A Review on Battery Modelling Techniques
Abstract
:1. Introduction
1.1. Significance of Battery Modelling
- (i)
- Development of efficient BMS.
- (ii)
- Key in the improvement of charging/discharging techniques and the enhancement of battery capacity.
- (iii)
- Need to capture the influence of power consumption on the battery.
- (iv)
- To prevent serious damage to batteries from overcharging or over-discharging.
- (v)
- Faster and safer way to study battery behaviour under different operating conditions.
- (vi)
- Identifying the operating limits that achieve best lifetime for specific applications.
1.2. Contributions of the Proposed Study
2. Types of Battery Modelling
2.1. Electrochemical Modelling of a Battery
2.2. Mathematical Modelling of a Battery
2.3. Circuit-Oriented Modelling of a Battery
2.4. Combined Modelling of a Battery
3. Battery Modelling Using Black Box Modelling Data-Driven Techniques
- The first phase is sample construction, after which the selected data are cleaned, normalised and transformed before being extracted and selected as samples for a machine learning algorithm. The data are then split into training and test sets. The second phase is to construct the model, which includes the “core” algorithms after which machine learning takes place. Support vector machine (SVM), support vector regression, artificial neural network, Bayesian principles, recurrent neural network and various optimisation algorithms such as genetic algorithms and simulated annealing methods are among the most widely used machine learning algorithms. The information gathered from the samples is preserved in a machine-readable manner for the following phase.
- Phase 2 involves using training and validation sets to find the best model.
- The third stage is model evaluation, which applies the knowledge gained in the previous step. SOC, RUL, etc., are estimated and the performance of the estimation models is evaluated using the estimation models determined in the previous phase. Root mean square error, absolute error and other metrics are commonly employed for model evaluation.
4. Battery Parameters Extraction Techniques Using Black Box Modelling Data-Driven Approach
4.1. Estimation of SoC Using Black Box Modelling Data-Driven Approach
4.2. Estimation of SoH Using Black Box Modelling Data-Driven Approach
4.3. Estimation of RUL Using Black Box Modelling Data-Driven Approach
4.4. Estimation of Capacity Using Black Box Modelling Data-Driven Approach
5. Battery Parameters Extraction Techniques Using Grey Box Modelling Data-Driven Approach
5.1. Modelling of Circuit Oriented Model for Grey Box Modelling
5.2. Development of Thevenin’s COM Model
5.3. Representation of SoC and DoD Using Polynomial Equations
5.4. Battery Terminal Voltage Calculations
5.5. Charge/Discharge Rate and SoC Calculations Using Grey Box Modelling
5.6. Parameter Extraction of the Grey Box Modelling Using Bio-Inspired Algorithms
- (a)
- The purpose of using an evolutionary algorithm for a battery parameter extraction problem lies in the fact that it requires only manufacturers Cr and Dr characteristics and gives consistent polynomial coefficients of the battery model during relatively fewer iterations.
- (b)
- Evolutionary algorithms are more flexible in extracting the battery parameters with any initial values, while other numerical methods are incapable of obtaining satisfactory solutions.
- (c)
- The algorithm is easy to understand and is optimised using the fitness function.
- (d)
- With optimising capability, the algorithm steers the fitness function to be more representative and yields an accurate solution set even if the initial values are far from the solutions.
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
BMS | Battery Management System |
SoC | State of Charge |
SoH | State of Health |
DoD | Depth of Discharge |
ANN | Artificial Neural Network |
DFN | Doyle-Fuller-Newman |
SPM | Single Particle Model |
CFD | Computational Fluid Dynamics |
P2D | Pseudo-Two-Dimensional |
LiCoO2 | Lithium Cobalt Oxide |
xk | Number of State Vectors in the system |
x | State variable depicting the SoC of the Battery |
yk | Output Voltage of the Battery |
E0 | Output Voltage |
R | Internal Resistance (Ohmic Resistance) |
ik | Current Flowing through the resistance |
V0 | Open Circuit Voltage of the Battery |
RC | Resistor-Capacitor |
EKF | Extended Kalman filter |
OCV | Open Circuit Voltage |
COM | Circuit Oriented Model |
EIS | Electrochemical Impedance Spectroscopy |
GA | Genetic Algorithm |
ML | Machine Learning |
WNN | Wavelet Neural Network |
GPU | Graphical processing units |
FL | Fuzzy logic |
SBPM | Sparse Bayesian Predictive Modelling |
PNN | Probabilistic neural network |
SVR | Support vector regression |
RVM | Relevance vector machine |
LSTM | Long Short-Term Memory |
MAPE | Mean Absolute Percentage Error |
CNN | Convolutional Neural Network |
DCCN | Deep Convolutional Neural Network |
SOCcr | State of Charge |
DODcr | Depth of Discharge |
Vbc | Battery’s Terminal Voltage for Charging |
Li-Ion | Lithium-ion |
Current charging rate | |
SOCini | Initial SoC of the Battery |
Ic | Charging Current |
NSGA | Non-Dominated Sorting GA |
RUL | Remaining useful life |
SVM | Support Vector Machine |
ANFIS | Adaptive Neuro Fuzzy Inference System |
LCA | Linear Correlation Analysis |
EV | Electric Vehicle |
LiFeMnPO4 | Lithium Iron Manganese Phosphate |
RBF | Radial Basis Function |
ESS | Energy Storage System |
BM | Battery Modelling |
MLPNN | Multi layered Perception Neural Network |
ERNN | Elman Recurrent Neural Network |
LM | Levenberg-Marquardt |
AUKF | Adaptive Unscented Kalman Filter |
LSSVM | Least-square support vector machines |
ITDNN | input time-delayed neural network |
BPNN | Back propagation Neural Network |
L-MA | Levenberg-Marquardt Algorithm |
LiP | Lithium-ion-polymer |
LFP | Lithium Ferro Phosphate |
PSO | Particle Swarm Optimisation |
NEDC | National European Driving Cycle |
GRU | Gated Recurrent Unit |
MAE | Mean Absolute Error |
RMSE | Root Mean Square Error |
NN | Neural Network |
FNN | Feed Forward Neural Network |
DDRN | Dynamically driven recurrent network |
IndRNN | Independently recurrent neural network |
HI | Health Indicator |
EoL | End of Life |
CVS | Constant Voltage Source |
τ1 | Time constant in the order of minutes |
τ2 | Time constant in the order of seconds |
Cr | Charge Rate |
Dr | Discharge Rate |
Vcjc | Battery’s Terminal Charge Voltage |
Vdjc | Battery’s Terminal Discharge Voltage |
Vbd | Battery’s Terminal Voltage for Discharging |
LMWNN | L-M-based three-layer Wavelet Neural Network |
LMMWNN | L-M-based Multi hidden layer Wavelet Neural Network |
DODini | Initial DOD of the Battery |
Id | Discharging Current |
RNN | Recurrent Neural Network |
References
- Chaudhari, K.; Kandasamy, N.K.; Kanamarlapudi, R.K.; Gooi, H.B.; Ukil, A. Modeling of charging profiles for stationary battery systems using curve fitting approach. In Proceedings of the IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 2777–2781. [Google Scholar]
- Moura, S.J.; Chaturvedi, N.A.; Krstić, M. Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model. J. Dyn. Syst. Meas. Control 2014, 136, 11. [Google Scholar] [CrossRef]
- He, H.; Xiong, R.; Guo, H.; Li, S. Comparison study on the battery models used for the energy management of batteries in electric vehicles. Energy Convers. Manag. 2012, 64, 113–121. [Google Scholar] [CrossRef]
- Grandjean, T.R.B.; McGordon, A.; Jennings, P.A. Structural identifiability of equivalent circuit models for Li-ion batteries. Energies 2017, 10, 90. [Google Scholar] [CrossRef] [Green Version]
- Jongerden, M.R.; Haverkort, B.R.H.M. Battery Modelling; University of Twente, Faculty of Mathematical Sciences: Enschede, The Netherlands, 2008; ISBN 1381-3625. [Google Scholar]
- Li, S.; Ke, B. Study of battery modeling using mathematical and circuit oriented approaches. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar]
- El Ghossein, N.; Salameh, J.P.; Karami, N.; El Hassan, M.; Najjar, M.B. Survey on electrical modeling methods applied on different battery types. In Proceedings of the 2015 Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Beirut, Lebanon, 29 April–1 May 2015; pp. 39–44. [Google Scholar]
- Timmermans, J.-M.; Nikolian, A.; De Hoog, J.; Gopalakrishnan, R.; Goutam, S.; Omar, N.; Coosemans, T.; Van Mierlo, J.; Warnecke, A.; Sauer, D.U.; et al. Batteries 2020—Lithium-ion battery first and second life ageing, validated battery models, lifetime modelling and ageing assessment of thermal parameters. In Proceedings of the 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe, Germany, 5–8 September 2016; pp. 1–23. [Google Scholar]
- Thirugnanam, K.; TP, E.R.J.; Singh, M.; Kumar, P. Mathematical modeling of Li-ion battery using genetic algorithm approach for V2G applications. IEEE Trans. Energy Convers. 2014, 29, 332–343. [Google Scholar]
- Muenzel, V.; de Hoog, J.; Brazil, M.; Vishwanath, A.; Kalyanaraman, S. A multi-factor battery cycle life prediction methodology for optimal battery management. In Proceedings of the 2015 ACM Sixth International Conference on Future Energy Systems, Bangalore, India, 14–17 July 2015; pp. 57–66. [Google Scholar]
- Yu, Y.; Narayan, N.; Vega-Garita, V.; Popovic-Gerber, J.; Qin, Z.; Wagemaker, M.; Bauer, P.; Zeman, M. Constructing accurate equivalent electrical circuit models of lithium iron phosphate and lead–acid battery cells for solar home system applications. Energies 2018, 11, 2305. [Google Scholar] [CrossRef] [Green Version]
- Seaman, A.; Dao, T.-S.; McPhee, J. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J. Power Source 2014, 256, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Khare, N.; Chaturvedi, P.K. A Comprehensive Review on Li-ion Battery Ageing Estimation Techniques for Green Energy Vehicles. Int. J. Eng. Sci. Res. Technol. 2017, 6, 22–39. [Google Scholar]
- Zsiborács, H.; Hegedűsné Baranyai, N.; Vincze, A.; Háber, I.; Pintér, G. Economic and technical aspects of flexible storage photovoltaic systems in europe. Energies 2018, 11, 1445. [Google Scholar] [CrossRef] [Green Version]
- Forman, J.C.; Bashash, S.; Stein, J.L.; Fathy, H.K. Reduction of an electrochemistry-based li-ion battery model via quasi-linearization and pade approximation. J. Electrochem. Soc. 2010, 158, A93. [Google Scholar] [CrossRef]
- Kroeze, R.C.; Krein, P.T. Electrical battery model for use in dynamic electric vehicle simulations. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–16 June 2008; pp. 1336–1342. [Google Scholar]
- Fuller, T.F.; Doyle, M.; Newman, J. Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 1994, 141, 1. [Google Scholar] [CrossRef] [Green Version]
- Fuller, T.F.; Doyle, M.; Newman, J. Relaxation phenomena in lithium-ion-insertion cells. J. Electrochem. Soc. 1994, 141, 982. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Sikha, G.; White, R.E. Single-particle model for a lithium-ion cell: Thermal behavior. J. Electrochem. Soc. 2010, 158, A122. [Google Scholar] [CrossRef]
- Shrimali, H.; Patel, P.; Patel, R.; Ray, A.; Mukhopadhyay, I. Electrochemical-thermal modelling of commercially available cylindrical lithium-ion cells for the tropical climate of India. Mater. Today Proc. 2021, 46. [Google Scholar]
- Li, D.; Yang, L.; Li, C. Control-oriented thermal-electrochemical modeling and validation of large size prismatic lithium battery for commercial applications. Energy 2021, 214, 119057. [Google Scholar] [CrossRef]
- Glass, M.C. Battery electrochemical nonlinear/dynamic SPICE model. In Proceedings of the IECEC 96, 31st Intersociety Energy Conversion Engineering Conference, Washington, DC, USA, 11–16 August 1996; Volume 1, pp. 292–297. [Google Scholar]
- Zhou, J.; Xing, B.; Wang, C. A review of lithium ion batteries electrochemical models for electric vehicles. In Proceedings of the E3S Web of Conferences, EDP Sciences, Jeju Island, Korea, 7–9 August 2020; Volume 185, p. 4001. [Google Scholar]
- Ding, N.; Prasad, K.; Lie, T.T.; Cui, J. State of charge estimation of a composite lithium-based battery model based on an improved extended kalman filter algorithm. Inventions 2019, 4, 66. [Google Scholar] [CrossRef] [Green Version]
- Fotouhi, A.; Auger, D.J.; Propp, K.; Longo, S.; Wild, M. A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur. Renew. Sustain. Energy Rev. 2016, 56, 1008–1021. [Google Scholar] [CrossRef] [Green Version]
- Fan, G.; Li, X.; Zhang, R. Global Sensitivity Analysis on Temperature-Dependent Parameters of A Reduced-Order Electrochemical Model And Robust State-of-Charge Estimation at Different Temperatures. Energy 2021, 223, 120024. [Google Scholar] [CrossRef]
- Hu, M.; Li, Y.; Li, S.; Fu, C.; Qin, D.; Li, Z. Lithium-ion battery modeling and parameter identification based on fractional theory. Energy 2018, 165, 153–163. [Google Scholar] [CrossRef]
- Cai, L.; White, R.E. An efficient electrochemical–thermal model for a lithium-ion cell by using the proper orthogonal decomposition method. J. Electrochem. Soc. 2010, 157, A1188. [Google Scholar] [CrossRef]
- Hu, T.; Zanchi, B.; Zhao, J. Simple analytical method for determining parameters of discharging batteries. IEEE Trans. Energy Convers. 2011, 26, 787–798. [Google Scholar] [CrossRef]
- Gao, L.; Liu, S.; Dougal, R.A. Dynamic lithium-ion battery model for system simulation. IEEE Trans. Compon. Packag. Technol. 2002, 25, 495–505. [Google Scholar]
- Saxena, S.; Raman, S.R.; Saritha, B.; John, V. A novel approach for electrical circuit modeling of Li-ion battery for predicting the steady-state and dynamic I–V characteristics. Sādhanā 2016, 41, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Kroeze, R.C.; Krein, P.T. Multi-timescale parametric electrical battery model for use in dynamic electric vehicle simulations. IEEE Trans. Transp. Electrif. 2016, 2, 432–442. [Google Scholar] [CrossRef]
- De Binelo, M.F.B.; Sausen, A.T.Z.R.; Sausen, P.S.; Binelo, M.O. Mathematical modeling and parameter estimation of battery lifetime using a combined electrical model and a genetic algorithm. TEMA 2019, 20, 149–167. [Google Scholar] [CrossRef]
- Cheng, K.W.E.; Divakar, B.P.; Wu, H.; Ding, K.; Ho, H.F. Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans. Veh. Technol. 2010, 60, 76–88. [Google Scholar] [CrossRef]
- Rahmoun, A.; Biechl, H. Modelling of Li-ion batteries using equivalent circuit diagrams. Prz. Elektrotechniczny 2012, 88, 152–156. [Google Scholar]
- Sangwan, V.; Sharma, A.; Kumar, R.; Rathore, A.K. Equivalent circuit model parameters estimation of li-ion battery: C-rate, soc and temperature effects. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Kerala, India, 11–17 December 2016; pp. 1–6. [Google Scholar]
- Chen, M.; Rincon-Mora, G.A. Accurate electrical battery model capable of predicting runtime and IV performance. IEEE Trans. Energy Convers. 2006, 21, 504–511. [Google Scholar] [CrossRef]
- Cai, C.H.; Du, D.; Liu, Z.Y. Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS). In Proceedings of the 12th IEEE International Conference on Fuzzy Systems, FUZZ’03, St. Louis, MO, USA, 25–28 May 2003; Volume 2, pp. 1068–1073. [Google Scholar]
- Lee, D.-T.; Shiah, S.-J.; Lee, C.-M.; Wang, Y.-C. State-of-charge estimation for electric scooters by using learning mechanisms. IEEE Trans. Veh. Technol. 2007, 56, 544–556. [Google Scholar] [CrossRef]
- Hansen, T.; Wang, C.-J. Support vector based battery state of charge estimator. J. Power Source 2005, 141, 351–358. [Google Scholar] [CrossRef]
- Anton, J.C.A.; Nieto, P.J.G.; Viejo, C.B.; Vilán, J.A.V. Support vector machines used to estimate the battery state of charge. IEEE Trans. Power Electron. 2013, 28, 5919–5926. [Google Scholar] [CrossRef]
- Deng, Z.; Yang, L.; Cai, Y.; Deng, H.; Sun, L. Online available capacity prediction and state of charge estimation based on advanced data-driven algorithms for lithium iron phosphate battery. Energy 2016, 112, 469–480. [Google Scholar] [CrossRef]
- Charkhgard, M.; Farrokhi, M. State-of-charge estimation for lithium-ion batteries using neural networks and EKF. IEEE Trans. Ind. Electron. 2010, 57, 4178–4187. [Google Scholar] [CrossRef]
- Chen, Z.; Qiu, S.; Masrur, M.A.; Murphey, Y.L. Battery state of charge estimation based on a combined model of Extended Kalman Filter and neural networks. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011; pp. 2156–2163. [Google Scholar]
- Guo, G.F.; Shui, L.; Wu, X.L.; Cao, B.G. Soc estimation for li-ion battery using svm based on particle swarm optimization. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2014; Volume 1051, pp. 1004–1008. [Google Scholar]
- Hu, J.N.; Hu, J.J.; Lin, H.B.; Li, X.P.; Jiang, C.L.; Qiu, X.H.; Li, W.S. State-of-charge estimation for battery management system using optimized support vector machine for regression. J. Power Source 2014, 269, 682–693. [Google Scholar] [CrossRef]
- Toha, S.F.; Faezaa, N.H.; Azubair, N.A.M.; Hanis, N.; Hassan, M.; Ibrahim, B.S.K. Lithium Iron Phosphate Intelligent SOC Prediction for Efficient Electric Vehicle. In Advanced Materials Research; Trans Tech Publications Ltd.: Bäch, Switzerland, 2014; Volume 875, pp. 1613–1618. [Google Scholar]
- Sheng, H.; Xiao, J. Electric vehicle state of charge estimation: Nonlinear correlation and fuzzy support vector machine. J. Power Source 2015, 281, 131–137. [Google Scholar] [CrossRef]
- Chaoui, H.; Ibe-Ekeocha, C.C.; Gualous, H. Aging prediction and state of charge estimation of a LiFePO4 battery using input time-delayed neural networks. Electr. Power Syst. Res. 2017, 146, 189–197. [Google Scholar] [CrossRef]
- Xia, B.; Cui, D.; Sun, Z.; Lao, Z.; Zhang, R.; Wang, W.; Sun, W.; Lai, Y.; Wang, M. State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network. Energy 2018, 153, 694–705. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Z.; Huang, L. SoC estimation of Lithium battery based on improved BP neural network. Energy Procedia 2017, 105, 4153–4158. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, X.; Zhang, X. Modeling of back-propagation neural network based state-of-charge estimation for lithium-ion batteries with consideration of capacity attenuation. Adv. Electr. Comput. Eng. 2019, 19, 3–10. [Google Scholar] [CrossRef]
- Kashkooli, A.G.; Fathiannasab, H.; Mao, Z.; Chen, Z. Application of artificial intelligence to state-of-charge and state-of-health estimation of calendar-aged lithium-ion pouch cells. J. Electrochem. Soc. 2019, 166, A605. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Xiao, F.; Fan, Y. An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit. Energies 2019, 12, 1592. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.-Y. Estimation of the state of charge for a LFP battery using a hybrid method that combines a RBF neural network, an OLS algorithm and AGA. Int. J. Electr. Power Energy Syst. 2013, 53, 603–611. [Google Scholar] [CrossRef]
- Dang, X.; Yan, L.; Xu, K.; Wu, X.; Jiang, H.; Sun, H. Open-circuit voltage-based state of charge estimation of lithium-ion battery using dual neural network fusion battery model. Electrochim. Acta 2016, 188, 356–366. [Google Scholar] [CrossRef]
- Tong, S.; Lacap, J.H.; Park, J.W. Battery state of charge estimation using a load-classifying neural network. J. Energy Storage 2016, 7, 236–243. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, Z.; Huang, L. SoC estimation of lithium battery based on AEKF algorithm. Energy Procedia 2017, 105, 4146–4152. [Google Scholar] [CrossRef]
- You, G.-W.; Park, S.; Oh, D. Diagnosis of electric vehicle batteries using recurrent neural networks. IEEE Trans. Ind. Electron. 2017, 64, 4885–4893. [Google Scholar] [CrossRef]
- Zenati, A.; Desprez, P.; Razik, H. Estimation of the SOC and the SOH of li-ion batteries, by combining impedance measurements with the fuzzy logic inference. In Proceedings of the IECON 2010-36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, USA, 7–10 November 2010; pp. 1773–1778. [Google Scholar]
- Lin, H.-T.; Liang, T.-J.; Chen, S.-M. Estimation of battery state of health using probabilistic neural network. IEEE Trans. Ind. Inform. 2012, 9, 679–685. [Google Scholar] [CrossRef]
- Weng, C.; Cui, Y.; Sun, J.; Peng, H. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression. J. Power Source 2013, 235, 36–44. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, J.; Cao, D.; Egardt, B. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modeling. IEEE Trans. Ind. Electron. 2015, 63, 2645–2656. [Google Scholar] [CrossRef]
- Chaoui, H.; Ibe-Ekeocha, C.C. State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Trans. Veh. Technol. 2017, 66, 8773–8783. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, M.; Shu, X.; Xiao, R.; Shen, J. Online state of health estimation for lithium-ion batteries based on support vector machine. Appl. Sci. 2018, 8, 925. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Weng, C.; He, X.; Han, X.; Lu, L.; Ren, D.; Ouyang, M. Online state-of-health estimation for Li-ion battery using partial charging segment based on support vector machine. IEEE Trans. Veh. Technol. 2019, 68, 8583–8592. [Google Scholar] [CrossRef]
- Kim, J.; Yu, J.; Kim, M.; Kim, K.; Han, S. Estimation of Li-ion battery state of health based on multilayer perceptron: As an EV application. IFAC-PapersOnLine 2018, 51, 392–397. [Google Scholar] [CrossRef]
- Nuhic, A.; Terzimehic, T.; Soczka-Guth, T.; Buchholz, M.; Dietmayer, K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J. Power Source 2013, 239, 680–688. [Google Scholar] [CrossRef]
- Patil, M.A.; Tagade, P.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Yeo, T.; Doo, S. A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation. Appl. Energy 2015, 159, 285–297. [Google Scholar] [CrossRef]
- Liu, D.; Zhou, J.; Liao, H.; Peng, Y.; Peng, X. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics. IEEE Trans. Syst. Man Cybern. Syst. 2015, 45, 915–928. [Google Scholar]
- Yang, W.-A.; Xiao, M.; Zhou, W.; Guo, Y.; Liao, W. A hybrid prognostic approach for remaining useful life prediction of lithium-ion batteries. Shock Vib. 2016, 2016, 3838765. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zhang, C.; Chen, Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl. Energy 2016, 173, 134–140. [Google Scholar] [CrossRef]
- Ren, L.; Zhao, L.; Hong, S.; Zhao, S.; Wang, H.; Zhang, L. Remaining useful life prediction for lithium-ion battery: A deep learning approach. IEEE Access 2018, 6, 50587–50598. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, S.; Guo, J.; Qin, T. Remaining capacity estimation of lithium-ion batteries based on the constant voltage charging profile. PLoS ONE 2018, 13, e0200169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zou, C.; Berecibar, M.; Nanini-Maury, E.; Chan, J.C.-W.; Van den Bossche, P.; Van Mierlo, J.; Omar, N. Random forest regression for online capacity estimation of lithium-ion batteries. Appl. Energy 2018, 232, 197–210. [Google Scholar] [CrossRef]
- Choi, Y.; Ryu, S.; Park, K.; Kim, H. Machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles. IEEE Access 2019, 7, 75143–75152. [Google Scholar] [CrossRef]
- Shen, S.; Sadoughi, M.; Hu, C. Online estimation of lithium-ion battery capacity using transfer learning. In Proceedings of the 2019 IEEE Transportation Electrification Conference and Expo (ITEC), Seogwipo-si, Korea, 5–8 May 2019; pp. 1–4. [Google Scholar]
- Shen, S.; Sadoughi, M.; Chen, X.; Hong, M.; Hu, C. A deep learning method for online capacity estimation of lithium-ion batteries. J. Energy Storage 2019, 25, 100817. [Google Scholar] [CrossRef]
- Lin, C.; Xing, J.; Tang, A. Lithium-ion battery state of charge/state of health estimation using SMO for EVs. Energy Procedia 2017, 105, 4383–4388. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, R.; He, H.; Liu, Z. A LSTM-RNN method for the lithuim-ion battery remaining useful life prediction. In Proceedings of the 2017 Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China, 9–12 July 2017; pp. 1–4. [Google Scholar]
- Meng, J.; Luo, G.; Gao, F. Lithium polymer battery state-of-charge estimation based on adaptive unscented Kalman filter and support vector machine. IEEE Trans. Power Electron. 2015, 31, 2226–2238. [Google Scholar] [CrossRef]
- Junping, W.; Quanshi, C.; Binggang, C. Support vector machine based battery model for electric vehicles. Energy Convers. Manag. 2006, 47, 858–864. [Google Scholar] [CrossRef]
- Panahi, D.; Deilami, S.; Masoum, M.A.S.; Islam, S.M. Forecasting plug-in electric vehicles load profile using artificial neural networks. In Proceedings of the 2015 Australasian Universities Power Engineering Conference (AUPEC), Wollongong, Australia, 27–30 September 2015; pp. 1–6. [Google Scholar]
- Kandasamy, N.K.; Badrinarayanan, R.; Kanamarlapudi, V.R.K.; Tseng, K.J.; Soong, B.-H. Performance Analysis of Machine-Learning Approaches for Modeling the Charging/Discharging Profiles of Stationary Battery Systems with Non-Uniform Cell Aging. Batteries 2017, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Klass, V.; Behm, M.; Lindbergh, G. Capturing lithium-ion battery dynamics with support vector machine-based battery model. J. Power Source 2015, 298, 92–101. [Google Scholar] [CrossRef]
- Kai, H.; Yong-Fang, G.; Zhi-Gang, L.; Hsiung-Cheng, L.; Ling-Ling, L. Development of Accurate Lithium-Ion Battery Model Based on Adaptive Random Disturbance PSO Algorithm. Math. Probl. Eng. 2018, 2018, 13. [Google Scholar] [CrossRef]
- Park, K.; Choi, Y.; Choi, W.J.; Ryu, H.-Y.; Kim, H. LSTM-based battery remaining useful life prediction with multi-channel charging profiles. IEEE Access 2020, 8, 20786–20798. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, H.; Xu, R. Equal-width partitioning roulette wheel selection in genetic algorithm. In Proceedings of the 2012 Conference on Technologies and Applications of Artificial Intelligence, Tainan, Taiwan, 16–18 November 2012; pp. 62–67. [Google Scholar]
- Kumar, P.; Bauer, P. Parameter extraction of battery models using multiobjective optimization genetic algorithms. In Proceedings of the 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, Ohrid, Macedonia, 6–8 September 2010; pp. T9-106–T9-110. [Google Scholar]
- Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Source 2012, 198, 359–367. [Google Scholar] [CrossRef]
- Brand, J.; Zhang, Z.; Agarwal, R.K. Extraction of battery parameters of the equivalent circuit model using a multi-objective genetic algorithm. J. Power Source 2014, 247, 729–737. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Hinds, G.; Lyu, C.; Zheng, J.; Li, J. Multi-objective optimization of lithium-ion battery model using genetic algorithm approach. J. Power Source 2014, 270, 367–378. [Google Scholar] [CrossRef]
- Shen, J.; He, Y.; Ma, Z. Simultaneous model selection and parameter estimation for lithium-ion batteries: A sequential MINLP solution approach. AIChE J. 2016, 62, 78–89. [Google Scholar] [CrossRef]
- Sun, X.; Ji, J.; Ren, B.; Xie, C.; Yan, D. Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium-ion battery. Energies 2019, 12, 2242. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Zhu, C.; CC, C. Comparison of the first order and the second order equivalent circuit model applied in state of charge estimation for battery used in electric vehicles. J. Asian Electr. Veh. 2010, 8, 1357–1362. [Google Scholar] [CrossRef] [Green Version]
- Tamilselvi, S.; Karuppiah, N. Capacity Fade Modeling of Li-Ion Battery using Evolutionary Algorithm. In Proceedings of the E3S Web of Conferences, EDP Sciences, Hyderabad, India, 14–16 February 2019; Volume 87, p. 1026. [Google Scholar]
- Tamilselvi, S.; Karuppiah, N.; Muthubalaji, S. Design of an efficient battery model using evolutionary algorithms. Period. Eng. Nat. Sci. 2018, 6, 265–282. [Google Scholar] [CrossRef] [Green Version]
- Jilte, R.; Afzal, A.; Panchal, S. A novel battery thermal management system using nano-enhanced phase change materials. Energy 2021, 219, 119564. [Google Scholar] [CrossRef]
- Afzal, A.; Samee, A.D.M.; Jilte, R.D.; Islam, T.; Manokar, A.M.; Abdul, K. Battery thermal management: An optimization study of parallelized conjugate numerical analysis using Cuckoo search and Artificial bee colony algorithm. Int. J. Heat Mass Transf. 2021, 166, 120798. [Google Scholar] [CrossRef]
- Afzal, A.; Mokashi, I.; Khan, S.A.; Abdullah, N.A.; Azami, M.H. Optimization and analysis of maximum temperature in a battery pack affected by low to high Prandtl number coolants using response surface methodology and particle swarm optimization algorithm. Numer. Heat Transf. Part A Appl. 2020, 79, 1–30. [Google Scholar] [CrossRef]
- Mokashi, I.; Afzal, A.; Khan, S.A.; Abdullah, N.A.; Bin Azami, M.H.; Jilte, R.D.; Samuel, O.D. Nusselt number analysis from a battery pack cooled by different fluids and multiple back-propagation modelling using feed-forward networks. Int. J. Therm. Sci. 2021, 161, 106738. [Google Scholar] [CrossRef]
- Asif, H.F.; Mohammed, A.A.D.; Manzoore, S.; Soudagar, E.M.; Akram, N. Optimization of Thermal and Structural Design in Lithium-ion Batteries to Obtain Energy Efficient Battery Thermal Management System (BTMS): A Critical Review; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 0123456789. [Google Scholar]
- Afzal, A.; Ramis, M.K. Multi-objective optimization of thermal performance in battery system using genetic and particle swarm algorithm combined with fuzzy logics. J. Energy Storage 2020, 32, 101815. [Google Scholar] [CrossRef]
- Mokashi, I.; Khan, S.A.; Abdullah, N.A.; Azami, M.H.; Afzal, A. Maximum temperature analysis in a Li-ion battery pack cooled by different fluids. J. Therm. Anal. Calorim. 2020, 141, 1–17. [Google Scholar] [CrossRef]
- Afzal, A.; Mohammed Samee, A.D.; Abdul Razak, R.K.; Ramis, M.K. Effect of spacing on thermal performance characteristics of Li-ion battery cells. J. Therm. Anal. Calorim. 2019, 135, 1797–1811. [Google Scholar] [CrossRef]
- Jilte, R.; Afzal, A.; Islam, M.T.; Manokar, A.M. Hybrid cooling of cylindrical battery with liquid channels in phase change material. Int. J. Energy Res. 2021, 45, 11065–11083. [Google Scholar] [CrossRef]
- Afzal, A.; Razak, A.; Jilte, R.D.; Ibrahim, M.; Kumar, R.; Mujtaba, M.A.; Alshahrani, S.; Saleel, C.A. Thermal modelling and characteristic evaluation of electric vehicle battery system. Case Stud. Therm. Eng. 2021, 26, 101058. [Google Scholar] [CrossRef]
Data Sets Obtained from Standard | |
---|---|
NASA Prognostics Centre of Excellence Data Repository | [52,69,70,73,75,77,80] |
Lithium Iron | [43] |
Lithium Iron Manganese Phosphate LiFeMnPO4 | [41] |
High Power Ni-MH rechargeable battery | [38] |
Lithium Iron Phosphate—LiFePO4 | [42,47,48,49,55,86] |
Lithium Titanate | [64] |
NiMH battery | [44] |
Li-Ion cells | [42,44,45,53,54,58,59,60,62,68,71,72,74,76,79,81,82,87,88] |
Li (NiCoMn)1/3O2 | [66] |
USO6, US Department of Energy’s Hybrid Electrical Vehicle program | [40] |
8 common cycle conditions ARTERIAL, NYCCOM, UDDSHDV, COMMUTER, WVUINTER, 5PEAK, CSHVR, CBD14 in ADVISOR | [46] |
Lithium nickel-manganese-cobalt oxide | [63] |
Simulated data based on equivalent circuit model for Li-on Battery | [67] |
Lead-acid batteries | [39] |
Li-Co batteries | [61] |
Center for Advanced Life Cycle Engineering (CALCE) | [70] |
Lithium Polymer battery | [83] |
New European Driving Cycle—NEDC | [47,50] |
Federal Urban Driving Schedule—FUDS | [84] |
LiCoNiMnO | [57] |
Sl. No | Estimated Battery Parameter | Type of Battery | Implemented Machine Learning Algorithm |
---|---|---|---|
1 | State of Charge | Lithium Iron Manganese Phosphate (LiFeMnPO4) battery | Support Vector Machine |
2 | State of Charge | High Power Ni-MH rechargeable battery | Adaptive Neuro-Fuzzy Inference System (ANFIS) |
3 | State of Charge | Lithium iron phosphate (LiFePO4) | RBF Neural Network, OLS Algorithm and AGA |
4 | Aging, State of Charge, State of Health | Lithium iron phosphate (LiFePO4) | Input Time-Delayed Neural Networks |
5 | State of Charge, State of Health | Lithium iron phosphate (LiFePO4) | Dynamically Driven Recurrent Networks (DDRNs) |
6 | State of Charge, State of Health | Lithium Titanate (LTO) | Dynamically Driven Recurrent Networks (DDRNs) |
7 | State of Charge | Lithium Iron | Neural Networks and Extended Kalman Filter (NN and EKF) |
8 | State of Charge | Lithium-ion battery U1-12XP | Neural Networks and Extended Kalman Filter (NN and EKF) |
9 | State of Charge | NiMH battery with 1.2 V and 3.4 Ah | Neural Networks and Extended Kalman Filter (NN and EKF) |
10 | Capacity and State of Charge | Lithium iron phosphate battery cell | Ampere Hour Counting with Correction and Dual Adaptive Extended Kalman Filter Algorithm |
11 | State of Health | Two commercial Li-ion batteries with Li (NiCoMn)1/3O2 cathode and graphite anode | Support Vector Machine |
12 | State of Charge | Li-ion cells with 3.2 V/50 Ah supplied by Huanyu New Energy Technology Company Ltd. | Support Vector Machine Based on Particle Swarm Optimisation |
13 | State of Health | Lithium Nickel-Manganese-Cobalt Oxide | Advanced Sparse Bayesian Predictive Modelling (SBPM) |
14 | State of Charge, State of Health | Li-ion cells | Feed-Forward Artificial Neural Network |
15 | Capacity and resistance | lithium-ion battery | SVM |
16 | Capacity | nickel-manganese-cobalt (NMC)/graphite pouch cells | Random Forest Regression |
17 | State of Charge | Panasonic 18650PF battery cells | Recurrent Neural Network with Gated Recurrent Unit (GRU-RNN) |
18 | State of Charge | Samsung 18650-20R battery cells | Recurrent Neural Network with Gated Recurrent Unit (GRU-RNN) |
19 | State of Health | Li-Co batteries | Probabilistic Neural Network |
20 | SoC Estimation | A lithium polymer battery manufactured by KOKAM Company | Adaptive Unscented Kalman Filters (AUKF) and Least-Square Support Vector Machines (LSSVM). |
21 | Charging Current | Lithium Iron Phosphate (LiFePO4) | ANN and Backpropagation Algorithm Ensemble Learning |
22 | RUL | Selected IFP1865140 type batteries were developed by HeFei Guo Xuan High-Tech Power Energy Company Limited of China | Feed Forward Neural Network (FFNN) |
23 | RUL | High-energy 18650 lithium-ion batteries manufactured by Panasonic, labelled NCR18650PF | Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamilselvi, S.; Gunasundari, S.; Karuppiah, N.; Razak RK, A.; Madhusudan, S.; Nagarajan, V.M.; Sathish, T.; Shamim, M.Z.M.; Saleel, C.A.; Afzal, A. A Review on Battery Modelling Techniques. Sustainability 2021, 13, 10042. https://doi.org/10.3390/su131810042
Tamilselvi S, Gunasundari S, Karuppiah N, Razak RK A, Madhusudan S, Nagarajan VM, Sathish T, Shamim MZM, Saleel CA, Afzal A. A Review on Battery Modelling Techniques. Sustainability. 2021; 13(18):10042. https://doi.org/10.3390/su131810042
Chicago/Turabian StyleTamilselvi, S., S. Gunasundari, N. Karuppiah, Abdul Razak RK, S. Madhusudan, Vikas Madhav Nagarajan, T. Sathish, Mohammed Zubair M. Shamim, C. Ahamed Saleel, and Asif Afzal. 2021. "A Review on Battery Modelling Techniques" Sustainability 13, no. 18: 10042. https://doi.org/10.3390/su131810042
APA StyleTamilselvi, S., Gunasundari, S., Karuppiah, N., Razak RK, A., Madhusudan, S., Nagarajan, V. M., Sathish, T., Shamim, M. Z. M., Saleel, C. A., & Afzal, A. (2021). A Review on Battery Modelling Techniques. Sustainability, 13(18), 10042. https://doi.org/10.3390/su131810042