Feasibility Analysis of the Sustainability of the Tres Palos Coastal Lagoon: A Multifactorial Approach
Abstract
:1. Introduction
- The human activities generate direct drivers that commonly damage the quality of waterbodies [47];
- The energy availability for the food web, thus defining the community integrity and the ecosystem functionality, which varies from unproductive, intermediate productive, and highly productive [48];
- The effects caused by chemical factors on trophic states are regularly characterized by green pigment found in most algae caused by chlorophyll, growth of algae and aquatic plants caused by phosphorous and nitrogen as nutrients necessary for the clearness of water transparency;
- The four trophic states and their most important characteristics:
- (1)
- Oligotrophic state: clear water, few aquatic plants, fish, wildlife, and a sandy bottom;
- (2)
- Mesotrophic state: moderate level of biological productivity, clear water, and aquatic plants;
- (3)
- Eutrophic state: high level of biological productivity that supports big quantities of fish and wildlife;
- (4)
- Hypertrophic state: highest level of biological productivity that may support important quantities of fish and wildlife; the water body may have an abundance of aquatic plants, and very low water clarity.
2. Methods
2.1. Towards the Feasibility Analysis of Coastal Lagoon Sustainability
- (1)
- The method for building the network, which contains the relationships, based on a reclassification of indirect and direct drivers;
- (2)
- The method for building pathways, which are extracted from the network. A pathway is defined by a sequence of relationships that link indirect drivers with direct drivers. Pathways may have one or several initial nodes representing indirect drivers and just one final node representing a direct driver;
- (3)
- Finally, a method based on the evaluation of relationships. The network is composed of simple and multiple relationships. We describe below the cases related to simple and multiple relationships:
- A simple relationship is represented by an effector factor and a receptor factor, as shown by the following expression: X → Y, where X represents the effector and Y the receptor. For example, we can establish the following relationship: factor X causes effects on factor Y.
- Multiple relationships take place when several effector factors exert effects on one receptor factor. That is, two or more than two effector factors may exert effects on one receptor factor.
- One effector factor exerts effects on two or more than two receptor factors.
2.2. The Method to Build the Network
- (i)
- The nodes representing human activities that may affect the cultural eutrophication processes, thus exerting influence on potential changes in the eutrophication process will be associated with indirect drivers.
- (ii)
- The nodes representing actions or events related to the production of tangible and measurable elements such as quantities of nitrogen and phosphorous, which may change the trophic state of the lagoon, will be associated with subcategories of direct drivers.
- (1)
- The construction of a network structure that will be easier to interpret;
- (2)
- The understanding of factors that influence the cultural eutrophication processes, which may change the trophic state of the lagoon;
- (3)
- The analysis of relationships between factors that may hinder the feasibility of coastal lagoon sustainability.
2.3. The Method to Build Pathways
- (1)
- A relationship is defined by an effector and a receptor linked by a directed arc, as follows:
- X→Y, where X takes the role of an effector and Y is the receptor. The symbol “→” means a directed arc, where the direction is indicated by the arrow serving as a semantical meaning of the relationship, thus it should be respected.
- (2)
- The nodes representing Indirect Drivers-I will be colored as follows: the population increase node in gray; the socioeconomic node in black; the sociopolitical node in red; the technological node in blue; the socio-environmental (culture) node in green.
- (3)
- The links from Indirect Drivers-I to other nodes belonging to Indirect Drivers-II and III are not explicitly drawn with a long line arc, which may bring about a complex web hard to handle. In order to cope with this problem, the colored node representing an Indirect Driver-I (an effector) is linked to the receptor node (an Indirect Driver-II or -III) with a short, directed line, as shown by several links depicted in Figure 2.
- (4)
- The pathways are built starting at a selected Direct Driver-I of the network and then going backwards to the Indirect Drivers-I through the intermediate relationships.
2.4. The Method to Evaluate Relationships of the Pathways
3. Analysis of Results and Discussion
3.1. The Importance of the Understanding and Assessment of the Cultural Eutrophication Process
3.2. Feasibility Analysis of the Relationship Evaluations
3.3. The Conditions of an Evaluable Relationship
3.4. Results of the Feasibility of the Relationship Evaluations
3.5. Synthesis of Results of the Feasibility of Relationship Evaluations
3.6. An Analysis of Public Policies for the Tres Palos Coastal Lagoon That Hinder Its Sustainability
Suggestions for the Short Term Aimed at Improving the Sustainability Conditions of the Coastal Lagoon
3.7. Disadvantages and Advantages in the Use of Multifactorial Approaches for the Study of the Cultural Eutrophication Process
3.7.1. Disadvantages
3.7.2. Advantages
- (i)
- We are able to identify what relationships, within the network of relationships, are causing damage to the eutrophication process and, even more, what factors are involved.
- (ii)
- We are able to identify those pathways that are causing the most important damage.
- (iii)
- We are able to distinguish whether the damages are related to demographic, sociopolitical, socioeconomic, technological or cultural factors. Thus, these factors will not be overlooked in the analysis aimed at identifying which factors cause or influence the eutrophication process and damage the trophic state.
- We are able to identify what data, information, and resources are lacking or missing, which make unfeasible the evaluation of relationships between factors involved in the pathways.
- The improvement of the understanding and assessment of the cultural eutrophication process will support the decision-making process to select adequate management actions.
- Multifactorial analyses and assessments are very important tools to pave the way towards the sustainability of coastal lagoons.
3.8. On the Advantages of Building Pathways by Using the New Classification Related to Indirect Drivers and Direct Drivers
3.9. The Coastal Lagoon State Related to Human Settlements and Mangroves: From 1981 to 2015
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kennish, M.J.; Paerl, H. Coastal Lagoons: Critical Habitats of Environmental Change; Kennish, M.J., Paerl, H.W., Eds.; Marine Science Series; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–16. [Google Scholar]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; De Groot, R.; Sutton, P.C.; Van Der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Inda, H.; García-Rodríguez, F.; Del Puerto, L.; Stutz, S.; Figueira, R.C.L.; Ferreira, P.A.D.L.; Mazzeo, N. Discriminating between natural and human-induced shifts in a shallow coastal lagoon: A multidisciplinary approach. Anthropocene 2016, 16, 1–15. [Google Scholar] [CrossRef]
- Tavares, D.C.; Guadagnin, D.L.; De Moura, J.F.; Siciliano, S.; Merico, A. Environmental and anthropogenic factors structuring waterbird habitats of tropical coastal lagoons: Implications for management. Biol. Conserv. 2015, 186, 12–21. [Google Scholar] [CrossRef]
- Chin, A.; Florsheim, J.L.; Wohl, E.; Collins, B.D. Feedbacks in Human–Landscape Systems. Environ. Manag. 2013, 53, 28–41. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, Á.; Marcos, C.; Pérez-Ruzafa, M. Recent advances in coastal lagoons ecology: Evolving old ideas and assump-tions. Transit. Waters Bull. 2011, 5, 50–74. [Google Scholar] [CrossRef]
- Ramos-Quintana, F.; Sotelo-Nava, H.; Saldarriaga-Noreña, H.A.; Tovar-Sánchez, E. Assessing the Environmental Quality Resulting from Damages to Human-Nature Interactions Caused by Population Increase: A Systems Thinking Approach. Sustainability 2019, 11, 1957. [Google Scholar] [CrossRef] [Green Version]
- Skoulikidis, N. The environmental state of rivers in the Balkans—A review within the DPSIR framework. Sci. Total. Environ. 2009, 407, 2501–2516. [Google Scholar] [CrossRef]
- Hoornweg, D.; Bhada-Tata, P.; Kennedy, C.W. Environment: Waste production must peak this century. Nature 2013, 502, 615–617. [Google Scholar] [CrossRef] [Green Version]
- Dyson, B.; Chang, N.-B. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling. Waste Manag. 2005, 25, 669–679. [Google Scholar] [CrossRef] [PubMed]
- The World Bank. What a Waste. 2018. Available online: https://openknowledge.worldbank.org/handle/10986/30317 (accessed on 6 August 2020).
- Senzige, J.P. Modelling the Effects of Population Dynamics on Solid Waste Generation and Treatment. Sci. J. Appl. Math. Stat. 2016, 4, 141. [Google Scholar] [CrossRef] [Green Version]
- Manaf, L.A.; Abu Samah, M.A.; Zukki, N.I.M. Municipal solid waste management in Malaysia: Practices and challenges. Waste Manag. 2009, 29, 2902–2906. [Google Scholar] [CrossRef]
- Minghua, Z.; Xiumin, F.; Rovetta, A.; Qichang, H.; Vicentini, F.; Bingkai, L.; Giusti, A.; Yi, L. Municipal solid waste management in Pudong New Area, China. Waste Manag. 2009, 29, 1227–1233. [Google Scholar] [CrossRef]
- Bricker, S.B.; Ferreira, J.; Simas, T. An integrated methodology for assessment of estuarine trophic status. Ecol. Model. 2003, 169, 39–60. [Google Scholar] [CrossRef] [Green Version]
- Newton, A.; Icely, J.; Falcao, M.; Nobre, A.M.; Nunes, J.P.; Ferreira, J.; Vale, C. Evaluation of eutrophication in the Ria Formosa coastal lagoon, Portugal. Cont. Shelf Res. 2003, 23, 1945–1961. [Google Scholar] [CrossRef]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef]
- Cotovicz, L.C.; Brandini, N.; Knoppers, B.A.; Mizerkowski, B.D.; Sterza, J.M.; Ovalle, A.R.C.; Medeiros, P.R.P. Assessment of the trophic status of four coastal lagoons and one estuarine delta, eastern Brazil. Environ. Monit. Assess. 2012, 185, 3297–3311. [Google Scholar] [CrossRef]
- Silveira, J.A.H.; Ramírez-Ramírez, J. Salinity and nutrients in the coastal lagoons of Yucatan, Mexico. SIL Proc. 1922–2010 1995, 26, 1473–1478. [Google Scholar] [CrossRef]
- Esteves, F.A.; Caliman, A.; Santangelo, J.M.; Guarient, R.D.; Farjalla, V.F.; Brozelli, R.L. Neotripical coastal lagoons: An ap-praisal of their biodiversity, functioning, threats and conservation management. Braz. J. Biol. 2008, 68, 967–981. [Google Scholar] [CrossRef] [Green Version]
- Otu, M.K.; Ramlal, P.; Wilkinson, P.; Hall, R.I.; Hecky, R.E. Paleolimnological evidence of the effects of recent cultural eutrophication during the last 200years in Lake Malawi, East Africa. J. Great Lakes Res. 2011, 37, 61–74. [Google Scholar] [CrossRef]
- Thevenon, F.; Adatte, T.; Wildi, W.; Poté, J. Antibiotic resistant bacteria/genes dissemination in lacustrine sediments highly increased following cultural eutrophication of Lake Geneva (Switzerland). Chemosphere 2012, 86, 468–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilson, A.E. Eutrophication: Causes, Consequences, and Controls in Aquatic Eco-systems. Nat. Educ. Knowl. 2013, 4, 10. [Google Scholar]
- Cotovicz, L.C., Jr.; Knoppers, B.A.; Brandini, N.; Santos, S.J.C.; Abril, G. A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences 2015, 12, 6125–6146. [Google Scholar] [CrossRef] [Green Version]
- Van Rijssel, J.C.; Hecky, R.E.; Kishe-Machumu, M.A.; Witte, F. Changing ecology of Lake Victoria cichlids and their environment: Evidence from C13 and N15 analyses. Hydrobiologia 2016, 791, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Haas, M.; Baumann, F.; Castella, D.; Haghipour, N.; Reusch, A.; Strasser, M.; Eglinton, T.I.; Dubois, N. Roman-driven cultural eutrophication of Lake Murten, Switzerland. Earth Planet. Sci. Lett. 2019, 505, 110–117. [Google Scholar] [CrossRef]
- Fielding, J.J.; Croudace, I.W.; Kemp, A.E.; Pearce, R.B.; Cotterill, C.J.; Langdon, P.; Avery, R. Tracing lake pollution, eutrophication and partial recovery from the sediments of Windermere, UK, using geochemistry and sediment microfabrics. Sci. Total. Environ. 2020, 722, 137745. [Google Scholar] [CrossRef]
- Dillon, P.; Kirchner, W. The effects of geology and land use on the export of phosphorus from watersheds. Water Res. 1975, 9, 135–148. [Google Scholar] [CrossRef]
- Carpenter, S.R. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proc. Natl. Acad. Sci. USA 2005, 102, 10002–10005. [Google Scholar] [CrossRef] [Green Version]
- Granat, L. Deposition of Nitrate and Ammonium from the Atmosphere to the Baltic Sea. Ecol. Stud. 2001, 148, 133–148. [Google Scholar] [CrossRef]
- Lo, W.-T.; Purcell, J.E.; Hung, J.-J.; Su, H.-M.; Hsu, P.-K. Enhancement of jellyfish (Aurelia aurita) populations by extensive aquaculture rafts in a coastal lagoon in Taiwan. ICES J. Mar. Sci. 2008, 65, 453–461. [Google Scholar] [CrossRef] [Green Version]
- La Notte, A.A.; Turvani, M.; Giaccaria, S. Economic valuation of ecosystem services at local level for policy makers and planners. The case of the island of St. Erasmo in the Lagoon of Venice. Environ. Econ. 2001, 2, 87–103. [Google Scholar]
- Rova, S.; Pranovi, F.; Müller, F. Provision of ecosystem services in the lagoon of Venice (Italy): An initial spatial assessment. Ecohydrol. Hydrobiol. 2015, 15, 13–25. [Google Scholar] [CrossRef]
- O’Higgins, T.; Nogueira, A.A.; Lillebø, A.I. A simple spatial typology for assessment of complex coastal ecosystem services across multiple scales. Sci. Total. Environ. 2019, 649, 1452–1466. [Google Scholar] [CrossRef] [PubMed]
- Malinga, R.; Gordon, L.J.; Jewitt, G.; Lindborg, R. Mapping ecosystem services across scales and continents—A review. Ecosyst. Serv. 2015, 13, 57–63. [Google Scholar] [CrossRef]
- Vilardy, S.P.; González, J.A.; Martín-López, B.; Montes, C. Relationships between hydrological regime and ecosystem services supply in a Caribbean coastal wetland: A social-ecological approach. Hydrol. Sci. J. 2011, 56, 1423–1435. [Google Scholar] [CrossRef] [Green Version]
- Basset, A.; Elliott, M.; West, R.; Wilson, J.G. Estuarine and lagoon biodiversity and their natural goods and services. Estuarine Coast. Shelf Sci. 2013, 132, 1–4. [Google Scholar] [CrossRef]
- Lillebø, A.I.; Somma, F.; Norén, K.; Gonçalves, J.; Alves, M.F.; Ballarini, E.; Bentes, L.; Bielecka, M.; Chubarenko, B.V.; Heise, S.; et al. Assessment of marine ecosystem services indicators: Experiences and lessons learned from 14 European case studies. Integr. Environ. Assess. Manag. 2016, 12, 726–734. [Google Scholar] [CrossRef]
- Aldana-Domínguez, J.; Montes, C.; Martínez, M.; Medina, N.; Hahn, J.; Duque, M. Biodiversity and Ecosystem Services Knowledge in the Colombian Caribbean. Trop. Conserv. Sci. 2017, 10, 1–41. [Google Scholar] [CrossRef]
- Velasco, A.M.; Pérez-Ruzafa, A.; Martínez-Paz, J.M.; Marcos, C. Ecosystem services and main environmental risks in a coastal lagoon (Mar Menor, Murcia, SE Spain): The public perception. J. Nat. Conserv. 2018, 43, 180–189. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Orabi, O.H.; Osman, M.F. Evaluation of Some Pollution at Manzala Lagoon: Special Reference to Medical Importance of Mollusca in Egypt. J. Environ. Anal. Toxicol. 2015, 5, 311. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Ruiz, T.M.; Arreola-Lizárraga, J.A.; Morquecho, L.; Mendoza-Salgado, R.A.; Martínez-López, A.; Méndez-Rodríguez, L.C.; Enríquez-Flores, J. Assessment of eutrophication in a subtropical lagoon in the Gulf of California. Aquat. Ecosyst. Health Manag. 2016, 19, 382–392. [Google Scholar] [CrossRef]
- Souchu, P.; Bec, B.; Smith, V.H.; Laugier, T.; Fiandrino, A.; Benau, L.; Orsoni, V.; Collos, Y.; Vaquer, A. Patterns in nutrient limitation and chlorophyll a along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Can. J. Fish. Aquat. Sci. 2010, 67, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Dodds, W.K.; Cole, J.J. Expanding the concept of trophic state in aquatic ecosystems: It’s not just the autotrophs. Aquat. Sci. 2007, 69, 427–439. [Google Scholar] [CrossRef]
- Dodds, W.K. Trophic state, eutrophication and nutrient criteria in streams. Trends Ecol. Evol. 2007, 22, 669–676. [Google Scholar] [CrossRef]
- Kormas, K.A.; Nicolaidou, A.; Reizopoulou, S. Temporal Variations of Nutrients, -Chlorophyll a and Particulate Matter in Three Coastal Lagoons of Amvrakikos Gulf (Ionian Sea, Greece). Mar. Ecol. 2001, 22, 201–213. [Google Scholar] [CrossRef]
- Smith, V.H.; Joye, S.B.; Howarth, R.W. Eutrophication of freshwater and marine ecosystems. Limnol. Oceanogr. 2006, 51, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, D.; Patra, S.; Muduli, P.R.; Vardhan, K.V.; Abhilash, K.R.; Robin, R.S.; Subramanian, B.R. Influence of nutrient input on the trophic state of a tropical brackish water lagoon. J. Earth Syst. Sci. 2015, 124, 1005–1017. [Google Scholar] [CrossRef]
- Rodellas, V.; Stieglitz, T.C.; Andrisoa, A.; Cook, P.G.; Raimbault, P.; Tamborski, J.J.; Van Beek, P.; Radakovitch, O. Groundwater-driven nutrient inputs to coastal lagoons: The relevance of lagoon water recirculation as a conveyor of dissolved nutrients. Sci. Total. Environ. 2018, 642, 764–780. [Google Scholar] [CrossRef]
- Lewison, R.L.; Rudd, M.A.; Al-Hayek, W.; Baldwin, C.; Beger, M.; Lieske, S.N.; Jones, C.; Satumanatpan, S.; Junchompoo, C.; Hines, E. How the DPSIR framework can be used for structuring problems and facilitating empirical research in coastal systems. Environ. Sci. Policy 2016, 56, 110–119. [Google Scholar] [CrossRef] [Green Version]
- OECD. Towards Sustainable Development: Environmental Indicators; Organization for Economic Cooperation and Development: Paris, France, 1998. [Google Scholar]
- Carr, E.R.; Wingard, P.M.; Yorty, S.C.; Thompson, M.C.; Jensen, N.K.; Roberson, J. Applying DPSIR to sustainable development. Int. J. Sustain. Dev. World Ecol. 2007, 14, 543–555. [Google Scholar] [CrossRef]
- Bidone, E.D.; De Lacerda, L.D. The use of DPSIR framework to evaluate sustainability in coastal areas. Case study: Guanabara Bay basin, Rio de Janeiro, Brazil. Reg. Environ. Chang. 2004, 4, 5–16. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Liu, J.; Cai, H.; Wu, P.; Geng, Q.; Xu, L. Sustainability assessment of regional water resources under the DPSIR framework. J. Hydrol. 2016, 532, 140–148. [Google Scholar] [CrossRef]
- Atkins, J.P.; Burdon, D.; Elliott, M.; Gregory, A.J. Management of the marine environment: Integrating ecosystem services and societal benefits with the DPSIR framework in a systems approach. Mar. Pollut. Bull. 2011, 62, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Gari, S.R.; Newton, A.; Icely, J. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast. Manag. 2015, 103, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, A.; Sousa, A.I.; e Silva, J.D.L.; Dias, J.M.; Lillebø, A.I. Application of the generic DPSIR framework to seagrass communities of Ria de Aveiro: A better understanding of this coastal lagoon. J. Coast. Res. 2013, 65, 19–24. [Google Scholar] [CrossRef]
- Dolbeth, M.; Stålnacke, P.; Alves, F.L.; Sousa, L.P.; Gooch, G.D.; Khokhlov, V.; Tuchkovenko, Y.; Lloret, J.; Bielecka, M.; Różyński, G.; et al. An integrated Pan-European perspective on coastal Lagoons management through a mosaic-DPSIR approach. Sci. Rep. 2016, 6, 19400. [Google Scholar] [CrossRef] [Green Version]
- Niemeijer, D.; De Groot, R.S. Framing environmental indicators: Moving from causal chains to causal networks. Environ. Dev. Sustain. 2006, 10, 89–106. [Google Scholar] [CrossRef]
- Tscherning, K.; Helming, K.; Krippner, B.; Sieber, S.; Paloma, S.G.Y. Does research applying the DPSIR framework support decision making? Land Use Policy 2012, 29, 102–110. [Google Scholar] [CrossRef]
- Carpenter, S.R.; DeFries, R.; Dietz, T.; Mooney, H.A.; Polasky, S.; Reid, W.V.; Scholes, R.J. ECOLOGY: Enhanced: Millennium Ecosystem Assessment: Research Needs. Science 2006, 314, 257–258. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, S.R.; Mooney, H.A.; Perrings, C.; Reid, W.V.; Sarukhan, J.; Scholes, R.J.; Whyte, A.; Agard, J.; Capistrano, D.; DeFries, R.S.; et al. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butchart, S.H.M., et al., Eds.; IPBES Secretariat: Bonn, Germany, 2009; 56p. [Google Scholar]
Relationship | Observations | Relationship | Observations |
---|---|---|---|
SocEco→HSL | Unfeasible. Soc-Eco: Existent; HSL: no data | Sum(LSW)L→Sum(N,P)L | Unfeasible. Sum(LSW)L and Sum(N,P)L: no data |
Pop-Inc→HSL | Unfeasible. HSL: lack of data | GSUWL→LiqWasL | Unfeasible. GSUWL and LiqWasL: nodata |
PP-RHS→HSL | Unfeasible. PP-RHS: nonexistent; HSL: no data | LiqWasL→Sum(LSW)L | Unfeasible. LiqWasL and Sum(LSW)L: no data |
Cult→IHSL | Unfeasible. Cult: nonexistent; HSL: no data | Pop-Inc→Tour | Feasible. Pop-Inc: data; Tour: data |
HSL→IHSL | Unfeasible. HSL and IHSL: no data | SocEco→Tour | Feasible. SocEco: existent; Tour: data |
IHSL→AgriL | Unfeasible. IHSL and AgriL: no data | Cult→Tour | Unfeasible. Cult: nonexistent; Tour: data |
Tech→AgriL | Unfeasible. Tech: nonexistent; AgriL: no data | Tour→ProdCon | Unfeasible. Tour: data; ProdCon: no data |
AgriL→LagSed | Unfeasible. AgriL and LagSed: no data | PP-IMUSW→ProdCon | Unfeasible. PP-IMUSW: nonexistent; ProdCon: no data |
LagSed→PLoadL | Unfeasible. AgriL and PLoadL: no data | ProdCon→GSUWL | Unfeasible. ProdCon: no data; GSUWL: no data |
PLoadL→Sum(N,P)L | Unfeasible. PLoadL and Sum(N,P)L: no data | Tech→GSUWL | Unfeasible. Tech: nonexistent; GSUWL: no data |
HSL→RHSL | Unfeasible. HSL and RHSL: no data | Tour→CManRes | Unfeasible. Tour: data; CManRes: no data |
Cult→RHSL | Unfeasible. Cult: nonexistent; SSL: no data | SocEco→CManRes | Unfeasible. SocEco: existent; CManRes: no data |
Tech→RHSL | Unfeasible. Tech: nonexistent; RHSL: no data | PP-CCMR→CManRes | Unfeasible. PP-CCMR: nonexistent; CManRes: no data |
Tech→SSL | Unfeasible. Tech: nonexistent; SSL: no data | CManRes→ManLoss | Unfeasible. CManRes: no data; ManLoss: no data |
RHSL→SSL | Unfeasible. RHSL and SSL: no data | ManLoss→RWFE | Unfeasible. ManLoss: RWFE: no data |
SSL→LagSed | Unfeasible. SSL and LagSed: no data | SolWasL→RWFE | Unfeasible. SolWasL: no data; RWFE: no data |
IHSL→GSUWL | Unfeasible. IHSL and GSUWL: no data | PP-RAP→AgriL | Unfeasible. PP-RAP: nonexistent; AgriL: no data |
RHSL→GSUWL | Unfeasible. RHSL and GSUWL: no data | LagSed→NLoadL | Unfeasible. LagSed: no data; NLoadL: no data |
GSUWL→SolWasL | Unfeasible. GSUWL and SolWasL: no data | NLoadL→Sum(N,P)L | Unfeasible. NLoadL: no data; Sum(N,P)L: no data |
SolWas→Sum(LSW)L | Unfeasible. SolWas and Sum (LSW)L: no data | PP-RFM→ManLoss | Unfeasible. PP-RFM: nonexistent; ManLoss: no data |
Relationship | Observations | Relationship | Observations |
---|---|---|---|
SocEco→RivInd | Feasible. SocEco: existent; RivInd existent. | RivSed→PLoadR | Unfeasible. RivSed: no data; PLoadR: no data |
PP-IndCon→RivInd | Unfeasible. PP-IndCon: nonexistent; RivInd: existent | PLoad→Sum(N,P)R | Unfeasible. PLoadR: no data; Sum(N,P)R: no data |
Tech→RivInd | Unfeasible. Tech: nonexistent; RivInd: existent | HSR→RHSR | Unfeasible. HSR: no data; RHSR: no data |
RivInd→GSHWasR | Unfeasible. RivInd: existent; GSHWasR: no data | Cult→RHSR | Unfeasible. Cult: nonexistent; RHSR: no data |
Tech→GSHWasR | Unfeasible. Tech: nonexistent; GSHWasR: no data | RHSR→WTP | Unfeasible. RHSR: no data; WTP: no data |
PP-SHW→GSHWasR | Unfeasible. PP-SHW: nonexistent; GSHWasR: no data | IHSR→SSR | Unfeasible. IHSR: no data; SSR: no data |
GSUWas→LiqWasR | Unfeasible. GSHWasR: no data; LiqWas: no data | Tech→SSR | Unfeasible. Tech: nonexistent; SSR: no data |
GSUWas→SolWasR | Unfeasible. GSHWasR: no data; SolWas: no data | SSR→RivSed | Unfeasible. SSR: no data; RivSed: no data |
LiqWasR→Sum(LSW)R | Unfeasible. LiqWasR: no data; Sum(LSW)R: no data | RivSed→NLoadR | Unfeasible. RivSed: no data; NLoadR: no data |
SolWasR→Sum(LSW)R | Unfeasible. SolWasR: no data; Sum(LSW)R: no data | NLoadR→Sum(N,P)R | Unfeasible. NLoadR: no data; Sum(N,P)R: no data |
Sum(LSW)R→Sum(N,P)R | Unfeasible. Sum(LSW)R: no data; Sum(N,P)R | PP-SHW→RivSed | Unfeasible. PP-SHW: nonexistent; RivSed: no data |
Pop-Inc→HSR | Unfeasible. Pop-Inc: no data; HSR: no data | WTP→SSR | Unfeasible. WTP: no data; SSR: no data |
PP-RH→HSR | Unfeasible. PP-RHS: nonexistent; HSR: no data | PP-WTP→WTP | Unfeasible. PP-WTP: existent; WTP: no data |
HSR→IHSR | Unfeasible. HSR: no data; IHSR: no data | Tech→WTP | Unfeasible. Tech: nonexistent; WTP: no data |
Cult→IHSR | Unfeasible. Cult: nonexistent; IHSR: no data | RHSR→GSUWasR | Unfeasible. RHSR: no data; GSUWasR: no data |
IHSR→AgriR | Unfeasible. IHSR: no data; AgriR: no data | Tech→GSUWasR | Unfeasible. Tech: nonexistent; GSUWasR: no data |
SocEco→AgriR | Unfeasible. SocEco: existent; AgriR: no data | PP-SUW→GSUWasR | Unfeasible. PP-SUW: nonexistent; GSUWasR: no data |
Cult→AgriR | Unfeasible. Cult: nonexistent; AgriR: no data | IHSR→GSUWasR | Unfeasible. IHSR: no data; GSUWasR: no data |
AgriR→RivSed | Unfeasible. AgriR: no data; RivSed: no data | SocEco→HSR | Unfeasible. SocEco: existent; HSR: no data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casarrubias-Jaimez, A.I.; Juárez-López, A.L.; Rosas-Acevedo, J.L.; Reyes-Umaña, M.; Rodríguez-Herrera, A.L.; Ramos-Quintana, F. Feasibility Analysis of the Sustainability of the Tres Palos Coastal Lagoon: A Multifactorial Approach. Sustainability 2021, 13, 537. https://doi.org/10.3390/su13020537
Casarrubias-Jaimez AI, Juárez-López AL, Rosas-Acevedo JL, Reyes-Umaña M, Rodríguez-Herrera AL, Ramos-Quintana F. Feasibility Analysis of the Sustainability of the Tres Palos Coastal Lagoon: A Multifactorial Approach. Sustainability. 2021; 13(2):537. https://doi.org/10.3390/su13020537
Chicago/Turabian StyleCasarrubias-Jaimez, Ana I., Ana Laura Juárez-López, José Luis Rosas-Acevedo, Maximino Reyes-Umaña, América Libertad Rodríguez-Herrera, and Fernando Ramos-Quintana. 2021. "Feasibility Analysis of the Sustainability of the Tres Palos Coastal Lagoon: A Multifactorial Approach" Sustainability 13, no. 2: 537. https://doi.org/10.3390/su13020537
APA StyleCasarrubias-Jaimez, A. I., Juárez-López, A. L., Rosas-Acevedo, J. L., Reyes-Umaña, M., Rodríguez-Herrera, A. L., & Ramos-Quintana, F. (2021). Feasibility Analysis of the Sustainability of the Tres Palos Coastal Lagoon: A Multifactorial Approach. Sustainability, 13(2), 537. https://doi.org/10.3390/su13020537