Sustainability of the Amazon Nut in Mato Grosso: An Application of the MuSIASEM Method
Abstract
:1. Introduction
2. Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schaafsma, M.; Morse-Jones, S.; Posen, P.; Swetnam, R.D.; Balmford, A.; Bateman, I.J.; Burgess, N.D.; Chamshama, S.A.O.; Fisher, B.; Green, R.E.; et al. Towards transferable functions for extraction of Non-timber Forest Products: A case study on charcoal production in Tanzania. Ecol. Econ. 2012, 80, 48–62. [Google Scholar] [CrossRef]
- Cvitanovic, C.; McDonald, J.; Hobday, A.J. From science to action: Principles for undertaking environmental research that enables knowledge exchange and evidence-based decision-making. J. Environ. Manag. 2016, 183, 864–874. [Google Scholar] [CrossRef] [Green Version]
- Ripple, W.J.; Wolf, C.; Newsome, T.M.; Galetti, M.; Alamgir, M.; Crist, E. World Scientists’ Warning to Humanity: A Second Notice. BioScience 2017, 12, 1026–1028. [Google Scholar] [CrossRef]
- UCS Union of Concerned Scientists. Science for a Healthy Planet and Safer World; UCS Union of Concerned Scientists: Cambridge, MA, USA, 2017. [Google Scholar]
- UCS Union of Concerned Scientists. World Scientists’ Warning to Humanity; UCS Union of Concerned Scientists: Cambridge, MA, USA, 1997. [Google Scholar]
- Blignauta, J.; Aronson, J. Developing a restoration narrative: A pathway towards system-wide healing and a restorative culture. Ecol. Econ. 2020, 168, 1–9. [Google Scholar] [CrossRef]
- Kalkuhl, M.; Schwerhoff, G.; Waha, K. Land tenure, climate and risk management. Ecol. Econ. 2020, 171, 106573. [Google Scholar] [CrossRef]
- Shanley, P.; Pierce, A.; Laird, S.; Robinson, D. Beyond Timber Certification and Management of Non-Timber Forest Products; Center for International Forestry Research (CIFOR): Bogor Barat, Indonesia, 2008. [Google Scholar]
- Huber, P.; Hujala, T.; Kurttila, M.; Wolfslehner, B.; Vacik, H. Application of multi-criteria analysis methods for a participatory assessment on non-wood forest products in two European case studies. For. Policy Econ. 2017, 103, 103–111. [Google Scholar] [CrossRef]
- Hamunen, K.; Kurttila, M.; Miina, J.; Peltola, R.; Tikkanen, J. Sustainability of Nordic non-timber forest product-related businesses—A case study on bilberry. For. Policy Econ. 2019, 109, 102002. [Google Scholar] [CrossRef]
- Mello, N.G.R.; Gulinck, H.; Broeck, P.V.; Constanza, P. Social-ecological sustainability of non-timber forest products: A review and theoretical considerations for future research. For. Policy Econ. 2020, 112, 102109. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Hein, L.; Koppen, K.; Groot, R.D.; Ierland, E.V. Spatial scales, stakeholders and the valuation of ecosystem services. Ecol. Econ. 2006, 57, 20–228. [Google Scholar] [CrossRef]
- Alves, J.G.T. O planejamento governamental e seus reflexos na estrutura fundiária de Mato Grosso (Government planning and its reflexes in the land structure of Mato Grosso). Caminhos De Geografia. 2013, 9, 17–30. [Google Scholar]
- De Souza Filho, T.A.; Pedrozo, E.Á.; Paes-de-Souza, M. Produtos Florestais Não-Madeiráveis (PFNMs) da Amazônia: Uma visão autóctone da cadeia-rede da castanha-da-amazônia no estado de Rondônia (Non-Timber Forest Products (NTFPs) from the Amazon: An autochthonous view of the chain-network of the Brazil nut in the state of Rondônia). Rev. De Adm. E Neg. Da Amaz. 2011, 3, 58–74. [Google Scholar]
- Hurtienne, T. Agricultura familiar e desenvolvimento rural sustentável na Amazônia. Novos Cad. NAEA 2008, 8, 19–71. [Google Scholar] [CrossRef] [Green Version]
- World Wide Foundation (WWF). Desenvolvimento Sustentável No Noroeste de Mato Grosso; WWF: Brasília, Brazil, 2012. [Google Scholar]
- Giampietro, M.; Allen, T.F.H.; Mayumi, K. Science for governance: The implications of the complexity revolution. In Interfaces Between Science and Society; Guimaraes-Pereira, A., Guedes-Vaz, S., Tognetti, S., Eds.; Greenleaf Publishing: Sheffield, UK, 2006. [Google Scholar]
- Aldrich, S.; Walker, R.; Simmons, C.; Caldas, M.; Perz, S. Contentious Land Change in the Amazon’s Arc of Deforestation. Ann. Assoc. Am. Geogr. 2012, 102, 103–128. [Google Scholar] [CrossRef]
- Nunes, P.C.; Rugnitz, M.T. Semeando Esperança, Colhendo Bens e Serviços Ambientais: Resultados do Projeto Poço de Carbono; ADERJUR—Associação de Desenvolvimento Rural de Juruena: Juruena, Brazil, 2011. [Google Scholar]
- Peters, K. Methodological issues in life cycle assessment for remanufactured products: A critical review of existing studies and an illustrative case study. J. Clean. Prod. 2016, 126, 21–37. [Google Scholar] [CrossRef]
- Pierce, D.W.; Barnett, T.P.; Hidalgo, H.G.; Das, T.; Bonfils, C.; Santer, B.D. Attribution of declining Western U.S. snowpack to human effects. J. Clim. 2008, 21, 6425–6444. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, T.V. The Metabolism of the Amazon Chestnut Productive Chain: An Analysis through the Musiasem Methodology. Ph.D. Thesis, Universidade Federal do Paraná—UFPR, Curitiba, Brazil, 2018. [Google Scholar]
- Homma, A.K.O.; Menezes, A.J.E.A. Avaliação de uma Indústria Beneficiadora de Castanha-do-Pará, na Microrregião de Cametá, PA; (Evaluation of a Beneficiary Industry in Castanha-do-Pará, in the Microregion of Cametá, PA); Empresa Brasileira de Pesquisa Agropecuária: Belém, Brazil, 2008. [Google Scholar]
- Locatelli, M.; Vieira, A.H.; Gama, M.M.B.; Ferreira, M.G.R.; Martins, E.P.; Silva Filho, E.P.; Souza, V.F.; Macedo, R.S. Cultivo da Castanha-do-Brasil em Rondônia; (Brazil nut cultivation in Rondônia); Embrapa Rondônia: Vilhena, Brazil, 2008. [Google Scholar]
- Fischer-Kowalski, M. Society’s metabolism-the intellectual history of materials flow analysis, part I 1860-1970. J. Ind. Ecol. 1998, 2, 61–78. [Google Scholar] [CrossRef]
- Ayres, R.U.; Kneese, A.V. Production, Consumption, and Externalities. Am. Econ. Rev. 1969, 59, 282–297. [Google Scholar]
- Boyden, S. The impact of civilisation on human biology. Aust. J. Exp. Biol. Med. Sci. 1969, 47, 287–298. [Google Scholar] [CrossRef]
- Daly, H.E. The steady-state economy: Toward a political economy of biophysical equilibrium and moral growth. In Toward a Steady-State Economy; Daly, H.E., Ed.; W.H. Freeman: San Francisco, CA, USA, 1973; pp. 325–383. [Google Scholar]
- Kneese, A.V. Environmental Pollution: Economics and Policy. Am. Econ. Rev. 1971, 61, 153–166. [Google Scholar]
- Meadows, D.L.; Meadows, D.H.; Randers, J.; Behrens, W.W., III. The Limits to Growth; Universe Books: New York, NY, USA, 1972. [Google Scholar]
- Newell, J.P.; Cousins, J.J. The boundaries of urban metabolism. Prog. Hum. Geogr. 2015, 39, 702–728. [Google Scholar] [CrossRef] [Green Version]
- Gallopoulos, N.E. Industrial ecology: An overview. Prog. Ind. Ecol. 2006, 3, 10–27. [Google Scholar] [CrossRef]
- Roberts, B.H. The application of industrial ecology principles and planning guidelines for the development of eco-industrial parks: An Australian case study. J. Clean. Prod. 2004, 12, 997–1010. [Google Scholar] [CrossRef]
- Burkett, P. Marx’s Ecology and the limits of contemporary ecosocialism. Capital. Nat. Soc. 2001, 12, 126–133. [Google Scholar] [CrossRef]
- Collins, J.; Kinzig, A.; Grimm, N.; Fagan, W.; Hope, D.; Wu, J.; Borer, E. A New Urban Ecology: Modeling human communities as integral parts of ecosystems poses special problems for the development and testing of ecological theory. Am. Sci. 2000, 88, 416–425. [Google Scholar]
- McIntyre, N.E.; Knowles-Yánez, K.; Hope, D. Urban Ecology as an Interdisciplinary Field: Differences in the use of ‘Urban’ Between the Social and Natural Sciences. Urban Ecol. 2008, 49–65. [Google Scholar]
- Baccini, P. Understanding regional metabolism for a sustainable development of urban systems. Environ. Sci. Pollut. Res. 1996, 3, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Jelinski, L.W.; Graedel, T.E.; Laudise, R.A.; McCall, D.W.; Patel, C.K. Industrial ecology: Concepts and approaches. Proc. Natl. Acad. Sci. USA 1992, 89, 793–797. [Google Scholar] [CrossRef] [Green Version]
- Cronon, W. Nature’s Metropolis: Chicago and the Great West; W.W. Norton: New York, NY, USA, 1991. [Google Scholar]
- Swyngedouw, E. Social Power and the Urbanization of Water: Flows of Power; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Foster, J.B. Marx’s theory of metabolic rift: Classical foundations for environmental Sociology. Am. J. Sociol. 1999, 105, 366–405. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.B. The dialectics of nature and Marxist ecology. In Dialectics for the New Century; Ollman, B., Smith, T., Eds.; Palgrave-Macmillan: London, UK, 2008; pp. 50–82. [Google Scholar]
- Moore, J.W. Environmental Crises and the Metabolic Rift in World-Historical Perspective. Organ. Environ. 2000, 13, 123–157. [Google Scholar] [CrossRef]
- Swyngedouw, E. Circulations and metabolisms: (Hybrid) Natures and (Cyborg) cities. Sci. Cult. 2006, 15, 105–121. [Google Scholar] [CrossRef]
- Golubiewski, N. Is there a metabolism of an urban ecosystem? An ecological critique. Ambio 2012, 41, 751–764. [Google Scholar] [CrossRef]
- Odum, E.P. Energy Flow in Ecosystems: A Historical Review indicates. Am. Zool. 1968, 8, 11–18. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K. Multiple-scale integrated assessments of societal metabolism: Integrating biophysical and economic representations across scales. Popul. Environ. 2000, 22, 155–210. [Google Scholar] [CrossRef]
- Giampietro, M.; Mayumi, K. Multiple-scale integrated assesment of societal metabolism: Introducing the approach. Popul. Environ. 2000, 22, 109–153. [Google Scholar] [CrossRef]
- Matthews, K.; Blackstock, K.; Buchan, K.; Miller, D.; Rivington, M.; Gilbert, A.; Ibiyemi, A.; Dunglinson, J. D16: Scottish Case Study Report; Finland Futures Research Centre, Turku School of Economics: Turku, Finland, 2010. [Google Scholar]
- Scheidel, A.; Giampietro, M.; Ramos-Martin, J. Self-sufficiency or surplus: Conflicting local and national rural development goals in Cambodia. Land Use Policy 2013, 34, 342–352. [Google Scholar] [CrossRef]
- Xiaohui, C.; Tiansong, W.; Piano, S.L.; Mayumi, K. China’s metabolic patterns and their potential problems. Ecol. Model. 2015, 318, 75–85. [Google Scholar] [CrossRef]
- Ginard-Bosch, F.J.; Ramos-Martín, J. Energy metabolism of the Balearic Islands (1986–2012). Ecol. Econ. 2016, 124, 25–35. [Google Scholar] [CrossRef]
- Aragão, A.; Giampietro, M. An integrated multi-scale approach to assess the performance of energy systems illustrated with data from the Brazilian oil and natural gas sector. Energy 2016, 115, 1412–1423. [Google Scholar] [CrossRef]
- Schwarz, J.; Mathijs, E. Globalization and the sustainable exploitation of scarce groundwater in coastal Peru. J. Clean. Prod. 2017, 147, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Giampietro, M.; Gamboa, G.; Lobo, A.; Sorman, A.; Waldron, T. Multi-Scale Integrated Analysis Societal Ecosystem Metabolism (MuSIASEM): User and Client Documentation for MuSIASEM; Turku School of Economics, Finland Futures Research Centre: Turku, Finland, 2008. [Google Scholar]
- Giampietro, M.; Mayumi, K.; Ramos-Martin, J. Multi-scale integrated analysis of societal and ecosystem metabolism (MuSIASEM): Theoretical concepts and basic rationale. Energy 2009, 34, 313–322. [Google Scholar] [CrossRef]
- Bertolini, G.R.F.; Possamai, O. Proposta de Instrumento de Mensuração do Grau de Consiciência Ambiental, do Consumo Ecológico e dos Critérios de Compra dos Consumidores. Rev. De Cienc. Tecnol. 2005, 13, 17–25. [Google Scholar]
- Giampietro, M.; Bukkens, S.G.F. Analogy between Sudoku and the multi-scale integrated analysis of societal metabolism. Ecol. Inform. 2015, 26, 18–28. [Google Scholar] [CrossRef]
- Kleene, S.C. Introduction to Metamathematicsi; D. Van Nostrand: London, UK, 1950. [Google Scholar]
- Ander-Egg, E. Introducción a Las Técnicas de Ivestigación Social; Editorial Humanitas: Buenos Aires, Argentina, 1978. [Google Scholar]
- Creswell, J.W. Qualitative Inquiry and Research Design: Choosing among Five Aproaches; SAGE Publications: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Creswell, J.W.; Clark, V.L.P. Designing and Conducting Mixed Methods Research; SAGE Publications: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Maldonado, T.V.; Panhoca, L.; Allievi, F. MuSIASEM analysis structure proposal for micronarratives on extractive productive chains in the Amazon context. Ecol. Indic. 2019, 106, 105509. [Google Scholar] [CrossRef] [Green Version]
- Cadillo-Benalcazar, J.J.; Renner, A.; Giampietro, M. A multiscale integrated analysis of the factors characterizing the sustainability of food systems in Europe. J. Environ. Manag. 2020, 271, 110944. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.K. Case Study Research and Applications: Design and Methods; Sage: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Hutchings, P.C.; Cuadrado, L.; Ezbakhe, F.; Mesa, B.; Tamekawa, C.; Franceys, R. A systematic review of success factors in the community management of rural water supplies over the past 30 years. Water Police 2015, 17, 963–983. [Google Scholar] [CrossRef] [Green Version]
- Voigt, W.; Perner, J.; Hefin Jones, T. Using functional groups to investigate community response to environmental changes: Two grassland case studies. Glob. Chang. Biol. 2007, 13, 1710–1721. [Google Scholar] [CrossRef]
- Fang, X.; Shi, X.; Gao, W. Measuring urban sustainability from the quality of the built environment and pressure on the natural environment in China: A case study of the Shandong Peninsula region. J. Clean. Prod. 2020, 289, 2–14. [Google Scholar] [CrossRef]
- Richardson, R.J. Pesquisa Social: Métodos e Técnicas; Atlas: São Paulo, Brazil, 2007. [Google Scholar]
- Recalde, M.; Ramos-Martin, J. Going beyond energy intensity to understand the energy metabolism of nations: The case of Argentina. Energy 2012, 37, 122–132. [Google Scholar] [CrossRef] [Green Version]
- Brasil, Decreto Nº 8.618, de 29 de Dezembro de 2015. In Regulamenta a Lei nº 13.152, de 29 de Julho de 2015, que Dispõe Sobre o Valor do Salário Mínimo e a sua Política de Valorização de Longo Prazo; Diario Oficial [da] República Federativa do Brasil: Brasília, Brazil, 2015.
- Brazilian Institute of Geography and Statistics. PNAD: IBGE Divulga o Rendimento Domiciliar per Capita 2016; IBGE: Rio de Janeiro, Brazil, 2017; p. 4. [Google Scholar]
- Merriam, S.B. Qualitative Research: A Guide to Design and Implementation; Jossey-Bass: San Francisco, CA, USA, 2009. [Google Scholar]
- Molina-Maturano, J.; Bucher, J.; Speelman, S. Understanding and evaluating the sustainability of frugal water innovations in México: An exploratory case study. J. Clean. Prod. 2020, 274, 122692. [Google Scholar] [CrossRef]
- Eisenhardt, K.M.; Graebner, M.E. Theory Building From Cases: Opportunities And Challenges. Acad. Manag. J. 2007, 50, 25–32. [Google Scholar] [CrossRef]
- Mathews Hunt, K. Gaming the system: Fake online reviews v. consumer law. Comput. Law Secur. Rev. 2015, 31, 3–25. [Google Scholar] [CrossRef]
- Hervey, T.; Shaw, J. Women, Work and Care: Women’s Dual Role and Double Burden in Ec Sex Equality Law. J. Eur. Soc. Policy 1998, 8, 43–63. [Google Scholar] [CrossRef]
- Giampietro, M.; Cadillo Benalcazar, J.J.; Di Felice, L.J.; Manfroni, M.; Pérez Sánchez, L.; Renner, A.; Ripa, M.; Velasco Fernández, R.; Bukkens, S.G.F. Report on the Experience of Applications of the Nexus Structuring Space in Quantitative Storytelling; Magic Nexus: London, UK, 2021. [Google Scholar]
- Grivins, M.; Tisenkopfs, T.; Stojanovic, Z.; Ristic, B. A Comparative Analysis of the Social Performance of Global and Local Berry Supply Chains. Sustainability 2016, 8, 532. [Google Scholar] [CrossRef] [Green Version]
Variable | Definition | Production Rules | Tokens |
---|---|---|---|
THA | Total human activity | Multiply the total number of hours available in the day, considering the particularities between men and women, minus the time of physiological overload, by the number of days available and then multiply by the number of individuals covered by the representation; the sum of hours in HAHH e HAPW. or |
|
HAHC | Total hours of human activity dedicated to housework. | Multiply the total number of hours devoted to housework by the number of days available, multiplied by the number of existing individuals. |
|
HALE | Total hours of human activity dedicated to leisure and education. | Multiply the total number of dedicated study/learning and leisure hours by the number of days available, multiplied by the number of existing individuals. |
|
HAPO | Total hours of human activity dedicated to physiological overload. | Multiply the total number of hours dedicated to personal care, sleep, food, etc., by the number of days available, multiplied by the number of existing individuals. |
|
HAHH | Total hours of human activity dedicated to the household sector. | Add up the total hours spent on house chores, education, and leisure. |
|
HAPW | Total hours of human activity devoted to paid work. | Multiply the total number of hours devoted to paid work by the number of days available, multiplied by the number of existing individuals; or the hours allocated to the household sector are subtracted from the THA. or |
|
HAi | Total hours of human activity transferred to a specific sub-compartment. | Multiply the total number of hours of human activity devoted to the selected sub-compartment by the number of available days multiplied by the number of existing individuals. |
|
TET | Total exosomatic throughput. | Sum the energy of all sources used, in joules, for the system in the studied period; or the sum of ETHH e ETPW. For the conversion of the energy metrics in joules: 1 kW = 3.6·106 J 1 kg of wood = 1.50·107 J 1 l diesel oil = 3.64·107 J 1 kg de of liquefied petroleum gas (LPG) = 4.70·106 J or |
|
ETHH | Energy throughput to the household sector. | A sum of energy quantity of all sources in joules in the household sector in studied period. For the conversion of the energy metrics in joules: 1 kW = 3.6·106 J 1 kg of wood = 1.50·107 J 1 l diesel oil = 3.64·107 J 1 kg de of liquefied petroleum gas (LPG) = 4.70·106 J |
|
ETPW | Energy throughput to use in the production of goods and services. | The sum of the energy quantity of all the sources used in joules to produce goods and services in the studied period. For the conversion of the energy metrics in joules: 1 kW = 3.6·106 J 1 kg of wood = 1.50·107 J 1 l diesel oil = 3.64·107 J 1 kg de of liquefied petroleum gas (LPG) = 4.70·106 J |
|
ETi | Energy throughput to a specific sub-compartment. | Sum of energy of all sources used in joules in the sub-compartment of analysis selected in the studied period. For the conversion of the energy metrics in joules: 1 kW = 3.6·106 J 1 kg of wood = 1.50·107 J 1 l diesel oil = 3.64·107 J 1 kg de of liquefied petroleum gas (LPG) = 4.70·106 J |
|
GDP | Total values circulated in metabolism. | The sum of all the wealth generated in the system. The collection sector adds nut sales value and the sum of all the products sold by the cooperative in the sector PS: where: PP = Purchase price ) |
|
GDPi | Total values circulated in a specific sub-compartment. | Sum of all the wealth generated in a sub-compartment. |
|
Variable | Calculation |
---|---|
EMRSA | Total exosomatic energy throughput/total human activity EMRSA = (TET/THA) |
EMRi | Energy throughput to the sector/human activity in the sector. PW; HH; ... EMRi = (ETi/HAi) |
PRSA | Total produced/total human activity PRSA = (PT/THA) |
PRi | Total produced in sector/human activity in sector PRi = (PTi/HAi) |
ELPSA | GDP/total human activity. ELPSA = (GDP/THA) |
LPi | GDP in sector/human activity in sector (GDPi/HAi) |
ElSA | Total exosomatic energy throughput/PIB. ElSA = (TET/GDP) |
Eli | Energy throughput to the sector/GDP in sector. Eli = (ETi/GDPi) |
EESA | GDP/total exosomatic energy throughput |
EEi | GDP in sector/energy throughput to the sector EEi = TET/HAPS |
SEH | Strength of exosomatic hypercycle SEH = TET/HAPS |
BEP | Bio-economic pressure BEP = TET/HAPS |
Sectors HA | Women | Men | ||||
---|---|---|---|---|---|---|
Week | Month | Year | Week | Month | Year | |
HAPO | 2604 | 11,160 | 135,780 | 2173.5 | 9444.4 | 113,332.5 |
HAPW | 1364 | 7254 | 87,048 | 1188 | 6318 | 75,816 |
HAHH (HC + LE) | 934.6 | 4061 | 48,732 | 908.5 | 3947.6 | 47,371.5 |
HAHC | 418.5 | 1818.5 | 21,821.8 | 135.0 | 586.6 | 7039.3 |
HALE | 516.1 | 2242.5 | 26,910.2 | 773.5 | 3361.0 | 40,332.2 |
Source | Consumption | Consumption (GJ) a |
---|---|---|
Electricity | 55,035 kWh | 198.126 |
Vehicle fuels | 833,333 L | 30.33 |
Liquefied petroleum gas | 3198 Kg | 150.31 |
Firewood | 1155 m3 | 12.375 |
TOTAL | - | 12.7538 |
Source | Amount (kg) |
---|---|
Vale do Amanhecer | 19,095 |
Passapkareeya | 41,956 |
Kawaiwete—Kaiabi | 15,727 |
Munduruku | 9535 |
Acaim b | 4687 |
Total | 91,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado, T.V.; Allievi, F.; Panhoca, L. Sustainability of the Amazon Nut in Mato Grosso: An Application of the MuSIASEM Method. Sustainability 2021, 13, 9777. https://doi.org/10.3390/su13179777
Maldonado TV, Allievi F, Panhoca L. Sustainability of the Amazon Nut in Mato Grosso: An Application of the MuSIASEM Method. Sustainability. 2021; 13(17):9777. https://doi.org/10.3390/su13179777
Chicago/Turabian StyleMaldonado, Thiago Vargas, Francesca Allievi, and Luiz Panhoca. 2021. "Sustainability of the Amazon Nut in Mato Grosso: An Application of the MuSIASEM Method" Sustainability 13, no. 17: 9777. https://doi.org/10.3390/su13179777
APA StyleMaldonado, T. V., Allievi, F., & Panhoca, L. (2021). Sustainability of the Amazon Nut in Mato Grosso: An Application of the MuSIASEM Method. Sustainability, 13(17), 9777. https://doi.org/10.3390/su13179777