.I.; Riccio, G. On the interaction between lighting and thermal comfort: An integrated approach to IEQ. Energy Build. 2021, 231, 110570. [Google Scholar] [CrossRef]
- Rodríguez, C.M.; Coronado, M.C.; Medina, J.M. Thermal comfort in educational buildings: The Classroom-Comfort-Data method applied to schools in Bogotá, Colombia. Build. Environ. 2021, 194, 107682. [Google Scholar] [CrossRef]
- Fabbri, K. Indoor Thermal Comfort Perception: A Questionnaire Approach Focusing on Children; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Fantozzi, F.; Rocca, M. An Extensive Collection of Evaluation Indicators to Assess Occupants’ Health and Comfort in Indoor Environment. Atmosphere 2020, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; O’Briuen, J.; Howard, A.; Cudmore, T. Improving Productivity in the Workplace: Lessons Learnt and Insights from the Whole Life Performance Plus Project; Oxford Brookes Univertity: Oxford, UK, 2018. [Google Scholar]
- Fujii, H.; Fukuda, S.; Narumi, D.; Ihara, T.; Watanabe, Y. Fatigue and sleep under large summer temperature differences. Environ. Res. 2015, 138, 17–21. [Google Scholar] [CrossRef] [PubMed]
- González-Hidalgo, G.; Sánchez-Flores, H.; López-Castellanos, G. Stress test at 44 °C and 80% of humidity and usefulness of ice suit. Rev. Med. Inst. Mex. Seguro Soc. 2011, 49, 487–492. [Google Scholar]
- Leme, A.; Maia, I. Evaluation of Fatigue at Work in Teachers using Modern Resources in the Classroom. Procedia Manuf. 2015, 3, 4852–4859. [Google Scholar] [CrossRef]
- Frenzel, A.; Götz, T.; Stephens, E.; Jacob, B. Antecedents and Effects of Teachers’ Emotional Experiences: An Integrated Perspective and Empirical Test. In Advances in Teacher Emotion Research: The Impact on Teachers’ Lives; Paul, A., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 129–151. [Google Scholar]
- Becker, E.S.; Goetz, T.; Morger, V.; Ranellucci, J. The importance of teachers’ emotions and instructional behavior for their students’ emotions—An experience sampling analysis. Teach. Teach. Educ. 2014, 43, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Hartel, C.; Page, K. Discrete emotional crossover in the workplace: The role of affect intensity. J. Manag. Psychol. J. Manag. Psychol. 2009, 24, 237–253. [Google Scholar] [CrossRef]
- Klieme, E.; Pauli, C.; Reusser, K. The Pythagoras Study. Investigating effects of teaching and learning in Swiss and German mathematics classrooms. Power Video Stud. Investig. Teach. Learn. Classr. 2009, 137, 160. [Google Scholar]
- Newton, D.P. Moods, emotions and creative thinking: A framework for teaching. Think. Ski. Creat. 2013, 8, 34–44. [Google Scholar] [CrossRef]
- Biondi, D.; Neto, L.; Martini, A.; Marques, E. Uma Introdução ao Conforto Termo-Ambiental do Colégio Estadual Santa Gemma Galgani, Curitiba, Paraná, Brasil. Floresta 2015, 45, 409–420. [Google Scholar] [CrossRef] [Green Version]
- Association, W. Declaration of Helsinki. Ethical principles for medical research involving human subjects. J. Am. Med. Assoc. 2013, 310, E1–E4. [Google Scholar]
- Ruiz, M.; Pardo, A.; Castellanos, R. Modelos de ecuaciones estructurales. Pap. del Psicólogo 2010, 31, 34–45. [Google Scholar]
- Hooper, D.; Coughlan, J.P.; Mullen, M.R. Structural Equation Modelling: Guidelines for Determining Model Fit. J. Busin. Res. Meth. 2008, 6, 53–60. [Google Scholar]
- Jiang, J.; Vauras, M.; Volet, S.; Wang, Y. Teachers’ emotions and emotion regulation strategies: Self- and students’ perceptions. Teach. Teach. Educ. 2016, 54, 22–31. [Google Scholar] [CrossRef]
- Stone, L.D.; Thompson, G.A. Classroom mood and the dance of stance: The role of affective and epistemic stancetaking in the development of a classroom mood. Learn. Cult. Soc. Interact. 2014, 3, 309–322. [Google Scholar] [CrossRef]
- Ali, H.H.; Al-Hashlamun, R. Assessment of indoor thermal environment in different prototypical school buildings in Jordan. Alex. Eng. J. 2019, 58, 699–711. [Google Scholar] [CrossRef]
- D’ambrosio Alfano, F.R.; Dell’Isola, M.; Palella, B.I.; Riccio, G.; Russi, A. On the measurement of the mean radiant temperature and its influence on the indoor thermal environment assessment. Build. Environ. 2013, 63, 79–88. [Google Scholar] [CrossRef]
Mean | SD | Temperature Indoor | Humidity Indoor | Difference of Temperature | Mood | Students’ Behaviour | Mental Fatigue | Quality Level of Teaching | |
---|---|---|---|---|---|---|---|---|---|
Temperature indoor | 21.5 | 2.6 | 1 | ||||||
Humidity indoor | 41.7 | 5.9 | 0.412 ** | 1 | |||||
Difference temperature | −1.9 | 3.0 | 0.235 ** | 0.066 | 1 | ||||
Mood | 68.0 | 19.9 | −0.141 * | −0.105 | 0.200 ** | 1 | |||
Students’ behaviour | 57.4 | 24.1 | 0.110 | −0.039 | −0.047 | −0.224 ** | 1 | ||
Mental fatigue | 55.4 | 24.9 | 0.114 | −0.049 | −0.002 | −0.322 ** | 0.549 ** | 1 | |
Quality level of teaching | 67.0 | 19.2 | −0.202 ** | −0.160 * | 0.074 | 0.650 ** | −0.188 ** | −0.180 ** | 1 |
Criteria (Ruiz, Pardo, & San Martin, 2010) | Results | |
---|---|---|
Global adjustment | ||
Test | p = 0.377 | |
1.074 | ||
Relative Adjustment indexes | ||
Normed Fit Index (NFI) | 0.961 | |
Non-Normed Fit Index (NNFI) | 0.991 | |
Comparative Fit Index (CFI) | 0.997 | |
Incremental Fit Index (IFI) | 0.997 | |
Parsimonia index | ||
Parsimony Normed Fit Index (PNFI) | 0.320 | |
Other adjustment indexes | ||
Goodness of Fit Index (GFI) | 0.994 | |
Adjusted Goodness of Fit Index (AGFI) | 0.976 | |
Standardized Root Mean Square Residual (SRMR) | 0.039 | |
Root Mean Square Error of Approximation (RMSEA) | 0.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boix-Vilella, S.; Saiz-Clar, E.; León-Zarceño, E.; Serrano, M.A. Influence of Air Temperature on School Teachers’ Mood and the Perception of Students’ Behavior. Sustainability 2021, 13, 9707. https://doi.org/10.3390/su13179707
Boix-Vilella S, Saiz-Clar E, León-Zarceño E, Serrano MA. Influence of Air Temperature on School Teachers’ Mood and the Perception of Students’ Behavior. Sustainability. 2021; 13(17):9707. https://doi.org/10.3390/su13179707
Chicago/Turabian StyleBoix-Vilella, Salvador, Elena Saiz-Clar, Eva León-Zarceño, and Miguel Angel Serrano. 2021. "Influence of Air Temperature on School Teachers’ Mood and the Perception of Students’ Behavior" Sustainability 13, no. 17: 9707. https://doi.org/10.3390/su13179707
APA StyleBoix-Vilella, S., Saiz-Clar, E., León-Zarceño, E., & Serrano, M. A. (2021). Influence of Air Temperature on School Teachers’ Mood and the Perception of Students’ Behavior. Sustainability, 13(17), 9707. https://doi.org/10.3390/su13179707