Valuable Secondary Habitats or Hazardous Ecological Traps? Environmental Risk Assessment of Minor and Trace Elements in Fly Ash Deposits across the Czech Republic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Localities
2.2. Sample Collection and Chemical Analyse
2.3. Risk Assessment of Fly Ash Deposits
3. Results
4. Discussion
4.1. Overall Levels of Heavy Metals in the Fly Ash Deposits
4.2. Toxicity of the Heavy Metals to Colonising Organisms and Its Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Haynes, R. Reclamation and revegetation of fly ash disposal sites—Challenges and research needs. J. Environ. Manag. 2009, 90, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Iyer, R.; Scott, J. Power station fly ash—A review of value-added utilization outside of the construction industry. Resour. Conserv. Recycl. 2001, 31, 217–228. [Google Scholar] [CrossRef]
- Yao, Z.; Ji, X.; Sarker, P.; Tang, J.; Ge, L.; Xia, M.; Xi, Y. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Urbanová, J.; Kovář, P.; Dostál, P. What processes shape early-successional vegetation in fly ash and mine tailings? Plant Ecol. 2017, 218, 127–137. [Google Scholar] [CrossRef]
- Tropek, R.; Rauch, O.; Kovář, P.; Řehounek, J.; Kubelka, V.; Lepšová, A.; Řehounková, K.; Volf, O.; Zavadil, V. Fly ash deposits and depots of fine substrates. In Ecological Restoration of Areas Disturbed by Mining and Industrial Landfills; Řehounek, J., Řehounková, K., Tropek, R., Prach, K., Eds.; Calla: České Budějovice, Czech Republic, 2015; pp. 158–191. [Google Scholar]
- Tropek, R.; Cerna, I.; Straka, J.; Cizek, O.; Konvicka, M. Is coal combustion the last chance for vanishing insects of inland drift sand dunes in Europe? Biol. Conserv. 2013, 162, 60–64. [Google Scholar] [CrossRef]
- Tropek, R.; Cizek, O.; Kadlec, T.; Klecka, J. Habitat Use of Hipparchia semele(Lepidoptera) in Its Artificial Stronghold: Necessity of the Resource-Based Habitat View in Restoration of Disturbed Sites. Pol. J. Ecol. 2017, 65, 385–399. [Google Scholar] [CrossRef]
- Tropek, R.; Cerna, I.; Straka, J.; Kadlec, T.; Pech, P.; Tichanek, F.; Sebek, P. Restoration management of fly ash deposits crucially influence their conservation potential for terrestrial arthropods. Ecol. Eng. 2014, 73, 45–52. [Google Scholar] [CrossRef]
- Bogusch, P.; Macek, J.; Janšta, P.; Kubík, Š.; Řezáč, M.; Holý, K.; Malenovský, I.; Baňař, P.; Mikát, M.; Astapenková, A.; et al. Industrial and post-industrial habitats serve as critical refugia for pioneer species of newly identified arthropod assemblages associated with reed galls. Biodivers. Conserv. 2016, 25, 827–863. [Google Scholar] [CrossRef]
- Tropek, R.; Cerna, I.; Straka, J.; Kocarek, P.; Malenovsky, I.; Tichanek, F.; Sebek, P. In search for a compromise between biodiversity conservation and human health protection in restoration of fly ash deposits: Effect of anti-dust treatments on five groups of arthropods. Environ. Sci. Pollut. Res. 2016, 23, 13653–13660. [Google Scholar] [CrossRef]
- Mertlik, J. Contribution to the conservation of sand biotopes of the Eastern Bohemia with citation of findings of nine rare psammophilous beetles. Elateridarium 2011, 5, 5–42. [Google Scholar]
- Borm, P. Toxicity and occupational health hazards of coal fly ash (CFA). A review of data and comparison to coal mine dust. Ann. Occup. Hyg. 1997, 41, 659–676. [Google Scholar] [CrossRef]
- Smith, K.R.; Veranth, J.M.; Kodavanti, U.P.; Aust, A.E.; Pinkerton, K.E. Acute Pulmonary and Systemic Effects of Inhaled Coal Fly Ash in Rats: Comparison to Ambient Environmental Particles. Toxicol. Sci. 2006, 93, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.F.O.; Da Boit, K.M. Nanominerals and nanoparticles in feed coal and bottom ash: Implications for human health effects. Environ. Monit. Assess. 2010, 174, 187–197. [Google Scholar] [CrossRef]
- Cherry, D.S.; Guthrie, R.K. Toxic Metals in Surface Waters from Coal Ash. JAWRA J. Am. Water Resour. Assoc. 1977, 13, 1227–1236. [Google Scholar] [CrossRef]
- Sushil, S.; Batra, V. Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel 2006, 85, 2676–2679. [Google Scholar] [CrossRef]
- Izquierdo, M.; Querol, X. Leaching behaviour of elements from coal combustion fly ash: An overview. Int. J. Coal Geol. 2012, 94, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Wan, H.; Finkelman, R.B.; Tang, X.; Zhao, Z. Distribution of Uranium in the Main Coalfields of China. Energy Explor. Exploit. 2012, 30, 819–836. [Google Scholar] [CrossRef] [Green Version]
- Clements, W.H. Benthic Invertebrate Community Responses to Heavy Metals in the Upper Arkansas River Basin, Colorado. J. N. Am. Benthol. Soc. 1994, 13, 30–44. [Google Scholar] [CrossRef]
- Croteau, M.-N.; Hare, L.; Tessier, A. Refining and Testing a Trace Metal Biomonitor (Chaoborus) in Highly Acidic Lakes. Environ. Sci. Technol. 1998, 32, 1348–1353. [Google Scholar] [CrossRef]
- Courtney, L.A.; Clements, W.H. Assessing the influence of water and substratum quality on benthic macroinvertebrate communities in a metal-polluted stream: An experimental approach. Freshw. Biol. 2002, 47, 1766–1778. [Google Scholar] [CrossRef] [Green Version]
- Cempel, M.; Nikel, G. Nickel: A review of its sources and environmental toxicology. Pol. J. Environ. Stud. 2006, 15, 375–382. [Google Scholar]
- Besser, J.M.; Leib, K.J. Toxicity of Metals in Water and Sediment to Aquatic Biota. In Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado; Church, S.E., von Guerard, P., Finger, S.E., Eds.; U.S. Department of the Interior and U.S. Geological Survey: Reston, VA, USA, 2007; pp. 839–849. [Google Scholar]
- Doig, L.E.; Schiffer, S.T.; Liber, K. Reconstructing the ecological impacts of eight decades of mining, metallurgical, and municipal activities on a small boreal lake in northern Canada. Integr. Environ. Assess. Manag. 2015, 11, 490–501. [Google Scholar] [CrossRef]
- Brunori, C.; Balzamo, S.; Morabito, R. Comparison between different leaching tests for the evaluation of metal release from fly ash. Anal. Bioanal. Chem. 2001, 371, 843–848. [Google Scholar] [CrossRef]
- Smolka-Danielowska, D. Heavy metals in fly ash from a coal-fired power station in Poland. Pol. J. Environ. Stud. 2006, 15, 943–946. [Google Scholar]
- Kolar, V.; Tichanek, F.; Tropek, R. Evidence-based restoration of freshwater biodiversity after mining: Experience from Central European spoil heaps. J. Appl. Ecol. 2021, 58, 1921–1932. [Google Scholar] [CrossRef]
- Kopacek, J.; Borovec, J.; Hejzlar, J.; Porcal, P. Spectrophotometric Determination of Iron, Aluminum, and Phosphorus in Soil and Sediment Extracts after Their Nitric and Perchloric Acid Digestion. Commun. Soil Sci. Plant Anal. 2001, 32, 1431–1443. [Google Scholar] [CrossRef]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.G.; Baker, T.F.; Murphy, C.A.; Jett, R.T. Spatial and temporal trends in contaminant concentrations in Hexagenia nymphs following a coal ash spill at the Tennessee Valley Authority’s Kingston Fossil Plant. Environ. Toxicol. Chem. 2016, 35, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Otero-Rey, J.R.; Vilariño, J.M.L.; Moreda-Piñeiro, J.; Alonso-Rodríguez, E.; Muniategui, S.; López-Mahía, P.; Prada-Rodríguez, D. As, Hg, and Se Flue Gas Sampling in a Coal-Fired Power Plant and Their Fate during Coal Combustion. Environ. Sci. Technol. 2003, 37, 5262–5267. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef]
- Poláková, Š.; Kubík, L.; Prášková, L.; Malý, S.; Němec, P.; Staňa, J. Monitoring of Agricultural Soils in the Czech Republic 1992–2013; Central Institute for Supervising and Testing in Agriculture: Brno, Czech Republic, 2017; ISBN 9788074011368. [Google Scholar]
- Macdonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Development Core Team: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 27 November 2019).
- Tóth, G.; Hermann, T.; Da Silva, M.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Xu, G.; Shi, X. Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resour. Conserv. Recycl. 2018, 136, 95–109. [Google Scholar] [CrossRef]
- Pan, J.; Nie, T.; Hassas, B.V.; Rezaee, M.; Wen, Z.; Zhou, C. Recovery of rare earth elements from coal fly ash by integrated physical separation and acid leaching. Chemosphere 2020, 248, 126112. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.C.; Singh, N. Impact of fly ash incorporation in soil systems. Agric. Ecosyst. Environ. 2010, 136, 16–27. [Google Scholar] [CrossRef]
- Hopkins, W.A.; Mendonça, M.T.; Rowe, C.L.; Congdon, J.D. Elevated trace element concentrations in southern toads, Bufo terrestris, exposed to coal combustion waste. Arch. Environ. Contam. Toxicol. 1998, 35, 325–329. [Google Scholar] [CrossRef]
- Praharaj, T.; Powell, M.; Hart, B.; Tripathy, S. Leachability of elements from sub-bituminous coal fly ash from India. Environ. Int. 2002, 27, 609–615. [Google Scholar] [CrossRef]
- Baba, A.; Kaya, A. Leaching characteristics of solid wastes from thermal power plants of western Turkey and comparison of toxicity methodologies. J. Environ. Manag. 2004, 73, 199–207. [Google Scholar] [CrossRef]
- Ward, C.R.; French, D.; Jankowski, J.; Dubikova, M.; Li, Z.; Riley, K.W. Element mobility from fresh and long-stored acidic fly ashes associated with an Australian power station. Int. J. Coal Geol. 2009, 80, 224–236. [Google Scholar] [CrossRef]
- Pajević, S.; Borisev, M.; Rončević, S.; Vukov, D.; Igić, R. Heavy metal accumulation of Danube river aquatic plants—Indication of chemical contamination. Open Life Sci. 2008, 3, 285–294. [Google Scholar] [CrossRef]
- Herndon, E.M.; Jin, L.; Brantley, S.L. Soils Reveal Widespread Manganese Enrichment from Industrial Inputs. Environ. Sci. Technol. 2011, 45, 241–247. [Google Scholar] [CrossRef]
- Hurley, L.S.; Keen, C.L. Manganese. In Trace Elements in Human Health and Animal Nutrition; Underwood, E., Mertz, W., Eds.; Academic Press: New York, NY, USA, 1987; pp. 185–223. [Google Scholar]
- Loranger, S.; Demers, G.; Kennedy, G.; Forget, E.; Zayed, J. The pigeon (Columbia livia) as a monitor for manganese contamination from motor vehicles. Arch. Environ. Contam. Toxicol. 1994, 27, 311–317. [Google Scholar] [CrossRef]
- Lasier, P.J.; Winger, P.V.; Bogenrieder, K.J. Toxicity of manganese to Ceriodaphnia dubia and Hyalella azteca. Arch. Environ. Contam. Toxicol. 2000, 38, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Fernando, D.R.; Lynch, J.P. Manganese phytotoxicity: New light on an old problem. Ann. Bot. 2015, 116, 313–319. [Google Scholar] [CrossRef]
- Migula, P.; Glowacka, E.; Nuorteva, S.-L.; Nuorteva, P.; Tulisalo, E. Time-related effects of intoxication with cadmium and mercury in the red wood ant. Ecotoxicology 1997, 6, 307–320. [Google Scholar] [CrossRef]
- Nieminen, M.; Nuorteva, P.; Tulisalo, E. The Effect of Metals on the Mortality of Parnassius Apollo Larvae (Lepidoptera: Papilionidae). J. Insect Conserv. 2001, 5, 1–7. [Google Scholar] [CrossRef]
- Sorvari, J.; Rantala, L.M.; Rantala, M.J.; Hakkarainen, H.; Eeva, T. Heavy metal pollution disturbs immune response in wild ant populations. Environ. Pollut. 2007, 145, 324–328. [Google Scholar] [CrossRef]
- van Ooik, T.; Pausio, S.; Rantala, M.J. Direct effects of heavy metal pollution on the immune function of a geometrid moth, Epirrita autumnata. Chemosphere 2008, 71, 1840–1844. [Google Scholar] [CrossRef]
- Grześ, I.M.; Okrutniak, M.; Woch, M.W. Monomorphic ants undergo within-colony morphological changes along the metal-pollution gradient. Environ. Sci. Pollut. Res. 2015, 22, 6126–6134. [Google Scholar] [CrossRef]
- Koponen, S.; Niemelä, P. Ground-living arthropods along pollution gradient in boreal pine forest. Èntomol. Fenn. 1995, 6, 127–131. [Google Scholar] [CrossRef]
- Gillet, S.; Ponge, J.-F. Changes in species assemblages and diets of Collembola along a gradient of metal pollution. Appl. Soil Ecol. 2003, 22, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Eeva, T.; Penttinen, R. Leg deformities of oribatid mites as an indicator of environmental pollution. Sci. Total Environ. 2009, 407, 4771–4776. [Google Scholar] [CrossRef] [PubMed]
- Grześ, I.M. Ant species richness and evenness increase along a metal pollution gradient in the Bolesław zinc smelter area. Pedobiologia 2009, 53, 65–73. [Google Scholar] [CrossRef]
- Grześ, I.M. Ants and heavy metal pollution—A review. Eur. J. Soil Biol. 2010, 46, 350–355. [Google Scholar] [CrossRef]
- Rabitsch, W.B. Metal accumulation in arthropods near a lead/zinc smelter in Arnoldstein, Austria. II. Formicidae. Environ. Pollut. 1995, 90, 239–247. [Google Scholar] [CrossRef]
- Mackay, W.P.; Mena, R.; Gardea, J.; Pingatore, N. Lack of bioaccumulation of heavy metals in an arthropod community in the northern Chihuahuan Desert. J. Kansas Entomol. Soc. 1997, 70, 329–334. [Google Scholar]
- Hobbelen, P.; Koolhaas, J.; van Gestel, K. Risk assessment of heavy metal pollution for detritivores in floodplain soils in the Biesbosch, The Netherlands, taking bioavailability into account. Environ. Pollut. 2004, 129, 409–419. [Google Scholar] [CrossRef]
- Akter, K.F.; Owens, G.; Davey, D.E.; Naidu, R. Arsenic Speciation and Toxicity in Biological Systems. Rev. Environ. Contam. Toxicol. 2005, 184, 97–149. [Google Scholar] [CrossRef]
- Filgueiras, A.V.; Lavilla, I.; Bendicho, C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 2002, 4, 823–857. [Google Scholar] [CrossRef]
- Querol, X.; Juan, R.; Lopez-Soler, A.; Fernandez-Turiel, J.-L.; Ruiz, C.R. Mobility of trace elements from coal and combustion wastes. Fuel 1996, 75, 821–838. [Google Scholar] [CrossRef]
- Kim, A.G.; Kazonich, G.; Dahlberg, M. Relative Solubility of Cations in Class F Fly Ash. Environ. Sci. Technol. 2003, 37, 4507–4511. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Ward, C.; French, D.; Groves, S. Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel 2006, 85, 243–256. [Google Scholar] [CrossRef]
- Huggins, F.E.; Senior, C.; Chu, P.; Ladwig, K.; Huffman, G.P. Selenium and Arsenic Speciation in Fly Ash from Full-Scale Coal-Burning Utility Plants. Environ. Sci. Technol. 2007, 41, 3284–3289. [Google Scholar] [CrossRef] [PubMed]
- Tessier, A.; Campbell, P.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Schwartz, G.; Rivera, N.; Lee, S.-W.; Harrington, J.; Hower, J.C.; Levine, K.; Vengosh, A.; Hsu-Kim, H. Leaching potential and redox transformations of arsenic and selenium in sediment microcosms with fly ash. Appl. Geochem. 2016, 67, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Lovley, D.R.; Phillips, E.J.P. Organic Matter Mineralization with Reduction of Ferric Iron in Anaerobic Sediments. Appl. Environ. Microbiol. 1986, 51, 683–689. [Google Scholar] [CrossRef] [Green Version]
- Worms, I.; Simon, D.; Hassler, C.; Wilkinson, K. Bioavailability of trace metals to aquatic microorganisms: Importance of chemical, biological and physical processes on biouptake. Biochime 2006, 88, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
- Popovic, A.; Djordjević, D. pH-Dependent Leaching of Dump Coal Ash—Retrospective Environmental Analysis. Energy Sour. Part A Recover. Util. Environ. Eff. 2009, 31, 1553–1560. [Google Scholar] [CrossRef]
- Koponen, S. Ground-living spiders (Araneae) at polluted sites in the Subarctic. Arachnol. Mitteilungen Arachnol. Lett. 2011, 40, 80–84. [Google Scholar] [CrossRef]
- Posthuma, L.; Van Straalen, N.M. Heavy-metal adaptation in terrestrial invertebrates: A review of occurrence, genetics, physiology and ecological consequences. Comp. Biochem. Physiol. Part C Pharmacol. Toxicol. Endocrinol. 1993, 106, 11–38. [Google Scholar] [CrossRef]
- Zvereva, E.; Serebrov, V.; Glupov, V.; Dubovskiy, I. Activity and heavy metal resistance of non-specific esterases in leaf beetle Chrysomela lapponica from polluted and unpolluted habitats. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2003, 135, 383–391. [Google Scholar] [CrossRef]
- Van Straalen, N.M.; Donker, M.H. Heavy-metal adaptation in terrestrial arthropods—Physiological and genetic aspects. Proc. Sect. Exp. Appl. Entomol. Neth. Entomol. Soc. 1994, 5, 3–17. [Google Scholar]
- Eeva, T.; Sorvari, J.; Koivunen, V. Effects of heavy metal pollution on red wood ant (Formica s. str.) populations. Environ. Pollut. 2004, 132, 533–539. [Google Scholar] [CrossRef]
- Buckland-Nicks, A.; Hillier, K.N.; Avery, T.S.; O’Driscoll, N.J. Mercury bioaccumulation in dragonflies (Odonata: Anisoptera): Examination of life stages and body regions. Environ. Toxicol. Chem. 2014, 33, 2047–2054. [Google Scholar] [CrossRef]
- Heikens, A.; Peijnenburg, W.; Hendriks, A. Bioaccumulation of heavy metals in terrestrial invertebrates. Environ. Pollut. 2001, 113, 385–393. [Google Scholar] [CrossRef]
- Horváth, G.; Malik, P.; Kriska, G.; Wildermuth, H. Ecological traps for dragonflies in a cemetery: The attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones. Freshw. Biol. 2007, 52, 1700–1709. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous. 2020. Available online: https://cran.r-project.org/web/packages/Hmisc/index.html (accessed on 27 February 2020).
- Wei, T.; Simko, V.R. R Package “Corrplot”: Visualization of a Correlation Matrix. 2017. Available online: https://github.com/taiyun/corrplot (accessed on 27 February 2020).
Locality | GPS Coordinates | Altitude (m a.s.l.) | Lagoon Area (ha) | Year of Establishment | Change of Deposition Technology | pH of Water | Conductivity (µS·cm−1) | LOI * (%) |
---|---|---|---|---|---|---|---|---|
1 | 50.2602° N, 12.7219° E | 465 | 6.2 | 1967 | 1996 | 8.53 | 1256 | 30.3 |
2 | 50.1518° N, 12.6221° E | 390 | 16 | 1961 | 1997 | 8.44 | 958 | 54.9 |
3 | 50.4269° N, 16.1514° E | 375 | 2.2 | 1969 | 1990s | 8.58 | 322 | 4.3 |
4 | 50.5918° N, 15.9584° E | 450 | 0.07 | 1957 | 1998 | 8.69 | 708 | 6.9 |
5 | 50.4007° N, 14.3952° E | 205 | 2 | 1961 | 1998 | 8.23 | 483 | 9.7 |
6 | 50.4541° N, 13.4491° E | 310 | 27.5 | 1992 | 2000s | 8.26 | 1431 | 3.4 |
7 | 50.4267° N, 13.2685° E | 370 | 2.5 | 1968 | 1998 | 8.35 | 3741 | 5.2 |
8 | 50.4215° N, 13.6529° E | 260 | 17.8 | 1977 | 1997 | 8.26 | 2520 | 4.3 |
9 | 50.6425° N, 13.9754° E | 155 | 16.3 | 1974 | 1997 | NA | NA | 5.5 |
10 | 50.6832° N, 13.9760° E | 255 | 1.6 | 1961 | 1992 | 8.38 | 695 | 3.2 |
11 | 50.5944° N, 13.7620° E | 190 | 10.7 | 1968 | 1998 | 8.51 | 940 | 25.9 |
12 | 50.5489° N, 13.6765° E | 250 | 63.6 | 1951 | 1999 | 8.58 | 2159 | 11.2 |
13 | 50.8897° N, 14.6319° E | 355 | 2.6 | 1972 | 2000s | 7.99 | 939 | 7.8 |
14 | 50.0440° N, 15.7142° E | 220 | 6 | 1953 | 1997 | 8.87 | 551 | 31.6 |
15 | 49.1957° N, 13.9694° E | 495 | 0.002 | 1954 | 2002 | 8.11 | 2178 | 8.4 |
16 | 49.0951° N, 14.3597° E | 408 | 1 | 1967 | 2009 | 8.12 | 3076 | 23.7 |
17 | 48.9550° N, 14.5149° E | 430 | 5.6 | 1962 | 1996 | 9.03 | 321 | 19.4 |
18 | 50.1059° N, 15.8276° E | 235 | 9.2 | 1960 | 2000s | NA | 797 | 3.2 |
19 | 50.0299° N, 15.4350° E | 225 | 0.5 | 1978 | 1998 | NA | NA | 5.0 |
Locality | Ag | Al | As | Ba | Ca | Cd | Co | Cr | Cu | Fe | Mg | Mn | Ni | P | Pb | Se | Sr | V | Zn | Mean PEC Quotient |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.15 | 32,524 | 115.9 | 483 | 25,626 | 0.98 | 20 | 52.5 | 133.2 | 21,516 | 2345 | 220 | 41.4 | 709 | 16.6 | 73 | 277 | 256 | 339 | 0.97 |
2 | 0.09 | 28,335 | 32.4 | 349 | 11,051 | 0.11 | 19 | 54.3 | 118.2 | 17,949 | 1710 | 456 | 31.9 | 319 | 8.6 | 2 | 241 | 221 | 241 | 0.50 |
3 | 0.07 | 44,444 | 22.3 | 516 | 33,604 | 0.29 | 30 | 74.2 | 80.6 | 48,481 | 3355 | 439 | 83.6 | 380 | 10.9 | 2 | 247 | 153 | 87 | 0.56 |
4 | 0.08 | 10,861 | 23.6 | 104 | 5950 | 1.67 | 6 | 13.9 | 32.6 | 10,185 | 2272 | 171 | 20.1 | 119 | 118.8 | 1 | 31 | 36 | 242 | 0.47 |
5 | 0.10 | 28,329 | 124.8 | 358 | 9438 | 0.45 | 21 | 85.5 | 102.8 | 28,054 | 1719 | 348 | 61.3 | 476 | 15.1 | 10 | 151 | 256 | 125 | 1.00 |
6 | 0.09 | 87,843 | 8.6 | 374 | 9718 | 0.11 | 11 | 52.1 | 46.3 | 28,199 | 3575 | 227 | 40.4 | 373 | 28.9 | 3 | 216 | 121 | 82 | 0.33 |
7 | 0.06 | 26,628 | 72.8 | 909 | 12,416 | 0.26 | 38 | 56.6 | 99.1 | 143,591 | 4100 | 3002 | 106.8 | 659 | 16.4 | 15 | 155 | 184 | 183 | 0.88 |
8 | 0.05 | 25,608 | 18.5 | 210 | 12,733 | 0.16 | 11 | 41.2 | 31.9 | 29,738 | 2230 | 334 | 43.5 | 266 | 12.6 | 1 | 132 | 125 | 68 | 0.33 |
9 | 0.05 | 32,484 | 2.6 | 153 | 7892 | 0.03 | 17 | 51.9 | 41.0 | 24,030 | 1588 | 198 | 70.4 | 204 | 4.1 | 0 | 80 | 130 | 91 | 0.36 |
10 | 0.09 | 36,061 | 29.2 | 1427 | 57,760 | 0.22 | 29 | 30.9 | 61.8 | 35,041 | 5786 | 679 | 47.2 | 263 | 11.9 | 4 | 710 | 223 | 225 | 0.45 |
11 | 0.08 | 32,240 | 10.8 | 218 | 9559 | 0.14 | 20 | 68.9 | 58.8 | 23,639 | 1627 | 233 | 87.5 | 360 | 8.9 | 4 | 100 | 188 | 69 | 0.48 |
12 | 0.02 | 22,699 | 27.8 | 180 | 28,656 | 0.03 | 11 | 41.9 | 28.9 | 16,969 | 1736 | 162 | 61.9 | 281 | 7.4 | 2 | 138 | 547 | 38 | 0.40 |
13 | 0.09 | 60,325 | 22.6 | 481 | 23,129 | 0.16 | 30 | 82.4 | 62.7 | 37,362 | 6413 | 533 | 94.9 | 554 | 18.3 | 2 | 260 | 189 | 98 | 0.60 |
14 | 0.07 | 14,215 | 6.2 | 295 | 16,060 | 0.10 | 10 | 27.7 | 24.0 | 19,054 | 5350 | 394 | 22.8 | 340 | 10.6 | 1 | 138 | 49 | 344 | 0.27 |
15 | 0.18 | 23,707 | 119.5 | 226 | 19,896 | 0.54 | 12 | 71.7 | 122.6 | 174,889 | 3493 | 932 | 36.5 | 1219 | 49.5 | 2 | 112 | 84 | 651 | 1.11 |
16 | 0.07 | 31,838 | 10.4 | 367 | 9414 | 0.27 | 16 | 34.9 | 149.0 | 15,364 | 1216 | 173 | 35.2 | 523 | 8.1 | 2 | 205 | 187 | 102 | 0.38 |
17 | 0.08 | 31,837 | 11.4 | 636 | 12,983 | 0.12 | 15 | 44.8 | 125.9 | 39,054 | 1963 | 484 | 37.2 | 802 | 8.4 | 2 | 274 | 206 | 202 | 0.41 |
18 | 0.05 | 18,690 | 59.4 | 121 | 9097 | 0.11 | 11 | 43.7 | 25.2 | 20,240 | 1096 | 108 | 36.6 | 182 | 7.8 | 7 | 65 | 89 | 134 | 0.50 |
19 | 0.06 | 22,871 | 67.9 | 276 | 20,741 | 0.16 | 16 | 44.1 | 52.0 | 41,672 | 2988 | 2339 | 47.5 | 458 | 9.8 | 1 | 109 | 113 | 95 | 0.59 |
Mean | 0.08 | 32,186 | 41.4 | 404 | 17,670 | 0.31 | 18 | 51.2 | 73.5 | 40,791 | 2872 | 602 | 53.0 | 447 | 19.6 | 7 | 192 | 177 | 180 | |
(SD) | (0.04) | (17,269) | (40.3) | (316) | (12,430) | (0.40) | (9) | (18.9) | (41.4) | (43,214) | (1577) | (765) | (25.0) | (261) | (26.1) | (16) | (146) | (110) | (145) | |
Median | 0.08 | 28,335 | 23.6 | 349 | 12,733 | 0.16 | 16 | 51.9 | 61.8 | 28,054 | 2272 | 348 | 43.5 | 373 | 10.9 | 2 | 151 | 184 | 125 | |
Common soil | - | - | 20.0 | - | - | 0.5 | 30 | 90.0 | 60.0 | - | - | - | 50.0 | - | 60.0 | - | - | 130 | 120 | |
Light sandy soil | - | - | 15.0 | - | - | 0.4 | 20 | 55.0 | 45.0 | - | - | - | 45.0 | - | 55.0 | - | - | 120 | 105 | |
TEC | - | - | 9.8 | - | - | 1.0 | - | 43.4 | 31.6 | - | - | - | 22.7 | - | 35.8 | - | - | - | 121 | |
PEC | - | - | 33.0 | - | - | 5.0 | - | 111.0 | 149.0 | - | - | - | 48.6 | - | 128.0 | - | - | - | 459 | |
Reference value | - | - | 11.7 | - | - | 0.3 | 12 | 37.3 | 19.2 | - | - | - | 24.1 | - | 25.3 | - | - | 44.6 | 71.6 |
Heavy Metal | CS | LS | PEC | TEC |
---|---|---|---|---|
As | p = 0.08 n.s. | p = 0.006 * | p = 0.48 n.s. | p = 1.0 n.s. |
Ba | p = 0.99 n.s. | - | - | - |
Cd | p = 0.99 n.s. | p = 0.99 n.s. | p = 1.0 n.s. | p < 0.0001 * |
Co | p = 1.0 n.s. | p = 0.85 n.s. | - | - |
Cr | p = 1.0 n.s. | p = 0.81 n.s. | p = 1.0 n.s. | p = 0.94 n.s. |
Cu | p = 0.13 n.s. | p = 0.01 * | p = 0.99 n.s. | p = 1.0 n.s. |
Ni | p = 0.49 n.s. | p = 0.25 n.s. | p = 0.39 n.s. | p = 1.0 n.s. |
Pb | p = 0.99 n.s. | p = 0.99 n.s. | p = 1.0 n.s. | p = 0.002 * |
V | p = 0.04 n.s. | p = 0.01 * | - | - |
Zn | p = 0.11 n.s. | p = 0.04 n.s. | p = 1.0 n.s. | p = 0.89 n.s. |
Locality | As | Cd | Co | Cr | Cu | Ni | Pb | V | Zn | PLI |
---|---|---|---|---|---|---|---|---|---|---|
1 | 9.90 | 3.63 | 1.69 | 1.41 | 6.94 | 1.72 | 0.65 | 5.74 | 4.73 | 2.97 |
2 | 2.77 | 0.41 | 1.59 | 1.45 | 6.16 | 1.32 | 0.34 | 4.96 | 3.36 | 1.70 |
3 | 1.90 | 1.09 | 2.53 | 1.99 | 4.20 | 3.47 | 0.43 | 3.44 | 1.21 | 1.86 |
4 | 2.02 | 6.20 | 0.50 | 0.37 | 1.70 | 0.84 | 4.70 | 0.80 | 3.38 | 1.52 |
5 | 10.67 | 1.67 | 1.74 | 2.29 | 5.36 | 2.54 | 0.60 | 5.74 | 1.74 | 2.62 |
6 | 0.73 | 0.41 | 0.92 | 1.40 | 2.41 | 1.68 | 1.14 | 2.71 | 1.14 | 1.21 |
7 | 6.22 | 0.97 | 3.21 | 1.52 | 5.16 | 4.43 | 0.65 | 4.12 | 2.56 | 2.55 |
8 | 1.58 | 0.58 | 0.94 | 1.11 | 1.66 | 1.80 | 0.50 | 2.80 | 0.95 | 1.16 |
9 | 0.22 | 0.10 | 1.41 | 1.39 | 2.14 | 2.92 | 0.16 | 2.92 | 1.28 | 0.82 |
10 | 2.49 | 0.81 | 2.40 | 0.83 | 3.22 | 1.96 | 0.47 | 5.00 | 3.15 | 1.79 |
11 | 0.93 | 0.50 | 1.70 | 1.85 | 3.06 | 3.63 | 0.35 | 4.22 | 0.96 | 1.42 |
12 | 2.38 | 0.11 | 0.95 | 1.12 | 1.50 | 2.57 | 0.29 | 12.25 | 0.53 | 1.08 |
13 | 1.93 | 0.60 | 2.48 | 2.21 | 3.27 | 3.94 | 0.72 | 4.25 | 1.37 | 1.91 |
14 | 0.53 | 0.37 | 0.79 | 0.74 | 1.25 | 0.95 | 0.42 | 1.11 | 4.80 | 0.88 |
15 | 10.21 | 1.98 | 1.02 | 1.92 | 6.39 | 1.52 | 1.96 | 1.88 | 9.09 | 2.86 |
16 | 0.88 | 0.99 | 1.29 | 0.93 | 7.76 | 1.46 | 0.32 | 4.20 | 1.43 | 1.42 |
17 | 0.97 | 0.45 | 1.22 | 1.20 | 6.56 | 1.54 | 0.33 | 4.62 | 2.83 | 1.45 |
18 | 5.08 | 0.39 | 0.94 | 1.17 | 1.31 | 1.52 | 0.31 | 2.00 | 1.87 | 1.20 |
19 | 5.81 | 0.58 | 1.31 | 1.18 | 2.71 | 1.97 | 0.39 | 2.54 | 1.33 | 1.49 |
No. of LocalitiesCF < 1 | 6 | 14 | 6 | 4 | 0 | 2 | 16 | 1 | 3 | |
CF = 1–3 | 7 | 3 | 12 | 15 | 8 | 13 | 2 | 7 | 10 | |
CF = 3–6 | 2 | 1 | 1 | 0 | 6 | 4 | 1 | 10 | 5 | |
CF > 6 | 4 | 1 | 0 | 0 | 5 | 0 | 0 | 1 | 1 | |
PLI ≥ 1 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmelová, E.; Kolar, V.; Jan, J.; Carreira, B.M.; Landeira-Dabarca, A.; Otáhalová, Š.; Poláková, M.; Vebrová, L.; Borovec, J.; Boukal, D.S.; et al. Valuable Secondary Habitats or Hazardous Ecological Traps? Environmental Risk Assessment of Minor and Trace Elements in Fly Ash Deposits across the Czech Republic. Sustainability 2021, 13, 10385. https://doi.org/10.3390/su131810385
Chmelová E, Kolar V, Jan J, Carreira BM, Landeira-Dabarca A, Otáhalová Š, Poláková M, Vebrová L, Borovec J, Boukal DS, et al. Valuable Secondary Habitats or Hazardous Ecological Traps? Environmental Risk Assessment of Minor and Trace Elements in Fly Ash Deposits across the Czech Republic. Sustainability. 2021; 13(18):10385. https://doi.org/10.3390/su131810385
Chicago/Turabian StyleChmelová, Eliška, Vojtech Kolar, Jiří Jan, Bruno M. Carreira, Andrea Landeira-Dabarca, Šárka Otáhalová, Martina Poláková, Lucie Vebrová, Jakub Borovec, David S. Boukal, and et al. 2021. "Valuable Secondary Habitats or Hazardous Ecological Traps? Environmental Risk Assessment of Minor and Trace Elements in Fly Ash Deposits across the Czech Republic" Sustainability 13, no. 18: 10385. https://doi.org/10.3390/su131810385
APA StyleChmelová, E., Kolar, V., Jan, J., Carreira, B. M., Landeira-Dabarca, A., Otáhalová, Š., Poláková, M., Vebrová, L., Borovec, J., Boukal, D. S., & Tropek, R. (2021). Valuable Secondary Habitats or Hazardous Ecological Traps? Environmental Risk Assessment of Minor and Trace Elements in Fly Ash Deposits across the Czech Republic. Sustainability, 13(18), 10385. https://doi.org/10.3390/su131810385