Assessing Energy Poverty in Urban Regions of Mexico: The Role of Thermal Comfort and Bioclimatic Context
Abstract
:1. Introduction
2. Materials and Methods
2.1. MEPI Description
2.2. MEDI Description
2.3. Databases Used
3. Results
3.1. Identification of Energy Deprivation by Bioclimatic Region
3.2. Specific Urban Areas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kyprianou, I.; Serghides, D.K.; Varo, A.; Gouveia, J.P.; Kopeva, D.; Murauskaite, L. Energy poverty policies and measures in 5 EU countries: A comparative study. Energy Build. 2019, 196, 46–60. [Google Scholar] [CrossRef]
- United Nations Development Programme (2000). World Energy Assessment. Energy and the Challenge of Sustainability. Available online: https://www.undp.org/sites/g/files/zskgke326/files/publications/World%20Energy%20Assessment-2000.pdf (accessed on 1 May 2021).
- United Nations. Goal 11: Make cities Inclusive, Safe, Resilient and Sustainable. Available online: https://www.un.org/sustainabledevelopment/cities/. (accessed on 1 May 2021).
- Robinson, C.; Bouzarovski, S.; Lindley, S. ‘Getting the measure of fuel poverty’: The geography of fuel poverty indicators in England. Energy Res. Soc. Sci. 2018, 36, 79–93. [Google Scholar] [CrossRef]
- Nathan, H.S.K.; Hari, L. Towards a new approach in measuring energy poverty: Household level analysis of urban India. Energy Policy 2020, 140, 111397. [Google Scholar] [CrossRef]
- Roberts, D.; Vera-Toscano, E.; Phimister, E. Fuel poverty in the UK: Is there a difference between rural and urban areas? Energy Policy 2015, 87, 216–223. [Google Scholar] [CrossRef] [Green Version]
- García-Ochoa, R.; Graizbord-Ed, B. Privation of energy services in Mexican households: An alternative measure of energy poverty. Energy Res. Soc. Sci. 2016, 18, 36–49. [Google Scholar] [CrossRef]
- Bruck, A.; Diaz Ruano, S.; Auer, H. A Critical Perspective on Positive Energy Districts in Climatically Favoured Regions: An Open-Source Modelling Approach Disclosing Implications and Possibilities. Energies 2021, 14, 4864. [Google Scholar] [CrossRef]
- Rehman, H.; Reda, F.; Paiho, S.; Hasan, A. Towards positive energy communities at high latitudes. Energy Convers. Manag. 2019, 196, 175–195. [Google Scholar] [CrossRef]
- Frontiers. Positive Energy Districts: Transforming Urban Areas into High Efficiency Districts with Local Renewable Generation and Storage. Available online: https://www.frontiersin.org/research-topics/14941/positive-energy-districts-transforming-urban-areas-into-high-efficiency-districts-with-local-renewab#overview. (accessed on 1 May 2021).
- Hedman, Å.; Rehman, H.U.; Gabaldón, A.; Bisello, A.; Albert-Seifried, V.; Zhang, X.; Guarino, F.; Grynning, S.; Eicker, U.; Neumann, H.-M.; et al. IEA EBC Annex83 Positive Energy Districts. Buildings 2021, 11, 130. [Google Scholar] [CrossRef]
- Hearn, A.X.; Castaño-Rosa, R. Towards a Just Energy Transition, Barriers and Opportunities for Positive Energy District Creation in Spain. Sustainability 2021, 13, 8698. [Google Scholar] [CrossRef]
- Nussbaumer, P.; Bazilian, M.; Modi, V. Measuring energy poverty: Focusing on what matters. Renew. Sustain. Energy Rev. 2012, 16, 231–243. [Google Scholar] [CrossRef] [Green Version]
- Robles-Bonilla, T.; Cedano, K.G. Addressing Thermal Comfort in Regional Energy Poverty Assessment with Nussbaumer’s MEPI. Sustainability 2021, 13, 352. [Google Scholar] [CrossRef]
- Thomson, H.; Simcock, N.; Bouzarovski, S.; Petrova, S. Energy & Buildings Energy poverty and indoor cooling: An overlooked issue in Europe. Energy Build. 2019, 196, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Kostoff, R.N.; del Río, J.A.; Cortés, H.D.; Smith, C.; Smith, A.; Wagner, C.; Karypis, G.; Malpohl, G.; Tshiteya, R. Clustering methodologies for identifying country core competencies. J. Inf. Sci. 2007, 33, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Karakounos, I.; Dimoude, A.; Zoras, S. The influence of bioclimatic urban redevelopment on outdoor thermal comfort. Energy Build. 2018, 158, 1266–1274. [Google Scholar] [CrossRef]
- Gaitani, N.; Mihalakakou, G.; Santamouris, M. On the use of bioclimatic architecture principles in order to improve thermal comfort conditions in outdoor spaces. Build. Environ. 2007, 42, 317–324. [Google Scholar] [CrossRef]
- Pontes, R.H.; Najjar, M.K.; Hammad, A.W.A.; Vazquez, E.; Haddad, A. Adapting the Olgyay bioclimatic chart to assess local thermal comfort levels in urban regions. Clean Techn. Environ. Policy 2021, 23, 1–15. [Google Scholar] [CrossRef]
- Calixto Aguirre, V.I.; Huelsz, G. Consumo de energía en edificios en México. Legado Arquit. Diseño 2018, 24, 40–47. [Google Scholar]
- INEGI (National Institute of Statistic and Geography). National Survey of Household Income and Expenditure (ENIGH). 2018 New Series, Microdata. Available online: https://www.inegi.org.mx/programas/enigh/nc/2018/#Microdatos (accessed on 1 May 2018).
- INEGI (National Institute of Statistic and Geography). National Survey of Household Income and Expenditure (ENIGH). 2018 New Series, Documentation. Available online: https://www.inegi.org.mx/programas/enigh/nc/2018/ (accessed on 1 May 2018).
- CONAGUA. National Meteorological Service. Available online: https://smn.conagua.gob.mx/es/climatologia/pronostico-climatico/temperatura-form, (accessed on 20 September 2019).
- Eurostat. Urban and rural living in the EU. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20200207-1 (accessed on 19 December 2020).
- Encore. Old European Building Stock. Available online: http://encorebim.eu/en/news/third-new (accessed on 19 December 2020).
- Nzengue, Y.; Boishamon, A.; Laffont-Eloire, K. Planning City Refurbishment: An Exploratory Study at District Scale. Available online: http://www.sinfonia-smartcities.eu/contents/knowledgecenterfiles/planning-city-refurbishment--an-exploratory-study-at-district-scale.pdf (accessed on 10 November 2020).
- OECD. OECD Urban Policy Reviews: Mexico 2015: Transforming Urban Policy and Housing Finance, OECD Urban Policy Reviews, OECD Publishing: Paris, France 2015. Available online: https://read.oecd-ilibrary.org/urban-rural-and-regional-development/oecd-urban-policy-reviews-mexico-2015_9789264227293-en#page1 (accessed on 20 September 2020).
- OECD. OECD Economic Surveys: Mexico 2019. Available online: https://www.oecd.org/economy/surveys/Mexico-2019-OECD-economic-survey-overview.pdf (accessed on 2 December 2020).
- Andrés Manuel López Obrador. Programas de Vivienda Generan Empleos y Reactivan la Economía. Conferencia Presidente AMLO [Video]. Available online: https://youtu.be/12BlYyebe8c (accessed on 3 December 2020).
- CONAPO. Demographic Indicators of Mexico from 1950 to 2050. Available online: http://www.conapo.gob.mx/work/models/CONAPO/Mapa_Ind_Dem18/index_2.html (accessed on 20 September 2019).
- Ormandy, D.; Ezratty, V. Health and thermal comfort: From WHO guidance to housing strategies. Energy Policy 2012, 49, 116–121. [Google Scholar] [CrossRef]
Dimension | Indicator (Weight) | Variable | Deprivation Limit (Poor If…) |
---|---|---|---|
Cooking | Modern cooking fuel (0.2) | Type of cooking fuel | Use any fuel besides electricity, LPG, kerosene, natural gas or biogas |
Indoor pollution (0.2) | Food cooked on stove or open fire (no hood/chimney) if using any fuel beside electricity, LPG, natural gas or biogas | True | |
Lighting | Electricity access (0.2) | Has access to electricity | False |
Services provided by means of household appliances | Household appliance ownership (0.13) | Has a fridge | False |
Entertainment/ education | Entertainment/education appliance ownership (0.13) | Has a radio or television | False |
Communication | Telecommunication means (0.13) | Has a phone land line or a mobile phone | False |
Dimension | Indicator | Variable | Deprivation Cut-Off (Poor If…) |
---|---|---|---|
Thermal comfort | Thermal comfort access | Has an air conditioner or heating | False |
Consumption | Low-Income Households |
---|---|
Health | Climate |
Mortality | Vulnerability |
Impact | Energy justice |
Energy deprivation | Extreme temperature |
Mitigation | Older people |
Excess winter deaths | Efficiency |
Dimension | Indicator | Variable | Weight |
---|---|---|---|
Cooking | Modern cooking fuel | Type of cooking fuel | 0.18 |
Indoor pollution | Food cooked on stove or open fire | 0.18 | |
Lighting | Electricity Access | Has Access to electricity | 0.18 |
Services provide by means of household appliances | Household appliance ownership | Has a fridge | 0.115 |
Entertainment/education | Entertainment/education appliance ownership | Has a radio or television | 0.115 |
Communication | Telecommunication means | Has a phone land line or a mobile phone | 0.115 |
Thermal comfort | Thermal comfort access | Has an air conditioner or heating | 0.115 |
Dimension | Indicator | Variable | Weight |
---|---|---|---|
Cooking | Modern cooking fuel | Type of cooking fuel | 0.13 |
Indoor pollution | Food cooked on stove or open fire | 0.13 | |
Lighting | Electricity Access | Has Access to electricity | 0.24 |
Services provide by means of household appliances | Household appliance ownership | Has a fridge | 0.21 |
Entertainment/education | Entertainment/education appliance ownership | Has a radio or television | 0.08 |
Communication | Telecommunication means | Has a phone land line or a mobile phone | 0.07 |
Thermal comfort | Thermal comfort access | Has an air conditioner or heating | 0.14 |
Region | Capital City | MEPI | MEPI Comfort | MEDI | Tmin | Tmax | Taver |
---|---|---|---|---|---|---|---|
Humid warm | Campeche | 0.024 | 0.060 | 0.070 | 6.0 | 44.0 | 27.0 |
Dry warm | Monterrey | 0.000 | 0.033 | 0.039 | −8.0 | 44.0 | 23.1 |
Extreme dry warm | Hermosillo | 0.013 | 0.029 | 0.036 | −7.5 | 49.0 | 25.5 |
Semi-humid warm | Ciudad Victoria | 0.006 | 0.031 | 0.040 | −4.0 | 44.0 | 22.7 |
Semi-cold | Toluca | 0.007 | 0.014 | 0.045 | −4.0 | 26.0 | 14.2 |
Humid semi-cold | Xalapa | 0.050 | 0.050 | 0.060 | 6.0 | 34.0 | 19.0 |
Dry semi-cold | Pachuca | 0.003 | 0.049 | 0.059 | −2.7 | 31.0 | 16.0 |
Temperate | Guadalajara | 0.000 | 0.018 | 0.022 | 4.0 | 37.5 | 21.0 |
Humid temperate | Tepic | 0.004 | 0.042 | 0.049 | 8.2 | 35.0 | 23.0 |
Dry temperate | Oaxaca | 0.015 | 0.080 | 0.094 | 8.0 | 39.5 | 23.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cedano, K.G.; Robles-Bonilla, T.; Santillán, O.S.; Martínez, M. Assessing Energy Poverty in Urban Regions of Mexico: The Role of Thermal Comfort and Bioclimatic Context. Sustainability 2021, 13, 10646. https://doi.org/10.3390/su131910646
Cedano KG, Robles-Bonilla T, Santillán OS, Martínez M. Assessing Energy Poverty in Urban Regions of Mexico: The Role of Thermal Comfort and Bioclimatic Context. Sustainability. 2021; 13(19):10646. https://doi.org/10.3390/su131910646
Chicago/Turabian StyleCedano, Karla G., Tiare Robles-Bonilla, Oscar S. Santillán, and Manuel Martínez. 2021. "Assessing Energy Poverty in Urban Regions of Mexico: The Role of Thermal Comfort and Bioclimatic Context" Sustainability 13, no. 19: 10646. https://doi.org/10.3390/su131910646
APA StyleCedano, K. G., Robles-Bonilla, T., Santillán, O. S., & Martínez, M. (2021). Assessing Energy Poverty in Urban Regions of Mexico: The Role of Thermal Comfort and Bioclimatic Context. Sustainability, 13(19), 10646. https://doi.org/10.3390/su131910646