Machine Learning-Based Classification and Regression Approach for Sustainable Disaster Management: The Case Study of APR1400 in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Accident Scenarios
2.1.1. Scenario (1)
2.1.2. Scenario (2)
2.1.3. Scenario (3)
2.2. Atmospheric Dispersion Model
2.2.1. Source Term
2.2.2. Meteorological Data
2.3. Classification and Regression Tree (CART) Model
- Accident type;
- Radionuclide nam;e
- Activity of source term (Bq);
- Year of the meteorological data used in the simulation;
- Ground deposition data from the center of the emission of the radionuclides to the emergency planning zone that represent 30 parameters.
2.3.1. CART Classification
2.3.2. CART Regression
3. Results and Discussion
3.1. RCAP Results
3.2. Classification
3.3. Regression
3.4. Importance of Variables
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, M.B.; Jaramillo, P. Going nuclear for climate mitigation: An analysis of the cost effectiveness of preserving existing US nuclear power plants as a carbon avoidance strategy. Energy 2017, 131, 67–77. [Google Scholar] [CrossRef]
- Kortov, V.; Ustyantsev, Y. Chernobyl accident: Causes, consequences and problems of radiation measurements. Radiat. Meas. 2013, 55, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Steinhauser, G.; Brandl, A.; Johnson, T.E. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts. Sci. Total Environ. 2014, 470, 800–817. [Google Scholar] [CrossRef] [PubMed]
- Yasunari, T.J.; Stohl, A.; Hayano, R.S.; Burkhart, J.F.; Eckhardt, S.; Yasunari, T. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident. Proc. Natl. Acad. Sci. USA 2011, 108, 19530–19534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, Y.; Yue, Q.; Huang, T.; Shan, Q.; Hei, D.; Zhang, X.; Jia, W. Multi-nuclide source term estimation method for severe nuclear accidents from sequential gamma dose rate based on a recurrent neural network. J. Hazard. Mater. 2021, 414, 125546. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, M.C.; Pinheiro, V.H.C.; do Desterro, F.S.M.; de Avellar, R.K.; Schirru, R.; dos Santos Nicolau, A.; de Lima, A.M.M. Deep rectifier neural network applied to the accident identification problem in a PWR nuclear power plant. Ann. Nucl. Energy 2019, 133, 400–408. [Google Scholar] [CrossRef]
- Malizia, A.; Carestia, M.; Cafarelli, C.; Milanese, L.; Pagannone, S.; Pappalardo, A.; Pedemonte, M.; Latini, G.; Barlascini, O.; Fiorini, E. The free license codes as Decision Support System (DSS) for the emergency planning to simulate radioactive releases in case of accidents in the new generation energy plants. WSEAS Trans. Environ. Dev. 2014, 10, 453–464. [Google Scholar]
- Sweeck, L.; Camps, J.; Mikailova, R.; Almahayni, T. Role of modelling in monitoring soil and food during different stages of a nuclear emergency. J. Environ. Radioact. 2020, 225, 106444. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-H.; Hwang, S.-L.; Liu, K.H.; Liang, S.-F.M.; Chuang, C.-F. A Decision Support System for Identifying Abnormal Operating Procedures in a Nuclear Power Plant. Nucl. Eng. Des. 2012, 249, 413–418. [Google Scholar] [CrossRef]
- dos Santos Nicolau, A.; Schirru, R. A new methodology for diagnosis system with ‘Don’t Know’response for Nuclear Power Plant. Ann. Nucl. Energy 2017, 100, 91–97. [Google Scholar] [CrossRef]
- Fernandez, M.G.; Tokuhiro, A.; Welter, K.; Wu, Q. Nuclear energy system’s behavior and decision making using machine learning. Nucl. Eng. Des. 2017, 324, 27–34. [Google Scholar] [CrossRef]
- Iwasaki, T.; Sekiyama, T.T.; Nakajima, T.; Watanabe, A.; Suzuki, Y.; Kondo, H.; Morino, Y.; Terada, H.; Nagai, H.; Takigawa, M. Intercomparison of numerical atmospheric dispersion prediction models for emergency response to emissions of radionuclides with limited source information in the Fukushima Dai-ichi nuclear power plant accident. Atmos. Environ. 2019, 214, 116830. [Google Scholar] [CrossRef]
- IAEA. Lessons Learned from the Response to Radiation Emergencies (1945–2010); International Atomic Energy Agency: Vienna, Austria, 2012. [Google Scholar]
- Gluzman, S. The Chernobyl accident—A personal perspective. Clin. Oncol. 2011, 23, 306–307. [Google Scholar] [CrossRef] [PubMed]
- Nohrstedt, S.A. The information crisis in Sweden after Chernobyl. Media Cult. Soc. 1991, 13, 477–497. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Shih, C.; Chiang, S.-C.; Weng, T.-L. Introducing PCTRAN as an evaluation tool for nuclear power plant emergency responses. Ann. Nucl. Energy 2012, 40, 122–129. [Google Scholar] [CrossRef]
- Poa, L.-C.C.; Kimb, J. PCTRAN Analysis of Fukushima Event. In Proceedings of the Transactions of the Korean Nuclear Society Spring Meeting, Taebaek, Korea, 26–27 May 2011. [Google Scholar]
- Khan, A.H.; Islam, M.S. A PCTRAN-Based Investigation On The Effect Of Inadvertent Control Rod Withdrawal On The ThermalHydraulic Parameters Of A Vver-1200 Nuclear Power Reactor. Acta Mech. Malays. 2019, 2, 32–38. [Google Scholar] [CrossRef]
- Po, L.-C.C. Conceptual Design of an Accident Prevention System for Light Water Reactors Using Artificial Neural Network and High-Speed Simulator. Nucl. Technol. 2020, 206, 505–513. [Google Scholar] [CrossRef]
- Korea Electric Power Corporation, Korea Hydro & Nuclear Power Co., Ltd. Apr1400-Design Control Document Tier 2. In Chapter 15-Transient and Accident Analyses; US.NRC: Rockville, MD, USA, 2018; pp. 1–755. [Google Scholar]
- Korea Electric Power Corporation, Korea Hydro & Nuclear Power Co., Ltd. Apr1400-Design Control Document Tier 2. In Chapter 6-Engineered Safety Features; US.NRC: Rockville, MD, USA, 2018; pp. 1–801. [Google Scholar]
- Korea Electric Power Corporation, Korea Hydro & Nuclear Power Co., Ltd. Apr1400-Design Control Document Tier 2. In Chapter 19-Probabilistic Risk Assessment and Severe Accident Evaluation; US.NRC: Rockville, MD, USA, 2018; pp. 1–2245. [Google Scholar]
- IAEA. PCTRAN Generic Pressurized Water Reactor Simulator Exercise Handbook; International Atomic Energy Agency: Vienna, Austria, 2019. [Google Scholar]
- MST. PCTRAN/APR1400 Design Basis and Severe Accident Simulator for APR1400; Micro-Simulation Technology: Seoul, Korea, 2015; pp. 1–241. [Google Scholar]
Time (S) | Sequences |
---|---|
0.0–10.0 | Run the simulator in steady-state (normal operation) |
10.5 | All values of safety injection tank (SIT) and SIS pumps are disabled. Initiate a cold leg LOCA by selecting Malfunction # 2 to simulate a 2800 cm2 break [23]. |
12.0 | Reactor Scram due to containment pressure, Turbine trip |
15.5 | Spray system on |
17.5 | The main steam safety valve (MSSV) fluctuate to adjust the SG pressure |
2758.5 | Core Collapsed |
3370.0 | Vessel failed |
Time (S) | Sequences |
---|---|
0.0–10.0 | Run the simulator in steady-state (normal operation) |
10.5 | Manually disable the turbine-driven auxiliary feed-water pump. Malfunction # 13 Fraction = 00.0% |
11.5 | Reactor Scram, Turbine trip |
15.5 | MSSV fluctuate to adjust the SG pressure |
6067.0 | POSRV fluctuate to adjust the PV pressure |
6849.5 | MSIV and FWIV are closed |
13,051.0 | Core Collapsed |
13,860.0 | Vessel failed |
Time (S) | Sequences |
---|---|
0.0–10.0 | Run the simulator in steady-state (normal operation) |
11.0 | Malfunction # 11 Fraction SGTR Malfunction # 13 Fraction SBO |
12.5 | Reactor Scram, Turbine trip |
16.5 | POSRV fluctuate to adjust the PV pressure |
52.0 | All MFW Pumps trip |
2223.5 | MSSV fluctuate to adjust the SG pressure |
15,914.5 | Core Collapsed |
16,745.0 | Vessel failed |
No | Radionuclide Name | Half-Life (Days) | Activity (Bq) | ||||
---|---|---|---|---|---|---|---|
T1/2 (1) | Daughter | T1/2 (2) | Scenario (1) | Scenario (2) | Scenario (3) | ||
1 | 85Kr | 3912.80 | 1.05 × 1011 | 2.00 × 1012 | 1.21 × 1012 | ||
2 | 85mKr | 0.19 | 85Kr | 3912.80 | 9.23 × 1011 | 2.10 × 1013 | 1.08 × 1013 |
3 | 87Kr | 0.05 | 87Rb | 1.79 × 1013 | 1.39 × 1011 | 8.14 × 1011 | 3.22 × 1011 |
4 | 133Xe | 5.25 | 7.53 × 1012 | 2.65 × 1014 | 1.48 × 1014 | ||
5 | 135Xe | 0.38 | 135Cs | 8.40 × 108 | 1.30 × 1012 | 3.91 × 1013 | 2.05 × 1013 |
6 | 135mXe | 0.01 | 135Cs | 8.40 × 108 | 6.71 × 1011 | 1.00 × 1011 | 5.60 × 1010 |
135Xe | 0.37875 | ||||||
7 | 134Cs | 752.63 | 3.08 × 1011 | 1.24 × 1013 | 6.91 × 1012 | ||
8 | 136Cs | 13.10 | 7.99 × 1009 | 3.20 × 1011 | 1.77 × 1011 | ||
9 | 137Cs | 10,950.0 | 7.88 × 1011 | 3.18 × 1013 | 1.77 × 1013 | ||
10 | 86Rb | 18.66 | 3.94 × 1008 | 1.58 × 1010 | 8.76 × 1009 | ||
11 | 140Ba | 12.74 | 2.02 × 1011 | 8.09 × 1012 | 4.49 × 1012 | ||
12 | 89Sr | 50.50 | 3.27 × 1011 | 1.32 × 1013 | 7.31 × 1012 | ||
13 | 90Sr | 10,628.8 | 5.54 × 1011 | 2.24 × 1013 | 1.24 × 1013 | ||
14 | 131I | 8.04 | 2.01 × 1011 | 1.17 × 1013 | 7.22 × 1012 | ||
15 | 133I | 0.87 | 133mXe | 2.19 | 4.23 × 1011 | 2.23 × 1013 | 1.35 × 1013 |
133Xe | 5.2475 | ||||||
16 | 127mTe | 109.00 | 8.51 × 109 | 3.43 × 1011 | 1.90 × 1011 | ||
17 | 129Te | 0.05 | 129I | 5.73 × 109 | 1.07 × 1010 | 4.30 × 1011 | 2.39 × 1011 |
18 | 129mTe | 33.60 | 1.64 × 1010 | 6.61 × 1011 | 3.67 × 1011 | ||
19 | 131mTe | 1.25 | 131I | 8.04 | 2.54 × 1010 | 9.24 × 1011 | 5.16 × 1011 |
131Te | |||||||
20 | 132Te | 3.26 | 1.46 × 1009 | 5.67 × 1010 | 3.13 × 1010 | ||
21 | 103Ru | 39.28 | 5.97 × 1011 | 2.40 × 1013 | 1.33 × 1013 | ||
22 | 106Ru | 368.20 | 6.71 × 1011 | 2.71 × 1013 | 1.50 × 1013 | ||
23 | 95Nb | 35.15 | 9.91 × 1011 | 3.99 × 1013 | 2.22 × 1013 | ||
24 | 58Co | 70.80 | 8.93 × 108 | 3.60 × 1010 | 2.00 × 1010 | ||
25 | 60Co | 1923.92 | 1.45 × 1010 | 5.86 × 1011 | 3.25 × 1011 | ||
26 | 99Mo | 2.75 | 5.79 × 108 | 2.24 × 1010 | 1.24 × 1010 | ||
27 | 99mTc | 0.25 | 99Tc | 7.71 × 107 | 5.56 × 108 | 2.15 × 1010 | 1.19 × 1010 |
28 | 141Ce | 32.50 | 5.15 × 1011 | 2.07 × 1013 | 1.15 × 1013 | ||
29 | 144Ce | 284.30 | 1.03 × 1012 | 4.15 × 1013 | 2.31 × 1013 | ||
30 | 239Np | 2.36 | 2.17 × 109 | 8.37 × 1010 | 4.61 × 1010 | ||
31 | 238Pu | 32,025.1 | 1.76 × 1010 | 7.10 × 1011 | 3.94 × 1011 | ||
32 | 239Pu | 8,783,725.0 | 1.76 × 1010 | 7.10 × 1011 | 3.94 × 1011 | ||
33 | 240Pu | 2,386,005.0 | 5.07 × 109 | 2.05 × 1011 | 1.14 × 1011 | ||
34 | 241Pu | 5256.00 | 8.94 × 1011 | 3.61 × 1013 | 2.00 × 1013 | ||
35 | 95Zr | 63.98 | 7.57 × 1011 | 3.05 × 1013 | 1.69 × 1013 | ||
36 | 241Am | 157,753.00 | 1.12 × 1010 | 4.53 × 1011 | 2.52 × 1011 | ||
37 | 242Cm | 162.80 | 5.66 × 1010 | 2.28 × 1012 | 1.27 × 1012 | ||
38 | 244Cm | 6610.15 | 8.86 × 109 | 3.57 × 1011 | 1.98 × 1011 | ||
39 | 140La | 1.68 | 2.33 × 1011 | 9.31 × 1012 | 5.16 × 1012 | ||
40 | 147Nd | 10.98 | 6.00 × 1010 | 2.40 × 1012 | 1.33 × 1012 | ||
41 | 143Pr | 13.56 | 2.12 × 1011 | 8.49 × 1012 | 4.71 × 1012 | ||
42 | 90Y | 2.67 | 5.58 × 1011 | 2.25 × 1013 | 1.25 × 1013 | ||
43 | 91Y | 58.51 | 4.60 × 1011 | 1.85 × 1013 | 1.03 × 1013 |
Method | ||||
---|---|---|---|---|
Prior probabilities | Same for all classes | |||
Model validation | 70/30% training/test sets | |||
Rows used | 1815 | |||
No. predicators | 34 | |||
Multinomial Response Information | ||||
Accident type | No. training data | Percentage of training data | No. test data | Percentage of test data |
Scenario (1) | 415 | 32.7 | 190 | 34.9 |
Scenario (2) | 438 | 34.5 | 167 | 30.7 |
Scenario (3) | 418 | 32.9 | 187 | 34.4 |
ALL | 1271 | 100.0 | 544 | 100.0 |
Method | ||
---|---|---|
Node splitting | Least squared error | |
Model validation | 70/30% training/test sets | |
Rows used | 1815 | |
No. predicators | 34 | |
Statistical Response Information | ||
Training data | Test data | |
Number of data | 1271 (70%) | 544 (30%) |
Mean | 8.54968 × 1012 | 6.94748 × 1012 |
Median | 3.94000 × 1011 | 4.23000 × 1011 |
Standard deviation | 2.76247 × 1013 | 1.89444 × 1013 |
Maximum | 2.65000 × 1014 | 2.65000 × 1014 |
Actual Class | Predicted Class (Training Data) | ||||
Count | Scenario (1) | Scenario (2) | Scenario (3) | Precision (%) | |
Scenario (1) | 415 | 414 | 1 | 0 | 99.8 |
Scenario (2) | 438 | 0 | 431 | 7 | 98.4 |
Scenario (3) | 418 | 6 | 4 | 408 | 97.6 |
All | 1271 | 420 | 436 | 415 | 98.6 |
Actual Class | Predicted Class (Test Data) | ||||
Count | Scenario (1) | Scenario (2) | Scenario (3) | Precision (%) | |
Scenario (1) | 190 | 188 | 0 | 2 | 98.9 |
Scenario (2) | 167 | 3 | 153 | 11 | 91.6 |
Scenario (3) | 187 | 3 | 10 | 174 | 93.0 |
All | 544 | 194 | 163 | 187 | 94.7 |
Classification Model | Regression Model | ||
---|---|---|---|
Variables | Relative Importance (%) | Variables | Relative Importance (%) |
Ground deposition at 19 km | 100 | Ground deposition at 2 km | 100 |
Ground deposition at 20 km | 99.5 | Ground deposition at 1 km | 100 |
Ground deposition at 21 km | 96 | Ground deposition at 3 km | 100 |
Ground deposition at 22 km | 93.9 | Ground deposition at 4 km | 99.5 |
Ground deposition at 23 km | 91.4 | Ground deposition at 5 km | 99 |
Ground deposition at 18 km | 72.8 | Ground deposition at 6 km | 98 |
Ground deposition at 17 km | 65.2 | Ground deposition at 7 km | 97.7 |
Ground deposition at 24 km | 64.6 | Ground deposition at 8 km | 97.6 |
Radionuclide type | 62.7 | Ground deposition at 10 km | 95.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hameed, A.A.; Kim, J. Machine Learning-Based Classification and Regression Approach for Sustainable Disaster Management: The Case Study of APR1400 in Korea. Sustainability 2021, 13, 9712. https://doi.org/10.3390/su13179712
El-Hameed AA, Kim J. Machine Learning-Based Classification and Regression Approach for Sustainable Disaster Management: The Case Study of APR1400 in Korea. Sustainability. 2021; 13(17):9712. https://doi.org/10.3390/su13179712
Chicago/Turabian StyleEl-Hameed, Ahmed Abd, and Juyoul Kim. 2021. "Machine Learning-Based Classification and Regression Approach for Sustainable Disaster Management: The Case Study of APR1400 in Korea" Sustainability 13, no. 17: 9712. https://doi.org/10.3390/su13179712
APA StyleEl-Hameed, A. A., & Kim, J. (2021). Machine Learning-Based Classification and Regression Approach for Sustainable Disaster Management: The Case Study of APR1400 in Korea. Sustainability, 13(17), 9712. https://doi.org/10.3390/su13179712