Potential of Industrial By-Products as Liming Materials and Digestate as Organic Fertilizer and Their Effect on Soil Properties and Yield of Alfalfa (Medicago sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial
2.2. Soil Properties
2.3. Plant Material Analysis
2.4. Analysis of Liming Materials and Digestate
2.5. Statistical Analysis
3. Results and Discussion
3.1. Analysis of By-Products
3.2. Effect on Soil Properties
3.3. Effect on Alfalfa Yield
3.4. Effect on Plant Nutrition
3.5. Management of Lime Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peters, J.B.; Kelling, K.A.; Speth, P.E.; Offer, S.M. Alfalfa Yield and Nutrient Uptake as Affected by pH and Applied K. Commun. Soil Sci. Plant Anal. 2005, 36, 583–596. [Google Scholar] [CrossRef]
- Kovačević, V.; Rastija, M.; Iljkić, D.; Brkić, I.; Kovačević, J. Maize and barley response to fertdolomite liming. Poljoprivreda 2015, 21, 30–35. [Google Scholar] [CrossRef]
- Sumner, M.E.; Noble, A.D. Soil acidification: The world story. In Handbook of Soil Acidity; Rengel, Z., Ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 2–4. [Google Scholar]
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Oguntoyinbo, F.I.; Aduayi, E.A.; Sobulo, R.A. Effectiveness of some local liming materials in Nigeria as Ameliorants of soil acidity. J. Plant. Nutr. 1996, 19, 999–1016. [Google Scholar] [CrossRef]
- Munn, D.A. Steel Industry Slags Compared with Calcium Carbonate in Neutralizing Acid Mine Soil. Ohio J. Sci. 2005, 105, 79–87. [Google Scholar]
- Yusiharni, B.E.; Ziadi, A.H.; Gilkes, R.J. A laboratory and glasshouse evaluation of chicken litter ash, wood ash, and iron smelting slag as liming agents and P fertilisers. Aust. J. Soil Res. 2007, 45, 374–389. [Google Scholar] [CrossRef]
- Antunović, M.; Kovačević, V.; Varga, I. Subsequent effects of liming with carbocalk on maize grain yields. Poljoprivreda 2014, 20, 12–18. [Google Scholar]
- Yang, R.; Mitchell, C.C.; Howe, J.A. Relative Neutralizing Value as an Indicator of Actual Liming Ability of Limestone and Byproduct Materials. Commun. Soil Sci. Plant Anal. 2018, 49, 1144–1156. [Google Scholar] [CrossRef]
- Chávez-Guerrero, L.; Flores, J.; Kharissov, B.I. Recycling of ash from mezcal industry: A renewable source of lime. Chemosphere 2010, 81, 633–638. [Google Scholar] [CrossRef]
- Park, N.D.; Rutherford, P.M.; Thring, R.W.; Helle, S.S. Wood pellet fly ash and bottom ash as an effective liming agent and nutrient source for rye grass (Lolium perenne L.) and oats (Avena sativa). Chemosphere 2012, 86, 427–432. [Google Scholar] [CrossRef]
- HRN EN 12945:2008. Liming Materials—Determination of Neutralizing Value—Titrimetric Methods; Croatian Standards Institute: Zagreb, Croatia, 2008. [Google Scholar]
- Álvarez, E.; Viadé, A.; Fernández-Marcos, M. Effect of liming with different sized limestone on the forms of aluminium in a Galician soil (NW Spain). Geoderma 2009, 152, 1–8. [Google Scholar] [CrossRef]
- Vance, W.H.; McKenzie, B.; Tisdall, J. The stability of soils used for cropping in northern Victoria and southern New South Wales. Soil Res. 2002, 40, 615–624. [Google Scholar] [CrossRef]
- Levonmaki, M.; Hartikainen, H. Efficiency of liming in controlling the mobility of lead in shooting range soils as assessed by different experimental approaches. Sci. Total Environ. 2007, 388, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ruttens, A.; Adriaensen, K.; Meers, E.; De Vocht, A.; Geebelen, W.; Carleer, R.; Mench, M.; Vangronsveld, J. Long-term sustainability of metal immobilization by soil amendments: Cyclonic ashes versus lime addition. Environ. Pollut. 2010, 158, 1428–1434. [Google Scholar] [CrossRef]
- Zhang, F.-S.; Yamasaki, S.; Nanzyo, M. Waste ashes for use in agricultural production: I. Liming effect, contents of plant nutrients and chemical characteristics of some metals. Sci. Total Environ. 2002, 284, 215–225. [Google Scholar] [CrossRef]
- McCarty, G.W.; Siddaramappa, R.; Wright, R.J.; Codling, E.E.; Gao, G. Evaluation of coal combustion byproducts as soil liming materials: Their influence on soil pH and enzyme activities. Biol. Fertil. Soils 1994, 17, 167–172. [Google Scholar]
- Geebelen, W.; Sappin-Didier, V.; Ruttens, A.; Carleer, R.; Yperman, J.; Bongué-Boma, K.; Mench, M.; van der Lelie, N.; Vangronsveld, J. Evaluation of cyclonic ash, commercial Na-silicates, lime and phosphoric acid for metal immobilisation purposes in contaminated soils in Flanders (Belgium). Environ. Pollut. 2006, 144, 32–39. [Google Scholar] [CrossRef]
- Prask, H.; Szlachta, J.; Fugol, M.; Kordas, L.; Lejman, A.; Tużnik, F.; Tużnik, F. Sustainability Biogas Production from Ensiled Plants Consisting of the Transformation of the Digestate into a Valuable Organic-Mineral Granular Fertilizer. Sustainability 2018, 10, 585. [Google Scholar] [CrossRef] [Green Version]
- Baştabak, B.; Koçar, G. A review of the biogas digestate in agricultural framework. J. Mater. Cycles Waste Manag. 2020, 22, 1318–1327. [Google Scholar] [CrossRef]
- ISO 10390. Soil Quality—Determination of pH; International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- ISO 14235. Soil Quality—Determination of Organic Carbon by Sulfochromic Oxidation; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- Egner, H.; Riehm, H.; Domingo, W.R. Untersuchung über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nahrstoffzustandes der Boden II. Chem. Extr. zu Phosphor-und Kaliumbestimmung. K. Lantbr. Hogsk. Annlr. 1960, 26, 199–215. [Google Scholar]
- HRN ISO 11466:2004. Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia; Croatian Standards Institute: Zagreb, Croatia, 2004. [Google Scholar]
- Kappen, H. Die Bodenazidität; Springer: Berlin, Germany, 1929. [Google Scholar]
- HRN EN 15662-2018. Foods of Plant Origin—Multimethod for the Determination of Pesticide Residues Using GC-and LC-Based Analysis following Acetonitrile Extraction/Partitioning and Clean-up by Dispersive SPE—Modular QuEChERS-Method; Croatian Standards Institute: Zagreb, Croatia, 2018. [Google Scholar]
- HRN EN 13040:2008. Soil Improvers and Growing Media—Sample Preparation for Chemical and Physical Tests, Determination of Dry Matter Content, Moisture Content and Laboratory Compacted Bulk Density; Croatian Standards Institute: Zagreb, Croatia, 2008. [Google Scholar]
- HRN EN 13039:2012. Soil Improvers and Growing Media—Determination of Organic Matter Content and Ash; Croatian Standards Institute: Zagreb, Croatia, 2012. [Google Scholar]
- HRN EN 13654-1:2005. Soil Improvers and Growing Media—Determination of Nitrogen—Part 1: Modified Kjeldahl Method; Croatian Standards Institute: Zagreb, Croatia, 2005. [Google Scholar]
- Minitab Statistical Software; Minitab Inc.: State College, PA, USA, 2007; Available online: www.minitab.com (accessed on 20 May 2021).
- Lončarić, Z. Soil acidity and lime requirement. In Kalcizacija Tala u Pograničnome Području/Lime Application in Border Area; Lončarić, Z., Ed.; Faculty of Agrobiotechnical Sciences in Osijek, University of Josip Juraj Strossmayer in Osijek: Osijek, Croatia, 2015; pp. 18–27. [Google Scholar]
- Official Gazette. Regulation on Protection of Agricultural Land in Croatia; No. 15/92; Government of the Republic of Croatia: Zagreb, Croatia, 1992.
- Kovačević, V.; Rastija, M. Impacts of liming by dolomite on the maize and barley grain yields. Poljoprivreda 2010, 16, 3–8. [Google Scholar]
- Holland, J.E.; Bennett, A.E.; Newton, A.C.; White, P.J.; McKenzie, B.M.; George, T.S.; Pakeman, R.J.; Bailey, J.S.; Fornara, D.A.; Hayes, R.C. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018, 610–611, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.Y.; Heenan, D.P. Lime affected structural stability of red earth under different tillage, stubble and rotation management. In Proceedings of the Australia and New Zealand National Soils Conference, Adelaide, Australia, 18–20 November 1996; Volume 3, pp. 39–40. [Google Scholar]
- Saarsalmi, A.; Mälkönen, E.; Piirainen, S. Effects of wood ash fertilization on forest soil chemical properties. Silva. Fennica 2001, 35, 355–368. [Google Scholar] [CrossRef] [Green Version]
- Hytönen, J.; Hökkä, H. Comparison of granulated and loose ash in fertilisation of Scots pine on peatland. Silva. Fennica 2020, 54, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ivezić, V.; Singh, B.R.; Almas, A.R.; Lončarić, Z. Water extractable concentrations of Fe, Mn, Ni, Co, Mo, Pb and Cd under different land uses of Danube basin in Croatia. Acta Agric. Scand B Soil Plant. Sci. 2011, 61, 747–759. [Google Scholar] [CrossRef]
- Ciecko, Z.; Wyszkowski, M.; Krajewski, W.; Zabielska, J. Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and spring oilseed rape. Sci. Total Environ. 2001, 281, 37–45. [Google Scholar] [CrossRef]
- Kovačević, V.; Šimić, D.; Kadar, I.; Knežević, D.; Lončarić, Z. Genotype and liming effects on cadmium concentration in maize (Zea mays L.). Genetika 2011, 43, 607–615. [Google Scholar] [CrossRef]
- Holland, J.E.; Behrendt, K. The economics of liming in arable crop rotations: Analysis of the 35-year Rothamsted and Woburn liming experiments. Soil Use Manag. 2021, 37, 342–352. [Google Scholar] [CrossRef]
Site | pH H2O | pH KCl | HA cmol/kg | SOM % | AL-P2O5 mg/100g | AL-K2O mg/100 g |
---|---|---|---|---|---|---|
Zgone | 5.4 | 4.0 | 6.7 | 1.9 | 22.5 | 15.9 |
Beljevine | 6.2 | 4.7 | 5.1 | 2.5 | 22.5 | 20.6 |
Slag | W. Ash | Filter Dust | Carbocalk | Digestate | ||
---|---|---|---|---|---|---|
NV | CaO eq. | 38.1 | 39.5 | 44.4 | 25.9 | - |
Ca + Mg | % | 22 | 30 | 35 | 45 | - |
K | g/kg | 0.3 | 71.1 | 3.1 | 1.2 | 18.3 |
P | g/kg | 1.2 | 13.8 | 0.4 | 0.3 | 9.2 |
Zn | mg/kg | 582.3 | 452.1 | 23.2 | 13.6 | 109.9 |
Cd | mg/kg | < LD | 4.6 | 1.5 | 0.9 | 0.3 |
DM | % | - | - | - | - | 22.82 |
OM | % | - | - | - | - | 86.84 |
ρ | g/cm3 | - | - | - | - | 0.283 |
Total-N | g/kg of DM | - | - | - | - | 18.52 |
Zgone | Beljevine | |||
---|---|---|---|---|
Full Dose (t/ha) | Half Dose (t/ha) | Full Dose (t/ha) | Half Dose (t/ha) | |
Slag | 20.0 | 10.0 | 15.0 | 7.5 |
Wood Ash | 20.0 | 10.0 | 15.0 | 7.5 |
Filter dust | 17.5 | 8.75 | 12.5 | 6.25 |
Carbocalk | 30.0 | 15.0 | 22.5 | 11.250 |
Digestate | No Digestate | ||||||
---|---|---|---|---|---|---|---|
Liming Material | n | pH | Liming Material | n | pH | ||
Mean | SD | Mean | SD | ||||
W. ASH 2 | 24 | 6.93 a A | 0.551 | W. ASH 2 | 24 | 6.68 a A | 0.620 |
FD 2 | 24 | 6.79 ab A | 0.639 | FD 2 | 24 | 6.88 a A | 0.574 |
CARBO. 2 | 24 | 6.78 ab A | 0.536 | CARBO. 2 | 24 | 6.54 a A | 0.608 |
W. ASH 1 | 24 | 6.39 bc A | 0.578 | W. ASH 1 | 24 | 6.06 b B | 0.481 |
FD 1 | 24 | 6.38 bc A | 0.533 | FD 1 | 24 | 6.03 b B | 0.437 |
CARBO. 1 | 24 | 6.26 cd A | 0.546 | CARBO. 1 | 24 | 6.08 b A | 0.381 |
SLAG 1 | 24 | 5.92 cde A | 0.620 | SLAG 1 | 24 | 5.72 bc A | 0.396 |
SLAG 2 | 24 | 5.80 de A | 0.450 | SLAG 2 | 24 | 5.72 bc A | 0.345 |
Ctrl | 24 | 5.56 e A | 0.448 | Ctrl | 24 | 5.41 c A | 0.455 |
Digestate | No Digestate | ||||||
---|---|---|---|---|---|---|---|
Date | n | pH | Date | n | pH | ||
Mean | SD | Mean | SD | ||||
2016, June | 54 | 6.37 ab | 0.612 | 2016, June | 54 | 6.30 a | 0.625 |
2016, Oct. | 54 | 6.53 a | 0.596 | 2016, Oct. | 54 | 6.24 a | 0.554 |
2017, May | 54 | 6.30 ab | 0.755 | 2017, May | 54 | 6.06 ab | 0.464 |
2018, Oct. | 54 | 6.05 b | 0.754 | 2018, Oct. | 54 | 5.89 b | 0.520 |
n | OM% | ||
---|---|---|---|
Mean | SD | ||
DIGEST | 216 | 2.1 a | 0.495 |
NO DIGEST | 216 | 1.95 b | 0.457 |
Digestate | No Digestate | ||||||
---|---|---|---|---|---|---|---|
Liming Material | n | Yield (t/ha) | Liming Material | n | Yield (t/ha) | ||
Mean | SD | Mean | SD | ||||
W. ASH 2 | 21 | 3.26 | 2.470 | W. ASH 2 | 18 | 3.14 | 2.575 |
FD 2 | 21 | 2.98 | 2.339 | FD 2 | 18 | 2.49 | 2.142 |
W. ASH 1 | 21 | 2.98 | 2.103 | W. ASH 1 | 18 | 2.84 | 2.304 |
SLAG 2 | 21 | 2.98 | 2.271 | SLAG 2 | 18 | 2.51 | 2.383 |
SLAG 1 | 21 | 2.90 | 2.267 | SLAG 1 | 18 | 2.35 | 2.483 |
FD 1 | 21 | 2.89 | 2.282 | FD 1 | 18 | 2.53 | 2.301 |
CARBO. 1 | 21 | 2.73 | 2.292 | CARBO. 1 | 18 | 2.53 | 2.178 |
CARBO. 2 | 21 | 2.69 | 2.106 | CARBO. 2 | 18 | 2.70 | 2.634 |
Ctrl | 21 | 2.57 | 2.167 | Ctrl | 18 | 1.39 | 1.899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivezić, V.; Zebec, V.; Popović, B.; Engler, M.; Teklić, T.; Lončarić, Z.; Karalić, K. Potential of Industrial By-Products as Liming Materials and Digestate as Organic Fertilizer and Their Effect on Soil Properties and Yield of Alfalfa (Medicago sativa L.). Sustainability 2021, 13, 11016. https://doi.org/10.3390/su131911016
Ivezić V, Zebec V, Popović B, Engler M, Teklić T, Lončarić Z, Karalić K. Potential of Industrial By-Products as Liming Materials and Digestate as Organic Fertilizer and Their Effect on Soil Properties and Yield of Alfalfa (Medicago sativa L.). Sustainability. 2021; 13(19):11016. https://doi.org/10.3390/su131911016
Chicago/Turabian StyleIvezić, Vladimir, Vladimir Zebec, Brigita Popović, Meri Engler, Tihana Teklić, Zdenko Lončarić, and Krunoslav Karalić. 2021. "Potential of Industrial By-Products as Liming Materials and Digestate as Organic Fertilizer and Their Effect on Soil Properties and Yield of Alfalfa (Medicago sativa L.)" Sustainability 13, no. 19: 11016. https://doi.org/10.3390/su131911016
APA StyleIvezić, V., Zebec, V., Popović, B., Engler, M., Teklić, T., Lončarić, Z., & Karalić, K. (2021). Potential of Industrial By-Products as Liming Materials and Digestate as Organic Fertilizer and Their Effect on Soil Properties and Yield of Alfalfa (Medicago sativa L.). Sustainability, 13(19), 11016. https://doi.org/10.3390/su131911016