Sustainable Management of Central Appalachian Red Spruce
Abstract
:1. Introduction
2. Importance of Red Spruce
3. Red Spruce Silvical Characteristics
4. History of Forest Management
5. Issues Affecting Red Spruce Management and Restoration
5.1. Meta-Analysis of Disciplinary Topic Areas
5.2. Red Spruce and a Changing Climate
5.3. Red Spruce, Pollution and Disturbances
6. Red Spruce and Site Productivity
7. Red Spruce Restoration
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rentch, J.S.; Ford, F.M.; Schuler, T.S.; Palmer, J.; Diggins, C.A. Release of suppressed red spruce using canopy gap creation—Ecological restoration in the Central Appalachians. Nat. Areas J. 2016, 36, 29–37. [Google Scholar] [CrossRef]
- Blum, B.M. Picea rubens Sarg. Red Spruce. In Silvics of North America, Volume 2; Agriculture Handbook 654; Burns, R.M., Honkala, B.H., Eds.; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990. [Google Scholar]
- Stephenson, S.L. A Natural History of the Central Appalachians; West Virginia University Press: Morgantown, WV, USA, 2013. [Google Scholar]
- Magruder, M.; Chhin, S.; Palik, B.; Bradford, J.B. Thinning increases climatic resilience of red pine. Can. J. For. Res. 2013, 43, 878–889. [Google Scholar] [CrossRef]
- Lof, M.; Madsen, P.; Metslaid, M.; Witzell, J.; Jacobs, D.F. Restoring forests: Regeneration and ecosystem function for the future. J. New For. 2019, 50, 139–151. [Google Scholar] [CrossRef] [Green Version]
- McGuire, A.D.; Ruess, R.W.; Lloyd, A.; Yarie, J.; Clein, J.S.; Juday, G.P. Vulnerability of white spruce tree growth in interior Alaska in response to climate variability: Dendrochronological, demographic, and experimental perspectives. Can. J. For. Res. 2010, 40, 1197–1209. [Google Scholar] [CrossRef]
- Chhin, S. Managing red oak (Quercus rubra L.) reduces sensitivity to climate stress. J. For. Environ. Sci. 2018, 34, 338–351. [Google Scholar]
- Millar, C.I.; Stephenson, N.L.; Stephens, S.L. Climate change and forests of the future: Managing in the face of uncertainty. Ecol. Appl. 2007, 17, 2145–2151. [Google Scholar] [CrossRef]
- Rentch, J.S.; Schuler, T.M.; Ford, W.M.; Nowacki, G.J. Red spruce stand dynamics, simulations, and restoration opportunities in the Central Appalachians. Restor. Ecol. 2007, 15, 440–452. [Google Scholar] [CrossRef]
- WVDNR. Red Spruce (Picea rubens) Cover in West Virginia 2013; West Virginia Division of Natural Resources: South Charleston, WV, USA, 2013; Available online: http://wvgis.wvu.edu/data/dataset.php?ID=455 (accessed on 20 September 2021).
- Bailey, R.G. Identifying ecoregion boundaries. Environ. Manag. 2004, 34, S14–S26. [Google Scholar] [CrossRef]
- Hart, H.C. Silvical Characteristics of Red Spruce (Picea rubens); U.S. Department of Agriculture, Forest Service, Station Paper 124; Northeastern Forest Experiment Station: Upper Darby, PA, USA, 1959. [Google Scholar]
- Pauley, T.K. The Appalachian Inferno: Historical causes for the disjunct distribution of Plethedon nettingi (Cheat Mountain Salamander). Northeast. Nat. 2008, 15, 595–606. [Google Scholar] [CrossRef]
- Diochon, A.; Kellman, L.; Beltrami, H. Looking deeper: An investigation of soil carbon losses following harvesting from a managed northeastern red spruce (Picea rubens Sarg.). For. Ecol. Manag. 2009, 257, 413–420. [Google Scholar] [CrossRef]
- Rentch, J.S.; Schuler, T.M.; Nowacki, G.J.; Beane, N.R.; Ford, W.M. Canopy gap dynamics of second-growth red spruce-northern hardwood stands in West Virginia. For. Ecol. Manag. 2010, 260, 1921–1929. [Google Scholar] [CrossRef]
- Thomas-Van Gundy, M.A.; Sturtevant, B.R. Using scenario modeling for red spruce restoration planning in West Virginia. J. For. 2014, 112, 457–466. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Anchukaitis, K.J.; Bukley, B.; Cook, E.; Wilson, R. Regional climatic and North Atlantic Oscillation signatures in West Virginia red cedar over the past millennium. Glob. Planet. Chang. 2012, 84, 8–13. [Google Scholar] [CrossRef]
- Saladyga, T.; Maxwell, R.S. Temporal variability in climate response of eastern hemlock in Central Appalachian region. Southeast. Geogr. 2015, 55, 143–163. [Google Scholar] [CrossRef]
- Hart, A.C. Red Spruce (Picea rubens Sarg.) Silvics of Forest Trees of the United States; Agriculture Handbook. 271; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1965.
- D’Amato, A.W.; Bradford, J.B.; Fraver, S.; Palik, B.J. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems. Ecol. Appl. 2013, 23, 1735–1742. [Google Scholar] [CrossRef] [Green Version]
- Dumais, D.; Prevost, M. Management for red spruce conservation in Quebec: The importance of some physiological and ecological characteristics—A review. For. Chron. 2007, 83, 378–392. [Google Scholar] [CrossRef] [Green Version]
- Griscom, B.G.; Griscom, H.P.; Deacon, S. Species-specific barriers to tree regeneration in high elevation habitats of West Virginia. Restor. Ecol. 2011, 19, 660–670. [Google Scholar] [CrossRef]
- Dumais, D.; Larouche, C.; Raymond, P. Survival and growth dynamics of red spruce seedlings planted under different forest cover densities and types. New For. 2019, 50, 573–592. [Google Scholar] [CrossRef]
- Adams, H.S.; Stephenson, S.L. Old-growth red spruce communities in the mid-Appalachians. Vegetatio 1989, 85, 45–56. [Google Scholar] [CrossRef]
- Van Miergroet, H.; Moore, P.T.; Tewksbury, C.E.; Nicholas, N.S. Carbon sources and sinks in high-elevation spruce-fir forests of the southeastern US. For. Ecol. Manag. 2007, 238, 249–260. [Google Scholar] [CrossRef]
- Day, M.E.; Greenwood, M.S.; White, A.S. Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiol. 2001, 21, 1195–1204. [Google Scholar] [CrossRef] [Green Version]
- Goelz, J.C.; Burk, T.E.; Zedaker, S.M. Long term growth trends of red spruce and frasier fir at Mt. Rogers, Virginia and Mt. Mitchell, North Carolina. For. Ecol. Manag. 1999, 11, 49–59. [Google Scholar] [CrossRef]
- Seymour, R.S.; Kenefic, L.S. Influence of age on growth efficiency of Tsuga canadensis and Picea rubens trees in mixed species, multiaged northern conifer stands. Can. J. For. Res. 2002, 32, 2032–2042. [Google Scholar] [CrossRef]
- DeRose, R.J.; Seymour, R.S. The effect of site quality on growth efficiency of upper crown class Picea rubens and Abies balasmea in Maine, USA. Can. J. For. Res. 2009, 39, 777–784. [Google Scholar] [CrossRef]
- Kosiba, A.M.; Schaberg, P.G.; Rayback, A.R.; Hawley, G.J. The surprising recovery of red spruce growth shows links to decreased acid deposition and elevated temperature. Sci. Total Environ. 2018, 637–638, 1480–1491. [Google Scholar] [CrossRef]
- Fahey, T.; Tierney, G.; Fitzhugh, R.; Wilson, G.; Siccama, T. Soil respiration and soil carbon balance in a northern hardwood forest ecosystem. Can. J. For. Res. 2005, 35, 244–253. [Google Scholar] [CrossRef]
- Crim, P.M.; Cumming, J.R. Extracellular soil enzyme activities in high-elevation mixed red spruce forests in central Appalachia, U.S.A. Forests 2020, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Creed, I.F.; Morrison, D.L.; Nicholas, N.S. Is coarse woody debris a net sink or source of nitrogen in the red spruce—Fraser fir forest of the southern Appalachians, U.S.A. Can. J. For. Res. 2004, 34, 716–727. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.K.; Nicholas, N.S. Coarse woody debris in a southern Appalachian spruce-fir forest of the Great Smoky Mountains National Park. Nat. Areas J. 2008, 28, 342–355. [Google Scholar] [CrossRef]
- Moore, P.T.; Van Miegroet, H.; Nicholas, N.S. Relative role of understory and overstory in carbon and nitrogen cycling in a southern Appalachian spruce-fir forest. Can. J. For. Res. 2007, 37, 2689–2700. [Google Scholar] [CrossRef]
- White, P.B.; Soule, P.; van de Gevel, S. Impacts of human disturbance on the temporal stability of climate-growth relationships in a red spruce forest, southern Appalachian Mountains, USA. Dendrochronology 2014, 32, 71–77. [Google Scholar] [CrossRef]
- Adams, M.B.; Kochenderfer, J.N. The Fernow Experimental Forest and Canaan Valley: A history of research. Southeast. Nat. 2015, 14, 433–440. [Google Scholar] [CrossRef]
- Brown, J.H. Success of Tree Planting on Strip-Mined Areas in West Virginia; Bulletin No 473; West Virginia Agricultural and Forestry Experiment Station: Morgantown, WV, USA, 1962; 35p. [Google Scholar]
- Soule, P.T. Changing climate, atmospheric composition, and radial tree growth in a spruce-fir ecosystem on Grandfather Mountain, North Carolina. Nat. Areas J. 2011, 31, 65–74. [Google Scholar] [CrossRef]
- Koo, K.A.; Patten, B.C.; Teskey, R.O.; Creed, I.F. Climate change effects on red spruce decline mitigated by reduction in air pollution within its shrinking habitat range. Ecol. Model. 2014, 293, 81–90. [Google Scholar] [CrossRef]
- Peters, M.P.; Prasad, A.M.; Matthews, S.N.; Iverson, L.R. Climate Change Tree Atlas; Version 4; U.S. Forest Service, Northern Research Station and Northern Institute of Applied Climate Science: Delaware, OH, USA, 2020. Available online: https://www.nrs.fs.fed.us/atlas (accessed on 17 July 2020).
- Schwartz, P.A.; Fahey, T.J.; Dawson, T.E. Seasonal air and soil temperature effects on photosynthesis in red spruce (Picea rubens) saplings. Tree Physiol. 1997, 17, 187–194. [Google Scholar] [CrossRef]
- Yetter, E.; Chhin, S.; Brown, J.P. Dendroclimatic analysis of Central Appalachian red spruce in West Virginia. Can. J. For. Res. 2021, in press. [Google Scholar] [CrossRef]
- Kosiba, A.M.; Schaberg, P.G.; Rayback, S.A.; Hawley, G.J. Comparative growth trends of five northern hardwood and montane tree species reveal divergent trajectories and response to climate. Can. J. For. Resour. 2017, 47, 743–754. [Google Scholar] [CrossRef] [Green Version]
- Mathias, J.M.; Thomas, R.B. Disentangling the effects of acidic air pollution, atmospheric CO2, and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. Glob. Chang. Biol. 2018, 24, 3938–3953. [Google Scholar] [CrossRef] [Green Version]
- Pallardy, S.G. Physiology of Woody Plants, 3rd ed.; Academic Press: San Diego, CA, USA, 2007. [Google Scholar]
- Mosseler, A.; Major, J.E.; Simpson, D.J.; Daigle, B.; Lange, K.; Park, Y.S.; Rajora, O.P. Indicators of population viability in red spruce (Picea rubens) reproductive traits and fecundity. Can. J. Bot. 2000, 78, 928–940. [Google Scholar]
- Berry, Z.C.; Smith, W.K. Cloud pattern and water relations in Picea rubens and Abies Fraseri, southern Appalachian Mountains, USA. Agric. For. Meteorol. 2012, 162–163, 27–34. [Google Scholar] [CrossRef]
- Socci, A.M.; Templer, P.H. Comparing measures of fine root uptake by mature trees: Applications for determining the potential impacts of climate change induced soil freezing on nutrient uptake by sugar maple and red spruce. In Proceedings of the American Geophysical Union, Fall Meeting, San Franscisco, CA, USA, 15–19 December 2008. [Google Scholar]
- Walter, J.A.; Neblett, J.C.; Atkins, J.W.; Epstein, H.E. Regional and watershed scale analysis of red spruce habitat in the southeastern United States: Implications for future restoration efforts. Plant Ecol. 2017, 218, 305–315. [Google Scholar] [CrossRef]
- Mclaughlin, S.B.; Downing, D.J.; Blasing, T.J.; Cook, E.R.; Adams, H.S. An analysis of climate and competition as contributors to decline. Environ. Sci. 1987, 72, 487–501. [Google Scholar]
- Boyle, R. Acid Rain; Schocken Books: New York, NY, USA, 1983. [Google Scholar]
- Lukina, N.V.; Orlova, M.A.; Steinnes, E.; Artemkina, N.A.; Gorbacheva, T.T.; Smirnov, V.E.; Belova, E.A. Mass-loss rates from decomposition of plants residues in spruce forests near the northern tree line subject to strong air pollution. Environ. Sci. Pollut. Res. 2017, 24, 1974–1988. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies. Bioscience 2001, 51, 180–198. [Google Scholar] [CrossRef] [Green Version]
- Stehn, S.E.; Jenkings, M.A.; Webster, C.R.; Jose, S. Regeneration responses to exogenous disturbance gradients in southern Appalachian Picea-Abies forests. For. Ecol. Manag. 2013, 289, 98–105. [Google Scholar] [CrossRef]
- Mathiasen, R.L.; Olsen, W.K.; Edminster, C.B. Site index curves for white fir in the southwestern United States developed using a guide curve method. West. J. For. 2006, 21, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Geyer, W.; Lynch, K. Use of Site Index as a Forestry Management Tool. Trans. Kans. Acad. Sci. 1987, 90, 46–51. [Google Scholar] [CrossRef]
- Nigh, G.D.; Love, B.A. How well can we select undamaged site trees for estimating site index? Can. J. For. Resour. 1999, 29, 1989–1992. [Google Scholar] [CrossRef]
- Carmean, W.H.; Hazenberg, G.; Niznowski, G.P. Polymorphic site index curves for jack pine in Northern Ontario. For. Chron. 2001, 77, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Newton, P.F. Base-age invariant polymorphic height growth and site index equations for peatland black spruce stands. North. J. Appl. For. 2008, 25, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Carmean, W.H.; Hahn, J.T.; Jacobs, R.D. Site Index Curves for Forest Tree Species in the Eastern United States; United States Department of Agriculture Forest Service General Technical Report NC-128; North Central Forest Experiment Station: St. Paul, MN, USA, 1989. [Google Scholar]
- Nicholas, N.S.; Zedaker, S.M. Expected stand behavior: Site quality estimation for southern Appalachian red spruce. For. Ecol. Manag. 1992, 47, 39–50. [Google Scholar] [CrossRef]
- Seymour, R.S.; Fajvan, M.A. Influence of prior growth suppression and soil on red spruce site index. North. J. Appl. For. 2001, 18, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Meyer, W.H. Yields of Second-Growth Spruce and Fir in the Northeast; U.S. Department of Agriculture: Washington, DC, USA, 1929; 52p.
- Carmean, W.H. Site Index Comparisons among Northern Hardwoods in Northern Wisconsin and Upper Michigan; United States Department of Agriculture Forest Service Report NC-169; North Central Forest Experiment Station: St. Paul, MN, USA, 1979. [Google Scholar]
- Steele, B.M.; Clutter, S.V. Predicting Site Index and Height for Selected Tree Species of Northern Idaho; U.S. Department of Agriculture, Forest Service, Research Paper INT-365; Intermountain Research Station: Ogden, UT, USA, 1986. [Google Scholar]
- Yetter, E.; Brown, J.P.; Chhin, S. Anamorphic site index curves for Central Appalachian red spruce in West Virginia, USA. Forests 2021, 12, 94. [Google Scholar] [CrossRef]
- Smith, D.; Larson, B.C.; Kelty, M.J.; Ashton, P.M.S. The Practice of Silviculture, 9th ed.; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Fraver, S.; White, A.S. Disturbance dynamics of old-growth Picea rubens forests of northern Maine. J. Veg. Sci. 2005, 16, 597–610. [Google Scholar]
- Amos-Binks, L.J.; MacLean, D.A. The influence of natural disturbances on developmental patterns in Acadian mixedwood forests from 1946–2008. Dendrochronologia 2016, 37, 9–16. [Google Scholar] [CrossRef]
- Schuler, T.M.; Ford, W.M.; Collins, R.J. Successional dynamics and restoration implications of a montane coniferous forest in the central Appalachians. Nat. Areas J. 2002, 22, 88–98. [Google Scholar]
- Seymour, R.S.; Hunter, M.L. New Forestry in Eastern Spruce-Fir Forests: Principles and Applications to Maine; Maine Agricultural Experiment Station, University of Maine: Orono, ME, USA, 1992. [Google Scholar]
- Nauman, T.; Thompson, J.; Teets, S.; Dilliplane, T.; Bell, J.; Connolly, S.; Yoast, K. Ghosts of the forest: Mapping pedomemory to guide forest restoration. Geoderma 2015, 64, 247–248. [Google Scholar] [CrossRef]
Web of Science Category | Number of Articles | Percentage of Total Articles (%) |
---|---|---|
Forestry | 16 | 40.0 |
Ecology | 15 | 37.5 |
Biodiversity Conservation | 9 | 22.5 |
Soil Science | 5 | 12.5 |
Agronomy | 2 | 5.0 |
Chemistry Analytical | 2 | 5.0 |
Environmental Sciences | 2 | 5.0 |
Plant Sciences | 2 | 5.0 |
Evolutionary Biology | 1 | 2.5 |
Genetics Heredity | 1 | 2.5 |
Instruments Instrumentation | 1 | 2.5 |
Meteorology Atmospheric Sciences | 1 | 2.5 |
Mycology | 1 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yetter, E.; Chhin, S.; Brown, J.P. Sustainable Management of Central Appalachian Red Spruce. Sustainability 2021, 13, 10871. https://doi.org/10.3390/su131910871
Yetter E, Chhin S, Brown JP. Sustainable Management of Central Appalachian Red Spruce. Sustainability. 2021; 13(19):10871. https://doi.org/10.3390/su131910871
Chicago/Turabian StyleYetter, Eric, Sophan Chhin, and John P. Brown. 2021. "Sustainable Management of Central Appalachian Red Spruce" Sustainability 13, no. 19: 10871. https://doi.org/10.3390/su131910871
APA StyleYetter, E., Chhin, S., & Brown, J. P. (2021). Sustainable Management of Central Appalachian Red Spruce. Sustainability, 13(19), 10871. https://doi.org/10.3390/su131910871