Predicting Bicycle-on-Board Transit Choice in a University Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Context
2.2. Sample and Survey Instrument
2.3. Data and GIS Measures
2.3.1. Survey Data
2.3.2. Objective Neighborhood Conditions
2.4. Empirical and ESDA Techniques
2.5. Global Discrete Choice Model Development
2.6. Spatial Discrete Choice Model Development—GWLR
3. Results
3.1. University Travel Characteristics
3.2. Visualizing Interest in BoB
3.3. Global and Spatial Discrete Choice Model Diagnostics
3.4. Personal and Neighborhood Factors Influencing BoB Interest
3.5. Geovisualizations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crane, P.; Kinzig, A. Nature in the metropolis. Science 2005, 308, 1225–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UN. World Urbanization Prospects. The 2014 Revision; United Nations Department of Economics and Social Affairs, Population Division: New York, NY, USA, 2015; p. 41. [Google Scholar]
- Goletz, M.; Haustein, S.; Wolking, C.; L’Hostis, A. Intermodality in European metropolises: The current state of the art, and the results of an expert survey covering Berlin, Copenhagen, Hamburg and Paris. Transp. Policy 2020. [Google Scholar] [CrossRef]
- Shaker, R.R.; Altman, Y.; Deng, C.; Vaz, E.; Forsythe, K.W. Investigating urban heat island through spatial analysis of New York City streetscapes. J. Clean. Prod. 2019, 233, 972–992. [Google Scholar] [CrossRef]
- Rybarczyk, G.; Banerjee, S.; Starking-Szymanski, M.D.; Shaker, R.R. Travel and us: The impact of mode share on sentiment using geo-social media and GIS. J. Locat. Based Serv. 2018, 12, 40–62. [Google Scholar] [CrossRef]
- Sagaris, L.; Tiznado-Aitken, I.; Steiniger, S. Exploring the social and spatial potential of an intermodal approach to transport planning. Int. J. Sustain. Transp. 2017, 11, 721–736. [Google Scholar] [CrossRef]
- Shaker, R.R.; Rybarczyk, G.; Brown, C.; Papp, V.; Alkins, S. (Re) emphasizing Urban Infrastructure Resilience via Scoping Review and Content Analysis. Urban Sci. 2019, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Toor, W.; Havlick, S.W. Transportation & Sustainable Campus Communities: Issues, Examples, Solutions; Island Press: Washington, DC, USA, 2004. [Google Scholar]
- Newman, P.; Kenworthy, J.R. Sustainability and Cities: Overcoming Automobile Dependence; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Cheng, Y.-H.; Liu, K.-C. Evaluating bicycle-transit users’ perceptions of intermodal inconvenience. Transp. Res. Part A Policy Pract. 2012, 46, 1690–1706. [Google Scholar] [CrossRef]
- Yang, H.; Lu, X.; Cherry, C.; Liu, X.; Li, Y. Spatial variations in active mode trip volume at intersections: A local analysis utilizing geographically weighted regression. J. Transp. Geogr. 2017, 64, 184–194. [Google Scholar] [CrossRef]
- Pucher, J.; Buehler, R. Walking and cycling for healthy cities. Built Environ. 2010, 36, 391–414. [Google Scholar] [CrossRef]
- Gebhardt, L.; Krajzewicz, D.; Oostendorp, R. Intermodality—key to a more efficient urban transport system? In Proceedings of the 2017 Eceee Summer Study, Hyères, France, 29 May–3 June 2017; ECEEE Summer Study: Hyères, France, 2017; pp. 759–769. [Google Scholar]
- Martens, K. The bicycle as a feedering mode: Experiences from three European countries. Transp. Res. Part D Transp. Environ. 2004, 9, 281–294. [Google Scholar] [CrossRef]
- Krizek, K.J.; Stonebraker, E.W. Assessing options to enhance bicycle and transit integration. Transp. Res. Rec. 2011, 2217, 162–167. [Google Scholar] [CrossRef]
- Pucher, J.; Dill, J.; Handy, S. Infrastructure, programs, and policies to increase bicycling: An international review. Prev. Med. 2010, 50, 106–125. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Cervero, R.; Iuchi, K. Transforming Cities with Transit: Transit and Land-Use Integration for Sustainable Urban Development; World Bank Publications: Washington, DC, USA, 2013. [Google Scholar]
- Maibach, E.; Steg, L.; Anable, J. Promoting physical activity and reducing climate change: Opportunities to replace short car trips with active transportation. Prev. Med. 2009, 49, 326–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kager, R.; Harms, L. Synergies from Improved Cycling-Transit Integration: Towards an Integrated Urban Mobility System; Organisation for Economic Co-operation and Development (OECD): Paris, France, 2017. [Google Scholar]
- APTA. Public Transportation Fact Book; APTA: Washington, DC, USA, 2011. [Google Scholar]
- Flamm, B.; Rivasplata, C. Perceptions of Bicycle-Friendly Policy Impacts on Accessibility to Transit Services: The First and Last Mile Bridge; San Jose State University: San Jose, CA, USA, 2014; 100p. [Google Scholar]
- Hu, L.; Schneider, R.J. Shifts between automobile, bus, and bicycle commuting in an urban setting. J. Urban Plan. Dev. 2015, 141, 04014025. [Google Scholar] [CrossRef] [Green Version]
- Mees, P. Transport for Suburbia: Beyond the Automobile Age; Earthscan: London, UK, 2009. [Google Scholar]
- Hegger, R. Public transport and cycling: Living apart or together? Public Transp. Int. 2007, 56, 38–41. [Google Scholar]
- Pucher, J.; Buehler, R. Integrating bicycling and public transport in North America. J. Public Transp. 2009, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- Ensor, M.; Slason, J. Forecasting the benefits from integrating cycling and public transport. In Proceedings of the Institution of Professional Engineers New Zealand (IPENZ) Transportation Conference, Auckland, New Zealand, 27–30 March 2011. [Google Scholar]
- Meenar, M.; Flamm, B.; Keenan, K. Mapping the Emotional Experience of Travel to Understand Cycle-Transit User Behavior. Sustainability 2019, 11, 4743. [Google Scholar] [CrossRef] [Green Version]
- Hagelin, C.A. Integrating bicycles and transit through bike-to-bus strategy. In Proceedings of the Transportation Research Board 86th Annual Meeting, Washington, DC, USA, 21–25 January 2007. [Google Scholar]
- Flamm, B.J. Determinants of bicycle-on-bus boardings: A case study of the Greater Cleveland RTA. J. Public Transp. 2013, 16, 4. [Google Scholar] [CrossRef] [Green Version]
- Bachand-Marleau, J.; Larsen, J.; El-Geneidy, A.M. Much-anticipated marriage of cycling and transit: How will it work? Transp. Res. Rec. 2011, 2247, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Rybarczyk, G.; Gallagher, L. Measuring the potential for bicycling and walking at a metropolitan commuter university. J. Transp. Geogr. 2014, 39, 1–10. [Google Scholar] [CrossRef]
- UM-Flint Quick Facts-Student Body. Available online: https://www.umflint.edu/analysis/qf_student_body (accessed on 13 May 2020).
- Mott Community College. Demographic Profile by Term, 2019/2020; Mott Community College: Flint, MI, USA, 2018. [Google Scholar]
- Kettering University. Available online: https://www.usnews.com/best-colleges/kettering-university-2262 (accessed on 13 May 2020).
- Gold, R. UM-Flint Launches New Bike Share Program. M-Flint NOW, 23 December 2016. [Google Scholar]
- League of American Bicyclists. Bicycle Friendly University Current Awards. Available online: https://bikeleague.org/bfa/awards (accessed on 1 August 2020).
- Kettering University. Kettering University Launches Environmental Stewardship Focus Option for All Degrees. Available online: https://www.kettering.edu/news/kettering-university-launches-environmental-stewardship-focus-option-all-degrees (accessed on 7 August 2020).
- NBC25/Fox66 Mott Community College Holds Bicyle Safety Rodeo for Kids. Available online: https://nbc25news.com/news/local/mott-community-college-holds-bicyle-safety-rodeo-for-kids (accessed on 7 August 2020).
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Saelens, B.; Sallis, J.F.; Frank, L.D. Environmental Correlates of Walking and Cycling: Findings From the Transportation, Urban Design, and Planning Literatures. Ann. Behav. Med. 2003, 25, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Cao, J. How perceptions mediate the effects of the built environment on travel behavior? Transportation 2019, 46, 175–197. [Google Scholar] [CrossRef]
- Ramsey, K.; Bell, A. Smart Location Database, Version 2.0 User Guide, 2nd ed.; University of Southeastern Philippines: Davao City, Philippines, 2014; pp. 1–52. [Google Scholar]
- Rybarczyk, G.; Taylor, D.; Brines, S.; Wetzel, R. A Geospatial Analysis of Access to Ethnic Food Retailers in Two Michigan Cities: Investigating the Importance of Outlet Type within Active Travel Neighborhoods. Int. J. Environ. Res. Public Health 2020, 17, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Du, Q.; Ren, F.; Ma, X. Assessing Spatial Accessibility to Hierarchical Urban Parks by Multi-Types of Travel Distance in Shenzhen, China. Int. J. Environ. Res. Public Health 2019, 16, 1038. [Google Scholar] [CrossRef] [Green Version]
- Landis, B.W.; Vattikuti, V.R.; Brannick, M.T. Real-Time Human Perceptions: Toward a Bicycle Level of Service. Transp. Res. Rec. 1997, 1578, 119–126. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; CRC Press: Boca Raton, FL, USA, 1986; Volume 26. [Google Scholar]
- Anselin, L.; Li, X. Operational local join count statistics for cluster detection. J. Geogr. Syst. 2019, 21, 189–210. [Google Scholar] [CrossRef]
- Cervero, R.; Duncan, M. Walking, Bicycling, and Urban Landscapes: Evidence From the San Francisco Bay Area. Am. J. Public Health 2003, 93, 1478–1483. [Google Scholar] [CrossRef]
- Shaker, R.R.; Yakubov, A.D.; Nick, S.M.; Vennie-Vollrath, E.; Ehlinger, T.J.; Forsythe, K.W. Predicting aquatic invasion in Adirondack lakes: A spatial analysis of lake and landscape characteristics. Ecosphere 2017, 8, e01723. [Google Scholar] [CrossRef] [Green Version]
- Box, G.E.; Tidwell, P.W. Transformation of the independent variables. Technometrics 1962, 4, 531–550. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int. J. Remote Sens. 2005, 26, 1477–1491. [Google Scholar] [CrossRef]
- Shaker, R.R. Examining sustainable landscape function across the Republic of Moldova. Habitat Int. 2016, 1–15. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Nakaya, T. GWR4 User Manual. Available online: http://www.st-andrews.ac.uk/geoinformatics/wp-content/uploads/GWR4manual_201311.pdf (accessed on 4 November 2013).
- Fotheringham, A.S.; Crespo, R.; Yao, J. Geographical and Temporal Weighted Regression. Geogr. Anal. 2015, 47, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Matthews, S.A.; Yang, T.-C. Mapping the results of local statistics: Using geographically weighted regression. Demogr. Res. 2012, 26, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Rybarczyk, G. Toward a spatial understanding of active transportation potential among a university population. Int. J. Sustain. Transp. 2018, 12, 625–636. [Google Scholar] [CrossRef]
- Kager, R.; Bertolini, L.; Te Brömmelstroet, M. Characterisation of and reflections on the synergy of bicycles and public transport. Transp. Res. Part A Policy Pract. 2016, 85, 208–219. [Google Scholar] [CrossRef] [Green Version]
- Suraci, D. Bicycle and Transit Integration: A Practical Transit Agency Guide to Bicycle Integration and Equitable Mobility; APTA SUDS-UD-RP-009-18; American Public Transportation Association: Washington, DC, USA, 2018; pp. 1–53. [Google Scholar]
- Oostendorp, R.; Gebhardt, L. Combining means of transport as a users’ strategy to optimize traveling in an urban context: Empirical results on intermodal travel behavior from a survey in Berlin. J. Transp. Geogr. 2018, 71, 72–83. [Google Scholar] [CrossRef]
- Mohanty, S.; Blanchard, S. Complete transit: Evaluating walking and biking to transit using a mixed logit mode choice model. In Proceedings of the 95th Transportation Research Board Annual Meeting, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
- Heinen, E.; Van Wee, B.; Maat, K. Commuting by bicycle: An overview of the literature. Transp. Rev. 2010, 30, 59–96. [Google Scholar] [CrossRef]
- Ji, Y.; Ma, X.; Yang, M.; Jin, Y.; Gao, L. Exploring spatially varying influences on metro-bikeshare transfer: A geographically weighted poisson regression approach. Sustainability 2018, 10, 1526. [Google Scholar] [CrossRef] [Green Version]
- Heinen, E.; Bohte, W. Multimodal Commuting to Work by Public Transport and Bicycle. Transp. Res. Rec. J. Transp. Res. Board 2014, 111–122. [Google Scholar] [CrossRef]
- Krizek, K.J.; Stonebraker, E.W. Bicycling and Transit. Transp. Res. Rec. J. Transp. Res. Board 2010, 2144, 161–167. [Google Scholar] [CrossRef]
- Zhao, P.; Li, S. Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing. Transp. Res. Part A Policy Pract. 2017, 99, 46–60. [Google Scholar] [CrossRef]
- Maas, J.; Verheij, R.A.; Spreeuwenberg, P.; Groenewegen, P.P. Physical activity as a possible mechanism behind the relationship between green space and health: A multilevel analysis. BMC Public Health 2008, 8, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weliwitiya, H.; Rose, G.; Johnson, M. Bicycle train intermodality: Effects of demography, station characteristics and the built environment. J. Transp. Geogr. 2019, 74, 395–404. [Google Scholar] [CrossRef]
Variable | Description | Source | Share (%) | Mean (SD) |
---|---|---|---|---|
Dependent variable | ||||
BoB mode choice | Dummy, 1 = yes, 0 = no | MTA | 40.57 | - |
Independent variables | Personal | |||
Gender | Dummy, 1 = male, 0 = female | MTA | 46.37 | - |
Age30orOlder | Dummy, 1 = yes, 0 = no | MTA | 47.10 | - |
Ctimegrtr30 | Dummy, 1 = yes, commute to campus greater than 30 min, 0 = no | MTA | 7.97 | - |
BicycleOwn | Dummy, 1 = yes, 0 = no | MTA | 44.20 | - |
University | Dummy, UM-Flint = 1, MCC = 1, KU = ref. | MTA | - | - |
ActiveTrvler | Dummy, 1 = primary mode to university is bicycle, walking, or transit, 0 = other | MTA | 47.10 | - |
Neighborhood | ||||
DistToPark | Res. distance (m) to closest city park | COF | - | 403.62 (253.48) |
DistToBike | Res. distance (m) to closest bicycle facility (off-street or on-street) | COF | - | 311.79 (355.97) |
DistToBusStp | Res. distance (m) to closest bus stop | MTA | 143.40 (185.27) | |
LandUseDiv | # of land-uses per km | SOM | - | 12.94 (6.93) |
RoadDens | Total road network density per CBG | SLD | - | 22.15 (4.79) |
SidewalkDens | Total length of sidewalks per km | COF | - | 124.92 (60.13) |
PopDens | Residential density per km | SLD | - | 1476.36 (630.67) |
RaceBlkDens | Density of black persons per km | Census | - | 48.81 (27.76) |
FamBelPov | % families below poverty level | Census | - | 26.7 (18.8) |
VacantHse | Density of vacant homes per km | COF | - | 108.85 (148.24) |
NatWalkIndex | Walkability index per CBG | SLD | - | 8.62 (2.17) |
BLOS | Mean bikeability index per CBG | COF | - | 3.49 (0.43) |
Crime | Density of crimes per km | COF | - | 249.46 (116.27) |
Travel Behavior and Access | UM-Flint (%) | MCC (%) | KU (%) |
---|---|---|---|
Primary travel mode | |||
Automobile | 72.0 | 60.6 | 67.2 |
Transit | 7.8 | 25.6 | 0.0 |
Bicycling | 4.9 | 0.0 | 0.0 |
Walking | 9.9 | 2.8 | 29.5 |
Primary travel mode to university | |||
Automobile | 70.8 | 61.7 | 63.9 |
Transit | 10.3 | 26.7 | 0.0 |
Bicycling | 4.9 | 1.7 | 0.0 |
Walking | 9.9 | 3.3 | 34.4 |
Commute time to university | |||
<10 min | 23.0 | 11.1 | 68.9 |
10–19 min | 36.2 | 47.8 | 19.7 |
20–39 min | 22.6 | 23.3 | 8.2 |
30–44 min | 9.9 | 8.3 | 0.0 |
≥45 min | 8.2 | 9.4 | 3.3 |
Bus stop within 5 min | |||
Yes | 39.9 | 46.7 | 63.9 |
No | 60.1 | 53.3 | 36.1 |
BoB mode-choice | |||
Yes | 38.3 | 39.4 | 13.1 |
No | 61.7 | 60.6 | 86.9 |
Diagnostic | Model 1 | Model 2 | Model 3 |
---|---|---|---|
Hosmer–Lemeshow | 5.814 a | 13.721 b | - |
Pseudo R2 | 0.217 | 0.364 | 0.400 |
AICc | 156.246 | 152.369 | 151.953 |
AIC | 156.246 | 148.435 | 146.596 |
Deviance | 145.791 | 118.435 | 111.786 |
Max VIF | 1.024 | 3.136 | - |
Moran’s I c | −0.143 * | −0.154 ** | −0.147 * |
% correctly classified | 74.600 | 79.000 | - |
Independent Variables | Model 1 a | Model 2 b | Model 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(β) | SE | OR | C.I. (95%) | (β) | SE | OR | C.I. (95%) | Min | Med. | Max | |
Intercept | −0.865 | 1.363 | 0.421 | - | −7.905 | 3.612 | 0.000 ** | - | −9.3626 | −7.772 | −6.991 |
Personal | |||||||||||
Gender | - | - | - | - | 1.177 | 0.533 | 3.244 ** | 1.140, 9.230 | 1.097 | 2.292 | 1.296 |
Age30orOlder | 1.323 | 0.454 | 3.756 ** | 1.544, 9.137 | - | - | - | - | - | - | - |
CommuteTimeGrtr30 | - | - | - | - | −2.928 | 1.359 | 0.053 ** | 0.004, 0.768 | −3.469 | −3.009 | −2.644 |
BicycleOwn | 2.139 | 0.457 | 3.756 *** | 3.464, 20.794 | 2.656 | 0.609 | 19.028 *** | 4.316, 46.941 | 2.620 | 2.701 | 2.719 |
Active traveler | - | - | - | - | - | - | - | - | |||
UM-Flint | - | - | - | - | 1.875 | 0.880 | 6.521 ** | 1.163, 36.567 | 1.714 | 1.872 | 1.985 |
Mott | - | - | - | - | 2.264 | 0.999 | 9.626 ** | 1.358, 68.252 | 2.108 | 2.292 | 2.397 |
Neighborhood | |||||||||||
DistToPark c | −0.731 | 238 | 2.098 ** | 0.302, 768 | −0.854 | 0.307 | 0.426 *** | 0.233, 0.777 | −0.901 | −0.800 | −0.780 |
DistToBike c | - | - | - | - | −0.360 | 0.148 | 0.698 ** | 0.522, 0.933 | −0.368 | −0.346 | −0.319 |
DistToBusStp | - | - | - | - | - | - | - | - | - | - | - |
LandUseDiv c | 0.741 | 0.365 | 2.098 ** | 1.026, 4.291 | 1.513 | 0.546 | 4.539 *** | 1.557, 13.228 | 1.374 | 1.452 | 1.682 |
RoadDens | - | - | - | - | |||||||
SidewalkDens | 0.009 | 0.004 | 1.009 ** | 1.001, 1.017 | 0.008 | 0.004 | 1.008 * | 0.999, 1.017 | 0.005 | 0.006 | 0.009 |
RaceBlkDens c | - | - | - | - | 0.774 | 0.424 | 2.168 * | 0.944, 4.981 | 0.718 | 0.757 | 0.788 |
PopDens | - | - | - | - | - | - | - | - | - | - | - |
FamBelPov | - | - | - | - | - | - | - | - | - | - | - |
VacantLot | - | - | - | - | - | - | - | - | - | - | - |
NatWalkIndex | - | - | - | - | - | - | - | - | - | - | - |
BLOS | - | - | - | - | - | - | - | - | - | - | - |
Crime | - | - | - | - | - | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybarczyk, G.; Shaker, R.R. Predicting Bicycle-on-Board Transit Choice in a University Environment. Sustainability 2021, 13, 512. https://doi.org/10.3390/su13020512
Rybarczyk G, Shaker RR. Predicting Bicycle-on-Board Transit Choice in a University Environment. Sustainability. 2021; 13(2):512. https://doi.org/10.3390/su13020512
Chicago/Turabian StyleRybarczyk, Greg, and Richard R. Shaker. 2021. "Predicting Bicycle-on-Board Transit Choice in a University Environment" Sustainability 13, no. 2: 512. https://doi.org/10.3390/su13020512