Low Cost Road Health Monitoring System: A Case of Flexible Pavements
Abstract
:1. Introduction
2. Previous Road Health Assessment Systems
3. Research Methodology
4. Results and Discussion
5. Conclusions
6. Recommendations and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Talpur, M.A.H.; Napiah, M.; Chandio, I.A.; Khahro, S.H. Research Framework Focusing Transportation Accessibility Planning, Computer Based Modeling and Transportation Policy Outlines for Remote Regions of Developing World. Res. J. Environ. Earth Sci. 2013, 5, 32–40. [Google Scholar] [CrossRef]
- Du, R.; Qiu, G.; Gao, K.; Hu, L.; Liu, L. Abnormal road surface recognition based on smartphone acceleration sensor. Sensors 2020, 20, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello-Salau, H.; Aibinu, A.M.; Onumanyi, A.J.; Ahunsi, S.; Onwuka, E.N.; Dukiya, J.J. Development of a Road Surface Condition Monitoring and Database System. J. Comput. Sci. 2019, 6, 25. [Google Scholar] [CrossRef]
- Silva, N.; Shah, V.; Soares, J.; Rodrigues, H. Road anomalies detection system evaluation. Sensors 2018, 18, 1984. [Google Scholar] [CrossRef] [Green Version]
- Gawad, S.M.A.; El Mougy, A.; El-Meligy, M.A. Dynamic Mapping of Road Conditions using Smartphone Sensors and Machine Learning Techniques. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016. [Google Scholar]
- Chen, K.; Tan, G.; Lu, M.; Wu, J. CRSM: A practical crowdsourcing-based road surface monitoring system. Wirel. Netw. 2016, 22, 765–779. [Google Scholar] [CrossRef]
- Seraj, F.; van der Zwaag, B.J.; Dilo, A.; Luarasi, T.; Havinga, P. Roads: A road pavement monitoring system for anomaly detection using smart phones. Lect. Notes Comput. Sci. 2016, 9546, 128–146. [Google Scholar] [CrossRef] [Green Version]
- Khahro, S.; Memon, Z.; Gungat, L.; Yazid, M.; Rahim, A.; Mubaraki, M.; Yusoff, N.M. Low-Cost Pavement Management System for Developing Countries. Sustainability 2021, 13, 5941. [Google Scholar] [CrossRef]
- Astarita, V.; Caruso, M.V.; Danieli, G.; Festa, D.C.; Giofrè, V.P.; Iuele, T.; Vaiana, R. A Mobile Application for Road Surface Quality Control: UNIquALroad. Procedia Soc. Behav. Sci. 2012, 54, 1135–1144. [Google Scholar] [CrossRef] [Green Version]
- Vittorio, A.; Rosolino, V.; Teresa, I.; Vittoria, C.M.; Vincenzo, P.G.; Francesco, D.M. Automated Sensing System for Monitoring of Road Surface Quality by Mobile Devices. Procedia Soc. Behav. Sci. 2014, 111, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Ghose, A.; Biswas, P.; Bhaumik, C.; Sharma, M.; Pal, A.; Jha, A. Road condition monitoring and alert application: Using in-vehicle smartphone as internet-connected sensor. In Proceedings of the 2012 IEEE International Conference on Pervasive Computing and Communications Workshops, Lugano, Switzerland, 19–23 March 2012; pp. 489–491. [Google Scholar] [CrossRef]
- Chen, S.Y.; Shih, A.; Hsiao, C.Y. Road conditions detection using Arduino based sensing module and smartphone. In Proceedings of the 2015 IEEE International Conference on Consumer Electronics, Taipei, Taiwan, 6–8 June 2015; 2015; pp. 254–255. [Google Scholar] [CrossRef]
- Chugh, G.; Bansal, D.; Sofat, S. Road Condition Detection Using Smartphone Sensors: A Survey. Int. J. Electron. Electr. Eng. 2014, 7, 595–602. [Google Scholar]
- Alessandroni, G.; Klopfenstein, L.C.; Delpriori, S.; Dromedari, M.; Luchetti, G.; Paolini, B.D.; Seraghiti, A.; Lattanzi, E.; Freschi, V.; Carini, A.; et al. SmartRoadSense: Collaborative road surface condition monitoring. In Proceedings of the UBICOMM 2014 8th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, Rome, Italy, 24–28 August 2014; 2014; pp. 210–215. [Google Scholar]
- Ceylan, H.; Gopalakrishnan, K.; Kim, S.; Taylor, P.C.; Prokudin, M.; Buss, A.F. Highway infrastructure health monitoring using micro-electromechanical sensors and systems (MEMS). J. Civ. Eng. Manag. 2013, 19 (Suppl. S1). [Google Scholar] [CrossRef]
- Coenen, A.; Golroo, T.B.J. A review on automated pavement distress detection methods. Cogent Eng. 2017, 4, 1374822. [Google Scholar] [CrossRef]
- Xue, W.L.; Wang, D.; Wang, L. A review and perspective about pavement monitoring. Int. J. Pavement Res. Technol. 2012, 5, 295–302. [Google Scholar]
- Della Merenda, M.F.G.; Praticò, F.G.; Fedele, R.; Carotenuto, R.; Della Corte, F.G. A real-time decision platform for the management of structures and infrastructures. Electronics 2019, 8, 1180. [Google Scholar] [CrossRef] [Green Version]
- Arun Sundaram, S.B.; Ravisankar, K.; Senthil, R.; Parivallal, S. Wireless sensors for structural health monitoring and damage detection techniques. Curr. Sci. 2013, 104, 1496–1505. [Google Scholar]
- Talpur, M.A.H.; Napiah, M.; Chandio, I.A.; Qureshi, T.A.; Khahro, S.H. Development of a regional transport policy support system for rural planning agencies in developing world. Procedia Eng. 2014, 77, 2–10. [Google Scholar] [CrossRef] [Green Version]
- Pawar, D.; Potdar, R.; Kaul, S.; Pawar, P. Evaluation of Road Condition Using Android Sensors and Cloud Computing. Int. Res. J. Eng. Technol. 2019, 6(2), 1120–1124. [Google Scholar]
- van Khang, N.; Renault, E. Cooperative sensing and analysis for a smart pothole detection. In Proceedings of the 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 1785–1790. [Google Scholar] [CrossRef]
- Bidgoli, M.A.; Golroo, A.; Nadjar, H.S.; Rashidabad, A.G.; Ganji, M.R. Road roughness measurement using a cost-effective sensor-based monitoring system. Autom. Constr. 2019, 104, 140–152. [Google Scholar] [CrossRef]
- Ganji, M.R.; Golroo, A.; Sheikhzadeh, H.; Ghelmani, A.; Bidgoli, M.A. Dense-graded asphalt pavement macrotexture measurement using tire/road noise monitoring. Autom. Constr. 2019, 106, 102887. [Google Scholar] [CrossRef]
- Edwan, E.; Sarsour, N.; Alatrash, M. Mobile application for bumps detection and warning utilizing smartphone sensors. In Proceedings of the 2019 International Conference on Promising Electronic Technologies (ICPET), Gaza, Palestine, 23–24 October 2019; pp. 50–54. [Google Scholar] [CrossRef]
- Rajmane, O.; Rane, V.; Bhosale, A. Road Condition Detection Using Arduino Based Sensing Module and Android Smartphone. Int. J. Adv. Eng. Res. Dev. 2017, 4, 52–57. [Google Scholar] [CrossRef]
- Menant, F.; Martin, J.M.; Meignen, D.; Bétaille, D.; Ortiz, M. Using Probe Vehicles for Pavement Monitoring: Experimental Results from Tests Performed on a Road Network. Transp. Res. Procedia 2016, 14, 3013–3020. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, J.; Girod, L.; Hull, B.; Newton, R.; Madden, S.; Balakrishnan, H. The Pothole Patrol: Using a mobile sensor network for road surface monitoring. In Proceedings of the MobiSys ’08 6th International Conference on Mobile Systems, Applications, and Services, Breckenridge, CO, USA; 17–20 June 2008; pp. 29–39. [Google Scholar] [CrossRef]
- Bernas, M.; Płaczek, B.; Korski, W.; Loska, P.; Smyła, J.; Szymała, P. A survey and comparison of low-cost sensing technologies for road traffic monitoring. Sensors 2018, 18, 3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapan, B. Road Condition Detection using Commodity Smartphone Sensors Aided with Vehicular Data. Master’s Thesis, University Technology Gothenburg, Gothenburg, Sweden, 2016; pp. 101–105. Available online: http://www.krb.go.ke/road-network/road-conditions.html (accessed on 7 July 2020).
Sensing Technology | Principle of Operation | Requirements | |||
---|---|---|---|---|---|
Cost | Small Imensions | Energy Consumption | Easy to Install | ||
Inductive loops | Inductance measurement | Low | No | High | No |
Cameras | Image analysis | High | Yes | High | Yes |
Magnetometers | Magnetic field measurement | Low | Yes | Low | Yes |
Acoustic sensors | Acoustic pressure measurement | Medium | Yes | Low | Yes |
Radars/LIDARs | Detection of reflected electromagnetic wave | High | No | High | Yes |
Accelerometers | Vibration measurement | Medium | Yes | Low | Yes |
Light sensors | Light intensity measurement | Low | Yes | Low | Yes |
Passive infrared sensors | Infrared radiation measurement | Medium | Yes | Low | Yes |
Ultrasonic sensors | Detection of reflected sounds wave | Low | No | Medium | Yes |
Wireless communication devices | Measurement of received signal strength | Low | Yes | Medium | Yes |
Acceleration | Rotation | Pitch | Categorization | Acceleration | Rotation | Pitch | Categorization | Acceleration | Rotation | Pitch | Categorization |
---|---|---|---|---|---|---|---|---|---|---|---|
H | L | EF | C | L | M | EF | C | H | L | M | N |
H | M | EF | C | L | M | EF | C | H | M | L | C |
L | L | EF | C | L | M | EF | C | H | M | L | C |
L | L | EF | C | L | M | EF | C | H | M | L | C |
L | L | EF | C | M | M | EF | C | H | L | L | N |
L | L | EF | C | M | L | EF | C | H | L | M | N |
L | L | EF | C | M | L | EF | C | H | M | M | C |
L | L | EF | C | M | L | EF | C | H | L | L | N |
L | L | EF | C | M | L | EF | C | H | L | M | N |
L | L | EF | C | L | H | L | N | H | L | L | N |
L | L | EF | C | M | H | L | N | H | L | M | N |
L | L | EF | C | L | H | L | N | H | M | L | C |
L | H | L | N | L | H | L | N | H | M | L | C |
L | L | EF | C | L | H | L | N | L | EF | L | C |
M | L | EF | C | L | H | L | N | L | H | L | N |
L | L | EF | C | L | H | M | N | L | H | L | N |
L | M | EF | C | L | H | L | N | L | H | L | N |
M | L | H | C | L | H | L | N | L | H | M | N |
L | L | H | C | L | H | M | N | L | H | L | N |
L | L | H | C | L | H | L | N | L | H | M | N |
L | L | H | C | M | H | L | N | L | H | L | N |
L | M | H | C | L | H | L | N | L | H | L | N |
L | L | H | C | L | H | L | N | M | H | M | N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khahro, S.H.; Javed, Y.; Memon, Z.A. Low Cost Road Health Monitoring System: A Case of Flexible Pavements. Sustainability 2021, 13, 10272. https://doi.org/10.3390/su131810272
Khahro SH, Javed Y, Memon ZA. Low Cost Road Health Monitoring System: A Case of Flexible Pavements. Sustainability. 2021; 13(18):10272. https://doi.org/10.3390/su131810272
Chicago/Turabian StyleKhahro, Shabir Hussain, Yasir Javed, and Zubair Ahmed Memon. 2021. "Low Cost Road Health Monitoring System: A Case of Flexible Pavements" Sustainability 13, no. 18: 10272. https://doi.org/10.3390/su131810272
APA StyleKhahro, S. H., Javed, Y., & Memon, Z. A. (2021). Low Cost Road Health Monitoring System: A Case of Flexible Pavements. Sustainability, 13(18), 10272. https://doi.org/10.3390/su131810272