Microclimatic Effects on the Preservation of Finds in the Visitor Centre of the Archaeological Site 1a Imperial Palace Sirmium
Abstract
:1. Introduction
2. Recommended and Standard Microclimatic Conditions in Museums
3. Characteristics of Serbian Climate
4. The Display of Finds in the Visitor Centre of the Archaeological Site 1a Imperial Palace Sirmium
5. Materials and Methods
5.1. Microclimate Monitoring
5.2. Mycological Analyses
5.2.1. In Situ Optical Microscopy
5.2.2. Sampling Methods
5.2.3. Fungal Identification
6. The Results of Microclimate Monitoring and Microbiological Research
6.1. Microclimate in the Visitor Centre of Archaeological Site 1a Imperial Palace Sirmium
6.2. Biological Colonization of Mosaics
6.3. Airborne Microorganisms
7. Discussion
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ugrinović, A. Zaštitne Konstrukcije u Funkciji Prezentacije Ostataka Antičkog Nasleđa; U Zborniku Radova VII Konferencije Zavoda za Zaštitu Spomenika Kulture Grada Beograda: Beograd, Srbija, 2016; pp. 116–127. [Google Scholar]
- Ugrinović, A.; Krstić-Furundžić, A. Technological Solutions for Covering Archaeological Sites in Order to Present Mosaics In Situ—Case Studies. In Proceedings of the 6th International Academic Conference on Places and Technologies: Keeping up with Tech-Nologies to Turn Built Heritage Into the Places of Future Generations; Molnár, T., Krstić-Furundžić, A., Vaništa Lazarević, E., Djukić, A., Medvegy, G., Bachmann, B., Vukmirović, M., Eds.; University of Pécs Faculty of Engineering and Information Technology: Pécs, Hanguary, 2019; pp. 613–620. ISBN 978-963-429-401-6. [Google Scholar]
- Pensabene, P.; Gallocchio, E. The Villa del Cásale of Piazza Armerina. Penn. Mus. 2011, 53, 29–37. [Google Scholar]
- Nicholas, P.; Price, S.; Jokilehto, J. The decision to shelter arheological sites: Three case-studies from Sicily. Conserv. Manag. Arheol. Sites 2001, 5, 19–34. [Google Scholar]
- Rizzi, Gionata. Sheltering the Mosaics of Piazza Armerina: Issues of Conservation and Presentation. Available online: https://www.archaeological.org/pdfs/site_preservation_Oct_08.pdf (accessed on 12 June 2021).
- Vozikis, T.K. Protective Structures on Archaeological Sites in Greece. Available online: http://www.wseas.us/e-library/conferences/2005venice/papers/508-305.pdf (accessed on 12 June 2021).
- European Committee for Standardization (CEN). Conservation of Cultural Property. Specifications for Temperature and Relative Humidity to Limit Climate-Induced Mechanical Damage in Organic Hygroscopic Materials, Standard EN 15757; CEN: Brussels, Belgium, 2010; p. 9. [Google Scholar]
- Schito, E.; Testi, D.; Grassi, W. A Proposal for New Microclimate Indexes for the Evaluation of Indoor Air Quality in Museums. Buildings 2016, 6, 41. [Google Scholar] [CrossRef]
- D’Agostino, V.; Alfano, F.R.D.; Palella, B.I.; Riccio, G. The museum environment: A protocol for evaluation of microclimatic conditions. Energy Build. 2015, 95, 124–129. [Google Scholar] [CrossRef]
- Pavlogeorgatos, G. Environmental parameters in museums. Build. Environ. 2003, 38, 1457–1462. [Google Scholar] [CrossRef]
- Christensen, J.E.; Kollias, C.G. Hygrothermal Evaluation of a Museum Storage Building based on Actual Measurements and Simulations. Energy Procedia 2015, 78, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Živković, V.; Džikić, V. Return to basics—Environmental management for museum collections and historic houses. Energy Build. 2015, 95, 116–123. [Google Scholar] [CrossRef]
- Kotterer, M.; Großeschmidt, H.; Boody, P.F.; Herausgeber, W.K. Klima in Museen und historischen Gebäuden: Die Temperi-erung/Climate in Museums and Historical Buildings: Tempering; Schloss Schonenbrunn: Vienna, Austria, 2004; ISBN 3-901 568-51-4. [Google Scholar]
- Bonora, A.; Fabbri, K.; Pretelli, M. Study of the Indoor Microclimate for Preventive Conservation and Sustainable Management of Historic Buildings. Energy Efficiency in Historic Bildings. Available online: https://www.diva-portal.org/smash/get/diva2:1296990/FULLTEXT01.pdf (accessed on 1 August 2021).
- Bonora, A.; Fabbri, K.; Pretelli, M. Environmental Microclimate Management and Risk in the UNESCO World Heritage Sites of Villa Barbaro Master (Italy). Available online: https://doi.org/10.5194/isprs-archives-XLII-2-W11-269-20 (accessed on 1 August 2021).
- Fabbri, K.; Pretelli, M.; Bonora, A. The Study of Historical Indoor Microclimate (HIM) to Contribute towards Heritage Buildings Preservation. Heritage 2019, 2, 2287–2297. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, K.; Pretelli, M. Heritage buildings and historic microclimate without HVAC technology: Malatestiana Library in Cesena, Italy, UNESCO Memory of the World. Energy Build. 2014, 76, 15–31. [Google Scholar] [CrossRef]
- Živković, V. Regulacija klimatskih uslova u depou mozaika u galeriji fresaka. Diana 2008, 12, 117–123. [Google Scholar]
- Kompatscher, K.; Kramer, R.; Ankersmit, B.; Schellen, H. Intermittent conditioning of library archives: Microclimate analysis and energy impact. Build. Environ. 2018, 147, 50–66. [Google Scholar] [CrossRef]
- Valero, M.; Merello, P.; Navajas, F.; García-Diego,, F.J. Statistical Tools Applied in the Characterisation and Evaluation of a Thermo-Hygrometric Corrective Action Carried out at the Noheda Archaeological Site (Noheda, Spain). Sensors 2014, 14, 1665–1679. [Google Scholar] [CrossRef] [PubMed]
- Merello, P.; García-Diego, F.J.; Zarzo, M. Microclimate monitoring of Ariadne’s house (Pompeii, Italy) for preventive conservation of fresco paintings. Chem. Cent. J. 2012, 6, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scatigno, C.; Gaudenzi, S.; Sammartino, M.; Visco, G. A microclimate study on hypogea environments of ancient roman building. Sci. Total Environ. 2016, 566–567, 298–305. [Google Scholar] [CrossRef]
- Thompson, G. The Museum Environment, 2nd ed.; Butterworths-Heinmann: London, UK, 1978; p. 268. [Google Scholar]
- ASHRAE. ASHRAE Handbook. Heating, Ventilating, and Air-Conditioning Applications, SI ed.; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2011; Chapter 23. [Google Scholar]
- ICOM-CC (International Council of Museum – Committee for Conservation). Environmental Guidelinesl ICOM-CC and ICC Declaration; ICOM-CC: Melbourne, Australia, 2014; Available online: http://www.icom-cc.org/332/-icom-cc-documents/declaration-on-environmental-guidelines/#.YVwTGZpByUn (accessed on 6 May 2021).
- Osnovne Klimatske Karakteristike na Teritoriji Srbije (Standardni Normalni Period 1961–1990). Available online: http://www.hidmet.gov.rs/data/klimatologija_static/latin/Klima_Srbije.pdf (accessed on 9 August 2021).
- Temperaturni Ekstremi od Kad Postoje Merenja do Sada: Najviša Temperatura od + 44.9 °C, Izmerena je 24.07.2007. Godine u S.Palanci Najniža Temperatura od − 39.5 °C, Izmerena je 13.01.1985. Godine uKarajukića Bunarimana na Pešterskoj Visoravni Temperaturni režim u Srbiji 1961–1990. Available online: http://www.hidmet.gov.rs/data/klimatologija_static/latin/Temperaturni_rezim_u_Srbiji.pdf (accessed on 9 August 2021).
- Ekstremi Padavina od Kad Postoje Merenja do Sada: Najsušnija je Bila 2000. Godina, Kada je Izmereno Aamo 223.1 mm u Kikindi Najkišovitija je Bila 1937. Godina, Kada je Izmereno čak 1324.5 mm u Loznici Najveća mesečna količina Padavina Registrovana je u Junu 1954. Godine u Sremskoj Mitrovici, 308.9 mm Najveća dnevna količina Padavina Registrovana je 10. Oktobra 1955. Godine u Negotinu, 211.1 mm Padavinski režim u Srbiji 1961–1990. Available online: http://www.hidmet.gov.rs/data/klimatologija_static/latin/Padavinski_rezim_u_Srbiji.pdf (accessed on 9 August 2021).
- Jeremić, M. Sirmijum Grad na Vodi– Razvoj Urbanizma i Arhitekture od I do VI Veka; Arheološki Institut: Beograd, Srbija, 2016; p. 217. ISBN 978-86-6439-002-6. [Google Scholar]
- Werner, M.R. Imperial Palace Complex Sirmium; Zavod za Zaštitu Spomenika Kulture Sremska Mitrovica: Sremska Mitrovica, Srbija, 2009; pp. 26–27. ISBN 978-86-906655-6-3. [Google Scholar]
- Lučić, B. Novi nalazi mozaika sa lokaliteta 1A – Carska palata Sirmijuma. Spomenica Istor. Arh. Srem 2015, 14, 94–114. [Google Scholar]
- Smičiklas, N.; Protić, M.; Jelikić, A. The archeological site of Sirmium, Sremska Mitrovica, Serbia: Condition survey and de-velopment of a conservation and maintance program for the mosaics. In Managing Archeological Sites with Mosaics: From Real Problems to Practical Solutions, the 11th Conference of the International Committee for the Conservation of Mosaics, Meknes and Volubilis, 24–27 October 2011; Michaelides, D., Guimier-Sorbets, A.M., Eds.; EDIFIR-Edizioni: Firenze, Italy, 2017; pp. 225–242. Available online: https://iccm-mosaics.org/wp-content/uploads/2017/11/MEKNES-Proceedings.pdf (accessed on 12 June 2021).
- Testo 174H-Mini Temperature and Humidity Data Logger. Available online: https://www.testo.com/en-US/testo-174h/p/0572-6560 (accessed on 6 August 2021).
- Manual de Instrucciones. Available online: https://www.pce-iberica.es/manuales/manual-estacion-meterologica-pce-fws-20n-v2.pdf (accessed on 6 August 2021).
- Urzì, C.; DE Leo, F. Sampling with adhesive tape strips: An easy and rapid method to monitor microbial colonization on monument surfaces. J. Microbiol. Methods 2001, 44, 1–11. [Google Scholar] [CrossRef]
- Knežević-Vukčević, J.; Simić, D. Metode u Mikrobiologiji; Univerzitet u Beogradu, Biološki Fakultet: Beograd, Srbija, 2006. [Google Scholar]
- Omelyansky, V.L. Manual in Microbiology; USSR Academy of Sciences: Moscow, Leningrad, 1940. [Google Scholar]
- Viani, I.; Colucci, M.E.; Pergreffi, M.; Rossi, D.; Veronesi, L.; Bizzarro, A.; Capobianco, E.; Affanni, P.; Zoni, R.; Saccani, E.; et al. Passive air sampling: The use of the index of microbial air contamination. Acta Bio.-Med. Atenei Parm. 2020, 91, 92–105. [Google Scholar] [CrossRef]
- Ellis, M.B.; Ellis, J.P. Microfungi on Land Plants: An Identification Handbook; The Richmond Publishing Co. Ltd.: Slough, UK, 1997; ISBN 085546 246 9. [Google Scholar]
- Watanabe, T. Soil and Seed Fungi. Morphologies of Cultured Fungi and Key to Species; Crc Press: London, UK, 2002; ISBN 978-1-4398-0419-3. [Google Scholar]
- Samson, R.A.; Houbraken, J.; Thrane, U.; Frisvad, J.C.; Andersen, B. Food and Indoor Fungi, 1st ed.; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2010. [Google Scholar]
- Savković, Ž.; Unkovic, N.; Stupar, M.; Franković, M.; Jovanović, M.; Erić, S.; Šarić, K.; Stanković, S.; Dimkić, I.; Vukojevic, J.; et al. Diversity and biodeteriorative potential of fungal dwellers on ancient stone stela. Int. Biodeterior. Biodegrad. 2016, 115, 212–223. [Google Scholar] [CrossRef]
- Ortega-Morales, B.O.; Narváez-Zapata, J.; Estebanez, M.M.D.J.R.; Quintana, P.; De la Rosa-García, S.; Bullen, H.; Gómez-Cornelio, S.; Chan-Bacab, M.J. Bioweathering Potential of Cultivable Fungi Associated with Semi-Arid Surface Microhabitats of Mayan Buildings. Front. Microbiol. 2016, 7, 201. [Google Scholar] [CrossRef] [PubMed]
- Caneva, G.; Maggi, O.; Nugari, M.P.; Pietrini, A.M.; Piervittori, V.; Ricci, S.; Roccardi, A. The biological aerosol as a factor of biodeterioration. In Cultural Heritage and Aerobiology. Methods and Measurement Techniques for Biodeterioration Monitoring; Mandrioli, P., Caneva, G., Sabbioni, C., Eds.; Springer Science + Business Media: Dordrecht, Netherlands, 2003; pp. 3–29. ISBN 978-94-017-0185-3. [Google Scholar]
- Savković, Ž.; Stupar, M.; Unković, N.; Knežević, A.; Vukojević, J.; Ljaljević Grbić, M. Fungal Deterioration of Cultural Heritage Objects. Available online: https://cdn.intechopen.com/pdfs/77254.pdf (accessed on 12 July 2021).
- Garg, K.; Jain, K.K.; Mishra, A. Role of fungi in the deterioration of wall paintings. Sci. Total Environ. 1995, 167, 255–271. [Google Scholar] [CrossRef]
- Dornieden, T.; Gorbushina, A.A.; Krumbein, W.E. Patina-Physical and Chemical Interactions of Subaerial Biofilms with Objects of Art of Microbes and Art: The Role of Microbial Communities in the Degradation and Protection of Cultural Heritage; Ciferri, O., Tiano, P., Mastromei, G., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 105–119. [Google Scholar]
- Warscheid, T.; Braams, J. Biodeterioration of stone: A review. Int. Biodeterior. Biodegrad. 2000, 46, 343–368. [Google Scholar] [CrossRef]
- Trovão, J.; Gil, F.; Catarino, L.; Soares, F.; Tiago, I.; Portugal, A. Analysis of fungal deterioration phenomena in the first Portuguese King tomb using a multi-analytical approach. Int. Biodeterior. Biodegrad. 2020, 149, 104933. [Google Scholar] [CrossRef]
- Horner, W.E.; Helbling, A.; Salvaggio, J.E.; Lehrer, S.B. Fungal allergens. Clin. Microbiol. Rev. 1995, 8, 161–179. [Google Scholar] [CrossRef]
- Kasprzyk, I. Aeromycology--main research fields of interest during the last 25 years. Ann. Agric. Environ. Med. 2008, 15, 1–7. [Google Scholar] [PubMed]
- Simeray, J.; Chaumont, J.P.; Léger, D. Seasonal variations in the airborne fungal spore population of the East of France (Franche-Comte). Comparison between urban and rural environment during two years. Aerobiologia 1993, 9, 201–206. [Google Scholar] [CrossRef]
- Rao, C.; Burge, H.A.; Chang, J.C. Review of Quantitative Standards and Guidelines for Fungi in Indoor Air. J. Air Waste Manag. Assoc. 1996, 46, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Kolwzan, B.; Adamiak, W.; Grabas, K.; Pawelczyk, A. Introduction to Environmental Microbiology; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2006. [Google Scholar]
- Savković, Ž.; Stupar, M.; Unković, N.; Ivanović, Ž.; Blagojević, J.; Popović, S.; Vukojević, J.; Grbić, M.L. Diversity and seasonal dynamics of culturable airborne fungi in a cultural heritage conservation facility. Int. Biodeterior. Biodegrad. 2020, 157, 105163. [Google Scholar] [CrossRef]
Set Point or Annual Average | Maximum Fluctuations and Gradients in Controlled Spaces | Collection Risks and Benefits | ||
---|---|---|---|---|
Class of Control | Short Fluctuations Plus Space Gradients | Seasonal Adjustments in System Set Point | ||
50% rh (or historic annual average for permanent collections) | AA Precision control, no seasonal changes, with system failure fallback | +/−5% rh, +/−2 °C | Relative humidity no change Up 5 °C; Down 5 °C | No risk of mechanical damage to most artifacts and paintings. Some metals and minerals may degrade if 50% rh exceeds a critical relative humidity. Chemically unstable objects unusable within decades. |
A Precision control, some gradients or seasonal changes, not both, with system failure fallback | +/−5% rh, +/−2 °C | Up 10% rh, down 10% rh Up 5 °C; Down 10 °C | Small risk of mechanical damage to high vulnerability artifacts; no mechanical risk to most artifacts, paintings, photographs and books. Chemically unstable objects unusable within decades. | |
Temperature set between 15 and 25 °C | +/−10% rh, +/−2 °C | Rh no change Up 5 °C; down 10 °C | ||
Note: Rooms intended for loan exhibitions must handle set point specified in loan agreement, typically 50% rh, 21 °C, but sometimes 55% or 60% rh | B Precision control, some gradients plus winter temperature setback | +/−10% rh, +/−5 °C | Up 10% rh, down 10% rh Up 10 °C; but not above 30 °C | Moderate risk of mechanical damage to high vulnerability artifacts; tiny risk to most paintings, most photographs, some artifacts, some books; no risk to many artifacts and most books. Chemically unstable objects unusable within decades, less if routinely at 30 °C, but cold winter periods double life. |
C Prevent all high-risk extremes | Within 25 to 75% rh year-round; temperature rarely over 30 °C, usually below 25 °C | High risk of mechanical damage to high vulnerability artifacts; moderate risk to most paintings, most photographs, some artifacts, some books; tiny risk to many artifacts and most books. Chemically unstable objects unusable within decades, less if routinely at 30 °C, but cold winter periods double life. | ||
D Prevent dampness | Reliably below 75% rh | High risk of sudden or cumulative mechanical damage to most artifacts and paintings because of low-humidity fracture; avoids high-humidity delamination and deformations, especially in veneers, paintings, paper and photographs. Mould growth and rapid corrosion avoided. Chemically unstable objects unusable within decades, less if routinely at 30 °C, but cold winter periods double life. |
Sampling Site | Detected Taxa | CFU cm−2 | |
---|---|---|---|
M23 | Penicillium spp. | 4 | 40 |
Fusarium sp. | 3 | ||
Alternaria spp. | 2 | ||
Scopulariopsis sp. | 1 | ||
Cladosporium sp. | 1 | ||
Bacteria | 29 | ||
M34 | Aspergillus niger | 3 | 164 |
Penicillium spp. | 3 | ||
Cladosporium sp. | 12 | ||
Bacteria | 142 | ||
M2 | Aspergillus niger | 2 | 208 |
Cladosporium spp. | 15 | ||
Rhizopus sp. | 1 | ||
Bacteria | 190 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ugrinović, A.; Sudimac, B.; Savković, Ž. Microclimatic Effects on the Preservation of Finds in the Visitor Centre of the Archaeological Site 1a Imperial Palace Sirmium. Sustainability 2021, 13, 11083. https://doi.org/10.3390/su131911083
Ugrinović A, Sudimac B, Savković Ž. Microclimatic Effects on the Preservation of Finds in the Visitor Centre of the Archaeological Site 1a Imperial Palace Sirmium. Sustainability. 2021; 13(19):11083. https://doi.org/10.3390/su131911083
Chicago/Turabian StyleUgrinović, Aleksandra, Budimir Sudimac, and Željko Savković. 2021. "Microclimatic Effects on the Preservation of Finds in the Visitor Centre of the Archaeological Site 1a Imperial Palace Sirmium" Sustainability 13, no. 19: 11083. https://doi.org/10.3390/su131911083
APA StyleUgrinović, A., Sudimac, B., & Savković, Ž. (2021). Microclimatic Effects on the Preservation of Finds in the Visitor Centre of the Archaeological Site 1a Imperial Palace Sirmium. Sustainability, 13(19), 11083. https://doi.org/10.3390/su131911083