Measures to Increase Local Food Supply in the Context of European Framework Scenarios for the Agri-Food Sector
Abstract
:1. Introduction
2. The Agri-Food System
3. Methods and Background
3.1. Method of This Study: Setting the Measures in the Context of Scenarios
3.2. Background on the Methodology of the Previous Research
3.2.1. Roadmap Presenting the Local Measures
3.2.2. Scenarios for the European Food Sector
4. Previous Foresight Studies: Local Roadmap and Framework Scenarios
4.1. Measures in the Local Roadmap
4.2. Framework Scenarios
4.2.1. Scenario 1: “Policy Secures Sustainability—Welfare States Centrally Ensure National Food Security”
4.2.2. Scenario 2: “Society Drives Sustainability—Consumers Enjoy a Green and Healthy Lifestyle”
4.2.3. Scenario 3: “A CO2 Currency and Retailers Dominate Trade and Consumption—In a Globalized World, Markets and Technologies Ensure Prosperity for Top Performers”
5. Results
5.1. Scenario 1: Policy Secures Sustainability—Welfare States Centrally Ensure National Food Security
5.2. Scenario 2: Society Drives Sustainability—Consumers Enjoy a Green and Healthy Lifestyle
5.3. Scenario 3: A CO2 Currency and Retailers Dominate Trade and Consumption—In a Globalized World, Markets and Technologies Ensure Prosperity for Top Performers
5.4. Robustness Check of the Measures in the Three Scenarios
5.5. Location of the Measures within the Food System
6. Discussion
6.1. Scenario 1: Policy Secures Sustainability—Welfare States Centrally Ensure National Food Security
6.2. Scenario 2: Society Drives Sustainability—Consumers Enjoy a Green and Healthy Lifestyle
6.3. Scenario 3: A CO2 Currency and Retailers Dominate Trade and Consumption—In a Globalized World, Markets and Technologies Ensure Prosperity for Top Performers
7. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- European Commission. Food 2030 Pathways for Action: Research and Innovation Policy as a Driver for Sustainable Healthy and Inclusive Systems; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Agriculture. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Caron, P.; Ferrero, Y.; de Loma-Osorio, G.; Nabarro, D.; Hainzelin, E.; Guillou, M.; Andersen, I.; Arnold, T.; Astralaga, M.; Beukeboom, M.; et al. Food systems for sustainable development: Proposals for a profound four-part transformation. Agron. Sustain. Dev. 2018, 38, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, L.M.; Drimie, S.; Maciejewski, K.; Tonissen, P.B.; Biggs, R.O. Food System Transformation: Integrating a Political-Economy and Social-Ecological Approach to Regime Shifts. Int. J. Environ. Res. Public Health 2020, 17, 1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, P.; Thow, A.M.; Wate, J.T.; Nonga, N.; Vatucawaqa, P.; Brewer, T.; Sharp, M.K.; Farmery, A.; Trevena, H.; Reeve, E.; et al. COVID-19 and Pacific food system resilience: Opportunities to build a robust response. Food Secur. 2020, 12, 783–791. [Google Scholar] [CrossRef]
- OECD. OECD-FAO Agricultural Outlook 2020–2029; OECD: Paris, France, 2020; ISBN 9789264317673. [Google Scholar]
- Béné, C. Resilience of local food systems and links to food security—A review of some important concepts in the context of COVID-19 and other shocks. Food Secur. 2020, 12, 805–822. [Google Scholar] [CrossRef] [PubMed]
- Thilmany, D.; Canales, E.; Low, S.A.; Boys, K. Local Food Supply Chain Dynamics and Resilience during COVID-19. Appl. Econ. Perspect. Policy 2021, 43, 86–104. [Google Scholar] [CrossRef]
- Perdana, T.; Chaerani, D.; Achmad, A.L.H.; Hermiatin, F.R. Scenarios for handling the impact of COVID-19 based on food supply network through regional food hubs under uncertainty. Heliyon 2020, 6, e05128. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.L.; van Lammerts Bueren, E.T.; Ceccarelli, S.; Grando, S.; Upadhyaya, H.D.; Ortiz, R. Diversifying Food Systems in the Pursuit of Sustainable Food Production and Healthy Diets. Trends Plant Sci. 2017, 22, 842–856. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.; Thornton, P.K.; Power, B.; Bogard, J.R.; Remans, R.; Fritz, S.; Gerber, J.S.; Nelson, G.; See, L.; Waha, K. Farming and the geography of nutrient production for human use: A transdisciplinary analysis. Lancet Planet. Health 2017, 1, e33–e42. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Farm to Fork Strategy: For a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Kreidenweis, U.; Lautenbach, S.; Koellner, T. Regional or global? The question of low-emission food sourcing addressed with spatial optimization modelling. Environ. Model. Softw. 2016, 82, 128–141. [Google Scholar] [CrossRef]
- Avetisyan, M.; Hertel, T.; Sampson, G. Is Local Food More Environmentally Friendly? The GHG Emissions Impacts of Consuming Imported versus Domestically Produced Food. Environ. Resour. Econ. 2014, 58, 415–462. [Google Scholar] [CrossRef]
- Jia, S. Local Food Campaign in a Globalization Context: A Systematic Review. Sustainability 2021, 13, 7487. [Google Scholar] [CrossRef]
- Schmitt, E.; Galli, F.; Menozzi, D.; Maye, D.; Touzard, J.-M.; Marescotti, A.; Six, J.; Brunori, G. Comparing the Sustainability of Local and Global Food Products in Europe. J. Clean. Prod. 2017, 165, 346–359. [Google Scholar] [CrossRef]
- MacFal, J.; Massey Lelekacs, J.; LeVasseur, T.; Moore, S.; Walker, J. Toward resilient food systems through increased agricultural diversity and local sourcing in the Carolinas. J. Environ. Stud. Sci. 2015, 5, 608–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastner, T.; Erb, K.-H.; Haberl, H. Rapid growth in agricultural trade: Effects on global area efficiency and the role of management. Environ. Res. Lett. 2014, 9, 34015. [Google Scholar] [CrossRef]
- Kissinger, M.; Sussmann, C.; Dorward, C.; Mullinix, K. Local or global: A biophysical analysis of a regional food system. Renew. Agric. Food Syst. 2019, 34, 523–533. [Google Scholar] [CrossRef]
- Saritas, O.; Aylen, J. Using scenarios for roadmapping: The case of clean production. Technol. Forecast. Soc. Chang. 2010, 77, 1061–1075. [Google Scholar] [CrossRef]
- Cagnin, C.; Könnölä, T. Global foresight: Lessons from a scenario and roadmapping exercise on manufacturing systems. Futures 2014, 59, 27–38. [Google Scholar] [CrossRef]
- Cheng, M.N.; Wong, J.W.; Cheung, C.F.; Leung, K.H. A scenario-based roadmapping method for strategic planning and forecasting: A case study in a testing, inspection and certification company. Technol. Forecast. Soc. Chang. 2016, 111, 44–62. [Google Scholar] [CrossRef]
- Hussain, M.; Tapinos, E.; Knight, L. Scenario-driven roadmapping for technology foresight. Technol. Forecast. Soc. Chang. 2017, 124, 160–177. [Google Scholar] [CrossRef]
- Lee, C.; Song, B.; Park, Y. An instrument for scenario-based technology roadmapping: How to assess the impacts of future changes on organisational plans. Technol. Forecast. Soc. Chang. 2015, 90, 285–301. [Google Scholar] [CrossRef]
- Hansen, C.; Daim, T.; Ernst, H.; Herstatt, C. The future of rail automation: A scenario-based technology roadmap for the rail automation market. Technol. Forecast. Soc. Chang. 2016, 110, 196–212. [Google Scholar] [CrossRef]
- Berner, S.; Derler, H.; Rehorska, R.; Pabst, S.; Seebacher, U. Roadmapping to Enhance Local Food Supply: Case Study of a City-Region in Austria. Sustainability 2019, 11, 3876. [Google Scholar] [CrossRef] [Green Version]
- Moller, B.; Voglhuber-Slavinsky, A.; Dönitz, E. Three Scenarios for Europe’s Food Sector in 2035; Fraunhofer ISI: Karlsruhe, Germany, 2020. [Google Scholar]
- Dijkstra, L.; Poelman, H. Cities in Europe: The New OECD-EC Definition, 2012. Available online: https://ec.europa.eu/regional_policy/sources/docgener/focus/2012_01_city.pdf (accessed on 19 May 2021).
- Wegscheider-Pichler, A.; Prettner, C.; Lamei, N. Wie Geht’s Österreich? 2020: Indikatoren und Analysen Sowie COVID-19-Ausblick; Statistik Austria: Wien, Austria, 2020. [Google Scholar]
- Majumder, A.; Ray, R. National and subnational purchasing power parity: A review. Decision 2020, 47, 103–124. [Google Scholar] [CrossRef]
- Pradhan, P.; Kriewald, S.; Costa, L.; Rybski, D.; Benton, T.G.; Fischer, G.; Kropp, J.P. Urban Food Systems: How Regionalization Can Contribute to Climate Change Mitigation. Environ. Sci. Technol. 2020, 54, 10551–10560. [Google Scholar] [CrossRef]
- Kriewald, S.; Pradhan, P.; Costa, L.; Ros, A.G.C.; Kropp, J.P. Hungry cities: How local food self-sufficiency relates to climate change, diets, and urbanisation. Environ. Res. Lett. 2019, 14, 94007. [Google Scholar] [CrossRef]
- Greco, L.; Kolodinsky, J.; Sitaker, M.; Chase, L.; Conner, D.; Smith, D.; Estrin, H.; van Soelen Kim, J. Farm Fresh Food Boxes: Relationships in Value Chain Partnerships. J. Agric. Food Syst. Community Dev. 2020, 9, 1–17. [Google Scholar] [CrossRef]
- Palmer, A.; Santo, R.; Berlin, L.; Bonanno, A.; Clancy, K.; Giesecke, C.; Hinrichs, C.; Lee, R.; McNab, P.; Rocker, S. Between Global and Local: Exploring Regional Food Systems from the Perspectives of Four Communities in the U.S. Northeast. J. Agric. Food Syst. Community Dev. 2017, 7, 187–205. [Google Scholar] [CrossRef] [Green Version]
- Augère-Granier, M.-L. Short Food Supply Chains and Local Food Systems in the EU; European Parliamentary Research Service, EPRS: Brussels, Belgium, 2016. [Google Scholar]
- Kneafsey, M.; Venn, L.; Schmutz, U.; Balázs, B.; Trenchard, L.; Eyden-Wood, T.; Bos, E.; Sutton, G.; Blackett, M. Short food supply chains and local food systems in the EU. A state of play of their socio-economic characteristics. JRC Sci. Policy Rep. 2013, 123, 129. [Google Scholar]
- Martinez, S.; Hand, M.; da Pra, M.; Pollack, S.; Ralston, K.; Smith, T.; Vogel, S.; Clark, S.; Lohr, L.; Low, S.; et al. Local Food Systems: Concepts, Impacts, and Issues; Diane Publishing: Collingdale, PA, USA, 2010. [Google Scholar]
- Hendrickson, M.; Massengale, S.H.; Weber, C. Introduction to Local Food Systems; Diane Publishing: Collingdale, PA, USA, 2015. [Google Scholar]
- Westhoek, H.; Ingram, J.; van Berkum, S.; Hajer, M. Food Systems and Natural Resources; United Nations Environment Programme: Nairobi, Kenya, 2016; ISBN 978-92-807-3560-4. [Google Scholar]
- FAO. Sustainable Food Systems: Concept and Framework; FAO: Rome, Italy, 2018. [Google Scholar]
- Ericksen, P.J. Conceptualizing food systems for global environmental change research. Glob. Environ. Chang. 2008, 18, 234–245. [Google Scholar] [CrossRef]
- Gaitán-Cremaschi, D.; Klerkx, L.; Duncan, J.; Trienekens, J.H.; Huenchuleo, C.; Dogliotti, S.; Contesse, M.E.; Rossing, W.A.H. Characterizing diversity of food systems in view of sustainability transitions. A review. Agron. Sustain. Dev. 2019, 39, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mausch, K.; Hall, A.; Hambloch, C. Colliding paradigms and trade-offs: Agri-food systems and value chain interventions. Glob. Food Secur. 2020, 26, 100439. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Godfray, H.C.J.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Nisbett, N.; Pretty, J.; Robinson, S.; Toulmin, C.; Whiteley, R. The future of the global food system. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 2769–2777. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Ji, C.; Qiu, C.; Jia, F. Agri-Food Supply Chain Management: Bibliometric and Content Analyses. Sustainability 2018, 10, 1573. [Google Scholar] [CrossRef] [Green Version]
- Bukeviciute, L.; Dierx, A.H.; Ilzkovitz, F. The Functioning of the Food Supply Chain and Its Effect on Food Prices in the European Union; European Commission Directorate-General for Economic and Financial Affairs Publications: Brüssel, Belgium, 2009; ISBN 978-92-79-11261-4. [Google Scholar]
- Stanco, M.; Nazzaro, C.; Lerro, M.; Marotta, G. Sustainable Collective Innovation in the Agri-Food Value Chain: The Case of the “Aureo” Wheat Supply Chain. Sustainability 2020, 12, 5642. [Google Scholar] [CrossRef]
- Ricciotti, F. From value chain to value network: A systematic literature review. Manag. Rev. Q. 2020, 70, 191–212. [Google Scholar] [CrossRef]
- FAO. Developing Sustainable Food Systems and Value Chains for CSA. Available online: http://www.fao.org/climate-smart-agriculture-sourcebook/production (accessed on 16 December 2020).
- Sheane, R.; McCosker, C.; Royston, S. Food System Framework: A Focus on Food Sustainabilbity; IFST: London, UK, 2008. [Google Scholar]
- Deloitte. The Food Value Chain: A Challenge for the Next Century; Deloitte: London, UK, 2013. [Google Scholar]
- Phaal, R.; Farrukh, C.J.; Probert, D.R. Technology roadmapping—A planning framework for evolution and revolution. Technol. Forecast. Soc. Chang. 2004, 71, 5–26. [Google Scholar] [CrossRef]
- Lee, S.K.; Mogi, G.; Kim, J.W. Energy technology roadmap for the next 10 years: The case of Korea. Energy Policy 2009, 37, 588–596. [Google Scholar] [CrossRef]
- Gallegos Rivero, A.R.; Daim, T. Technology roadmap: Cattle farming sustainability in Germany. J. Clean. Prod. 2017, 142, 4310–4326. [Google Scholar] [CrossRef]
- Amer, M.; Daim, T.U. Application of technology roadmaps for renewable energy sector. Technol. Forecast. Soc. Chang. 2010, 77, 1355–1370. [Google Scholar] [CrossRef]
- Phaal, R.; Muller, G. An architectural framework for roadmapping: Towards visual strategy. Technol. Forecast. Soc. Chang. 2009, 76, 39–49. [Google Scholar] [CrossRef]
- Godet, M. Creating Futures. Scenario Planning as Strategic Management Tool; Economica: London, UK, 2001. [Google Scholar]
- van Notten, P.W.; Rotmans, J.; van Asselt, M.B.; Rothman, D.S. An Updated Scenario Typology. Futures 2003, 35, 423–443. [Google Scholar] [CrossRef]
- Schwartz, P. The Art of the Long View. Planning for the Future in an Uncertain World; Currency and Doubleday: New York, NY, USA, 1991; ISBN 0-471-97785-3. [Google Scholar]
- van der Heijden, K. Scenarios. The Art of Strategic Conversation; Wiley: Chichester, UK, 1997; ISBN 0-471-96639-8. [Google Scholar]
- Ringland, G. Scenarios in Public Policy; John Wiley & Sons: Chichester, UK, 2002; ISBN 0470843837. [Google Scholar]
- Ringland, G. Scenario Planning: Managing for the Future; John Wiley & Sons: Chichester, UK, 1998; ISBN 0-471-97790-X. [Google Scholar]
- Dönitz, E.J.; Schirrmeister, E. Foresight and Scenarios at Fraunhofer ISI. Probl. Eksploat. Maint. Probl. 2013, 4, 15–28. [Google Scholar]
- Gabriel, J.; Warnke, P.; Schirrmeister, E.; Dönitz, E. Qualitative Szenarien als Tool des Organisationalen Lernens. In Strategische Vorausschau in der Politikberatung: Beiträge und Diskussionsergebnisse eines UBA-Fachgesprächs; Schnurr, M., Glockner, H., Eds.; Umweltbundesamt: Dessau-Roßlau, Germany, 2016; pp. 13–19. [Google Scholar]
- Ringland, G. The role of scenarios in strategic foresight. Technol. Forecast. Soc. Chang. 2010, 77, 1493–1498. [Google Scholar] [CrossRef]
- Dönitz, E. Effizientere Szenariotechnik durch Teilautomatische Generierung von Konsistenzmatrizen: Empirie, Konzeption, Fuzzy- und Neuro-Fuzzy-Ansätze, 1st ed.; Gabler: Wiesbaden, Germany, 2009; ISBN 978-3-8349-1668-6. [Google Scholar]
- Wilkinson, A.; Kupers, R.; Mangalagiu, D. How plausibility-based scenario practices are grappling with complexity to appreciate and address 21st century challenges. Technol. Forecast. Soc. Chang. 2013, 80, 699–710. [Google Scholar] [CrossRef]
- Wright, G.; Bradfield, R.; Cairns, G. Does the intuitive logics method—And its recent enhancements—Produce “effective” scenarios? Technol. Forecast. Soc. Chang. 2013, 80, 631–642. [Google Scholar] [CrossRef]
- Moller, B.; Voglhuber-Slavinsky, A.; Dönitz, E.; Rosa, A. 50 Trends Influencing Europe’s Food Sector by 2035; Fraunhofer ISI: Karlsruhe, Germany, 2019. [Google Scholar]
- Spaniol, M.J.; Rowland, N.J. Defining scenario. Futures Foresight Sci. 2019, 1, e3. [Google Scholar] [CrossRef]
- Vervoort, J.M.; Kok, K.; Beers, P.-J.; van Lammeren, R.; Janssen, R. Combining analytic and experiential communication in participatory scenario development. Landsc. Urban Plan. 2012, 107, 203–213. [Google Scholar] [CrossRef]
- Dönitz, E.; Voglhuber-Slavinsky, A.; Moller, B. Agribusiness in 2035—Farmers of the Future; Fraunhofer ISI: Karlsruhe, Germany, 2020. [Google Scholar]
- Feenstra, G. Creating space for sustainable food systems: Lessons from the field. Agric. Hum. Values 2002, 19, 99–106. [Google Scholar] [CrossRef]
- Clayton, M.L.; Frattaroli, S.; Palmer, A.; Pollack, K.M. The role of partnerships in U.S. Food Policy Council policy activities. PLoS ONE 2015, 10, e0122870. [Google Scholar] [CrossRef]
- Ashby, J.; Heinrich, G.; Burpee, G.; Remington, T.; Wilson, K.; Quiros, C.A.; Aldana, M.; Ferris, S. What farmers want: Collective capacity for sustainable entrepreneurship. Int. J. Agric. Sustain. 2009, 7, 130–146. [Google Scholar] [CrossRef]
- Bartels, N.; Dörr, J.; Fehrmann, J.; Gennen, K.; Groen, E.C.; Härtel, I.; Henningsen, J.; Herlitzius, T.; Jeswein, T.; Kunisch, M.; et al. Abschlussbericht Machbarkeitsstudie: Machbarkeitsstudie zu Staatlichen Digitalen Datenplattformen für die Landwirtschaft; IESE-Report Nr. 022.20/D.; Fraunhofer: Munich, Germany, 2020. [Google Scholar]
- United Nations. Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development; A/RES/71/313; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Remorini, D.; Tavarini, S.; Degl’Innocenti, E.; Loreti, F.; Massai, R.; Guidi, L. Effect of rootstocks and harvesting time on the nutritional quality of peel and flesh of peach fruits. Food Chem. 2008, 110, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Raffo, A.; Leonardi, C.; Fogliano, V.; Ambrosino, P.; Salucci, M.; Gennaro, L.; Bugianesi, R.; Giuffrida, F.; Quaglia, G. Nutritional value of cherry tomatoes (Lycopersicon esculentum Cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 2002, 50, 6550–6556. [Google Scholar] [CrossRef] [PubMed]
- Ziv, C.; Fallik, E. Postharvest Storage Techniques and Quality Evaluation of Fruits and Vegetables for Reducing Food Loss. Agronomy 2021, 11, 1133. [Google Scholar] [CrossRef]
- Peters, C.J.; Bills, N.L.; Wilkins, J.L.; Fick, G.W. Foodshed analysis and its relevance to sustainability. Renew. Agric. Food Syst. 2009, 24, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Steenkamp, J.-B.E.; de Jong, M.G. A Global Investigation into the Constellation of Consumer Attitudes toward Global and Local Products. J. Mark. 2010, 74, 18–40. [Google Scholar] [CrossRef]
- Annunziata, A.; Mariani, A. Consumer Perception of Sustainability Attributes in Organic and Local Food. Recent Pat. Food Nutr. Agric. 2018, 9, 87–96. [Google Scholar] [CrossRef]
- Birch, D.; Memery, J.; de Silva Kanakaratne, M. The mindful consumer: Balancing egoistic and altruistic motivations to purchase local food. J. Retail. Consum. Serv. 2018, 40, 221–228. [Google Scholar] [CrossRef]
- Feldmann, C.; Hamm, U. Consumers’ perceptions and preferences for local food: A review. Food Qual. Prefer. 2015, 40, 152–164. [Google Scholar] [CrossRef]
- Warnke, P.; Dönitz, E.; Opitz, I.; Zoll, F.; Doernberg, A.; Specht, K.; Siebert, R.; Piorr, A.; Berges, R. Szenarien zur Zukunft der Nahrungsmittelversorgung: Chancen und Herausforderungen für Alternative Versorgungsnetzwerke; Fraunhofer-Institut für System- und Innovationsforschung ISI: Karlsruhe, Germany, 2018. [Google Scholar]
- Theurl, M.C.; Haberl, H.; Erb, K.-H.; Lindenthal, T. Contrasted greenhouse gas emissions from local versus long-range tomato production. Agron. Sustain. Dev. 2014, 34, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Röös, E.; Karlsson, H. Effect of eating seasonal on the carbon footprint of Swedish vegetable consumption. J. Clean. Prod. 2013, 59, 63–72. [Google Scholar] [CrossRef]
- Dania, W.A.P.; Xing, K.; Amer, Y. Collaboration behavioural factors for sustainable agri-food supply chains: A systematic review. J. Clean. Prod. 2018, 186, 851–864. [Google Scholar] [CrossRef]
- Poppe, K.; Wolfert, S.; Verdouw, C.; Renwick, A. A European Perspective on the Economics of Big Data. Farm Policy J. 2015, 12, 11–19. [Google Scholar]
- Lee, S.M.; Kim, T.; Noh, Y.; Lee, B. Success factors of platform leadership in web 2.0 service business. Serv. Bus. 2010, 4, 89–103. [Google Scholar] [CrossRef]
- Grunert, K.G.; Hieke, S.; Wills, J. Sustainability labels on food products: Consumer motivation, understanding and use. Food Policy 2014, 44, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.; Davies, R.; Howard, E. The changing structure of food retailing in europe: The implications for strategy. Long Range Plan. 1997, 30, 853–861. [Google Scholar] [CrossRef]
- European Commission. Report from the Commission to the European Parliament and the Council on Unfair Business-to-Business Trading Practices in the Food Supply Chain; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- European Commission. The Directive on UNFAIR TRADING PRACTICES in the Agricultural and Food Supply Chain; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Hekkert, M.; Negro, S.; Heimeriks, G.; Harmsen, R.O.; Jong, S.D. Technological Innovation System Analysis A Manual for Analysts. 2011. Available online: https://www.semanticscholar.org/paper/Technological-Innovation-System-Analysis-A-manual-Hekkert-Negro/68e1abecbbe0da073c7e63d95dbb750f5d910024 (accessed on 19 May 2021).
- Warnke, P.; Koschatzky, K.; Dönitz, E.; Zenker, A.; Stahlecker, T.; Som, O.; Cuhls, K.; Güth, S. Opening up the Innovation System Framework Towards New Actors and Institutions; Fraunhofer ISI Discussion Papers—Innovation Systems and Policy Analysis. No. 49, 2016. Available online: https://www.econstor.eu/handle/10419/129191 (accessed on 19 May 2021).
- Hooper, D.U.; Adair, E.C.; Cardinale, B.J.; Byrnes, J.E.K.; Hungate, B.A.; Matulich, K.L.; Gonzalez, A.; Duffy, J.E.; Gamfeldt, L.; O’Connor, M.I. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 2012, 486, 105–108. [Google Scholar] [CrossRef]
SFGG (Smart Food Grid Graz) | FOX (Food Processing in a Box) | |
---|---|---|
Spatial coverage | Local | European |
Time coverage | 2030 | 2035 |
Type of stakeholder engagement | Local actors and stakeholders | Expert consultation, online process with international experts |
Number of stakeholders involved | 47 | 13 external experts and 25 institutions within the FOX consortium |
Theoretical foundation | A timeline and one desired future | Three alternative scenarios |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voglhuber-Slavinsky, A.; Derler, H.; Moller, B.; Dönitz, E.; Bahrs, E.; Berner, S. Measures to Increase Local Food Supply in the Context of European Framework Scenarios for the Agri-Food Sector. Sustainability 2021, 13, 10019. https://doi.org/10.3390/su131810019
Voglhuber-Slavinsky A, Derler H, Moller B, Dönitz E, Bahrs E, Berner S. Measures to Increase Local Food Supply in the Context of European Framework Scenarios for the Agri-Food Sector. Sustainability. 2021; 13(18):10019. https://doi.org/10.3390/su131810019
Chicago/Turabian StyleVoglhuber-Slavinsky, Ariane, Hartmut Derler, Björn Moller, Ewa Dönitz, Enno Bahrs, and Simon Berner. 2021. "Measures to Increase Local Food Supply in the Context of European Framework Scenarios for the Agri-Food Sector" Sustainability 13, no. 18: 10019. https://doi.org/10.3390/su131810019