Benefits and Trade-Offs of Smallholder Sweet Potato Cultivation as a Pathway toward Achieving the Sustainable Development Goals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Contribution of Sweet Potato to SDGs 1, 2 and 7
3.2. Trade-Offs and Co-Benefits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN DESA (United Nations Department of Economic and Social Affairs). World Economic and Social Survey 2013: Sustainable Development Challenges. E/2013/50/Rev. 1, ST/ESA/344. 2013. Available online: https://sustainabledevelopment.un.org/content/documents/2843WESS2013.pdf (accessed on 14 April 2020).
- UN (United Nations). The Millennium Development Goals Report. 2015. Available online: https://www.un.org/millenniumgoals/2015_MDG_Report/pdf/MDG%202015%20rev%20(July%201).pdf (accessed on 3 August 2020).
- FAO (Food and Agriculture Organization). Food and agriculture Key to Achieving the 2030 Agenda for Sustainable Development in Europe and Central Asia. 2019. Available online: http://www.fao.org/3/ca4495en/CA4495EN.pdf (accessed on 21 October 2020).
- OPHI (Oxford Poverty and Human Development Initiative). Global Multidimensional Poverty Index 2018; University of Oxford: Oxford, UK, 2018; Available online: https://ophi.org.uk/wp-content/uploads/G-MPI_2018_2ed_web.pdf (accessed on 2 February 2020).
- IEA (International Energy Agency). Energy Access Outlook 2017. World Energy Outlook Special Report. 2017. Available online: https://webstore.iea.org/download/summary/274?fileName=English-Energy-Access-Outlook-2017-ES.pdf (accessed on 15 July 2019).
- UNDP (United Nations Development Programme). Background of the Sustainable Development Goals. 2020. Available online: https://www.undp.org/content/undp/en/home/sustainable-development-goals/background.html (accessed on 23 April 2020).
- Abraham, M.; Pingali, P. Transforming Smallholder Agriculture to Achieve the SDGs. In The Role of Smallholder Farms in Food and Nutrition Security; Gomez y Paloma, S., Riesgo, L., Louhichi, K., Eds.; Springer: New York, NY, USA, 2020; pp. 173–209. [Google Scholar]
- Stevens, C.; Kanie, N. The transformative potential of the Sustainable Development Goals (SDGs). Int. Environ. Agreem. Politics Law Econ. 2016, 16, 393–396. [Google Scholar] [CrossRef] [Green Version]
- UN (United Nations). Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld/publication (accessed on 5 August 2020).
- Kline, K.L.; Msangi, S.; Dale, V.H.; Woods, J.; Souza, G.; Osseweijer, P.; Clancy, J.S.; Hilbert, J.A.; Johnson, F.X.; McDonnell, P.C.; et al. Reconciling food security and bioenergy: Priorities for action. GCB Bioenergy 2017, 9, 557–576. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, M. Transformational Change or Tenuous Wish List? A Critique of SDG 1 (‘End Poverty in All Its Forms Everywhere’). Soc. Altern. 2018, 37, 12–17. [Google Scholar]
- Ravallion, M. Urban Poverty. Financ. Dev. 2007, 44, 15–17. [Google Scholar]
- FAO (Food and Agriculture Organization). Ending Extreme Poverty in Rural Areas. 2018. Available online: http://www.fao.org/3/CA1908EN/ca1908en.pdf (accessed on 23 August 2020).
- Sibhatu, K.T.; Krishna, V.V.; Qaim, M. Production diversity and dietary diversity in smallholder farm households. Proc. Natl. Acad. Sci. USA 2015, 112, 10657–10662. [Google Scholar] [CrossRef] [Green Version]
- Castaneda, R.A.; Doan, D.D.T.; Newhouse, D.L.; Nguyen, M.C.; Uematsu, H.; Azevedo, J.P. A new profile of the global poor. World Dev. 2018, 101, 250–267. [Google Scholar] [CrossRef]
- Christiaensen, L.; Demery, L.; Kuhl, J. The (Evolving) Role of Agriculture in Poverty Reduction: An Empirical Perspective; WIDER Working Paper No. 2010/36; The United Nations University World Institute for Development Economics Research (UNU-WIDER): Helsinki, Finland, 2010; Available online: https://www.wider.unu.edu/sites/default/files/wp2010-36.pdf (accessed on 7 October 2019).
- FAO (Food and Agriculture Organization). Smallholders and Family Farmers. 2012. Available online: http://www.fao.org/fileadmin/templates/nr/sustainability_pathways/docs/Factsheet_SMALLHOLDERS.pdf (accessed on 10 September 2020).
- Petrini, M.A.; Rocha, J.V.; Brown, J.C. Mismatches between mill-cultivated sugarcane and smallholding farming in Brazil: Environmental and socioeconomic impacts. J. Rural Stud. 2017, 50, 218–227. [Google Scholar] [CrossRef]
- Rosillo-Calle, F.; Johnson, F. (Eds.) Food Versus Fuels: An Informed Introduction to Biofuels; Zed Books: London, UK, 2010. [Google Scholar]
- Ejigu, M. Toward energy and livelihoods security in Africa: Smallholder production and processing of bioenergy as a strategy. Nat. Resour. Forum 2008, 32, 152–162. [Google Scholar] [CrossRef]
- Weitz, N.; Nilsson, M.; Davis, M. A Nexus Approach to the Post-2015 Agenda: Formulating Integrated Water, Energy, and Food SDGs. SAIS Rev. Int. Aff. 2014, 34, 37–50. [Google Scholar] [CrossRef]
- Cervantes-Godoy, D.; Dewbre, J. Economic Importance of Agriculture for Poverty Reduction; Food, Agriculture and Fisheries Working Papers No. 23; OECD: Paris, France, 2010; Available online: https://www.oecd.org/brazil/44804637.pdf (accessed on 3 October 2020).
- Oxfam. Smallholders at Risk: Monoculture Expansion, Land, Food and Livelihoods in Latin America. Briefing Paper. 24 April 2014. Available online: https://www.oxfam.de/system/files/bp180-smallholders-at-risk-land-food-latin-america-230414-en.pdf (accessed on 3 October 2020).
- Sakai, P.; Afionis, S.; Favretto, N.; Stringer, L.C.; Ward, C.; Sakai, M.; Weirich Neto, P.H.; Rocha, C.H.; Alberti Gomes, J.; de Souza, N.M.; et al. Understanding the Implications of Alternative Bioenergy Crops to Support Smallholder Farmers in Brazil. Sustainability 2020, 12, 2146. [Google Scholar] [CrossRef] [Green Version]
- Comberti, C.; Thornton, T.F.; Wyllie de Echeverria, V.; Patterson, T. Ecosystem services or services to ecosystems? Valuing cultivation and reciprocal relationships between humans and ecosystems. Glob. Environ. Chang. 2015, 34, 247–262. [Google Scholar] [CrossRef] [Green Version]
- TerAvest, D.; Wandschneider, P.R.; Thierfelder, C.; Reganold, J.P. Diversifying conservation agriculture and conventional tillage cropping systems to improve the wellbeing of smallholder farmers in Malawi. Agric. Syst. 2019, 171, 23–35. [Google Scholar] [CrossRef]
- Reddy, B.V.S.; Ramesh, S.; Ashok Kumar, A.; Wani, S.P.; Ortiz, R.; Ceballos, H.; Sreedevi, T.K. Bio-Fuel Crops Research for Energy Security and Rural Development in Developing Countries. Bioenergy Res. 2008, 1, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Scott, G.J.; Maldonado, L. Sweetpotato for the New Millennium: Trends in Production and Utilization in Developing Countries. CIP Program Rep. 1998, 98, 329–335. [Google Scholar]
- Manners, R.; van Etten, J. Are agricultural researchers working on the right crops to enable food and nutrition security under future climates? Glob. Environ. Chang. 2018, 53, 182–194. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.K.; Chattopadhyay, A.; Chakraborty, I.; Bhattacharya, I. Crops that feed the world 5. Sweetpotato. Sweetpotatoes for income and food security. Food Secur. 2011, 3, 283–305. [Google Scholar] [CrossRef]
- De Albuquerque, J.R.T.; Ribeiro, R.M.P.; Pereira, L.A.F.; Barros Júnior, A.P.; da Silveira, L.M.; dos Santos, M.G.; de Souza, A.R.E.; Lins, H.A.; Neto, F.B. Sweet potato cultivars grown and harvested at different times in semiarid Brazil. Afr. J. Agric. Res. 2016, 11, 4810–4818. [Google Scholar] [CrossRef] [Green Version]
- Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for Sustainable Global Food Security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- Hagen-Zanker, J.; Mallett, R. How to Do a Rigorous, Evidence-Focused Literature Review in International Development: A Guidance Note. 2013. Available online: https://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinion-files/8572.pdf (accessed on 2 December 2020).
- Sovacool, B.K.; Axsen, J.; Sorrell, S. Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design. Energy Res. Soc. Sci. 2018, 45, 12–42. [Google Scholar] [CrossRef]
- Bryman, A. Social Research Methods; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Nowell, L.S.; Norris, J.M.; White, D.E.; Moules, N.J. Thematic Analysis: Striving to Meet the Trustworthiness Criteria. Int. J. Qual. Methods 2017, 16, 1609406917733847. [Google Scholar] [CrossRef]
- Braun, V.; Clarke, V. Successful Qualitative Research: A Practical Guide for Beginners; SAGE: London, UK, 2013. [Google Scholar]
- Ogbonna, M.C.; Korieocha, D.S.; Anyaegbunam, H.N.; Njoku, D.; Okoye, B.; Akinpelu, O.A.; Nwokocha, C.C. Profitability in the use of sweet potato crop as soil conservation strategy in Umudike, Abia State, Nigeria. Sci. Res. Essays 2007, 2, 462–464. [Google Scholar] [CrossRef]
- Lirag, T.B.M. Determinants of Profitability of Sweet Potato Production in Camarines Sur, Philippines. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.P.; Bantilan, M.C.S. Emerging Biofuel Industry: A Case for Pro-poor Agenda with Special Reference to India. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Andhra Pradesh. Policy Brief No. 12. 2007. Available online: http://oar.icrisat.org/7646/1/PB12.pdf (accessed on 23 November 2019).
- IIED (International Institute for Environment and Development). Biofuels in Africa: Growing Small-Scale Opportunities. 2009. Available online: https://pubs.iied.org/pdfs/17059IIED.pdf (accessed on 11 October 2020).
- Virgínio e Silva, J.O.; Almeida, M.F.; da Conceição Alvim-Ferraz, M.; Dias, J.M. Integrated production of biodiesel and bioethanol from sweet potato. Renew. Energy 2018, 124, 114–120. [Google Scholar] [CrossRef]
- Mudege, N.N.; Mayanja, S.; Muzhingi, T. Women and men farmer perceptions of economic and health benefits of orange fleshed sweet potato (OFSP) in Phalombe and Chikwawa districts in Malawi. Food Secur. 2017, 9, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Kapinga, R.; Zhang, D.; Lemaga, B.; Andrade, M.; Mwanga, R.O.; Laurie, S.; Ndoho, P.; Kanju, E. Sweetpotato crop improvement in sub-Saharan Africa and future challenges. In Proceedings of the 13th ISTRC Symposium, Arusha, Tanzania, 10–14 November 2007; pp. 82–94. [Google Scholar]
- Apata, D.F.; Babalola, T.O. The use of cassava, sweet potato and cocoyam, and their by-products by non–ruminants. Int. J. Food Sci. Nutr. Eng. 2012, 2, 54–62. [Google Scholar] [CrossRef]
- Costa, D.; Jesus, J.; Virgínio e Silva, J.; Silveira, M. Life Cycle Assessment of Bioethanol Production from Sweet Potato (Ipomoea batatas L.) in an Experimental Plant. BioEnergy Res. 2018, 11, 715–725. [Google Scholar] [CrossRef]
- Adeyonu, A.G.; Balogun, O.L.; Ajiboye, B.O.; Oluwatayo, I.B.; Otunaiya, A.O. Sweet potato production efficiency in Nigeria: Application of data envelopment analysis. AIMS Agric. Food 2019, 4, 672–684. [Google Scholar] [CrossRef]
- Mwanga, R.O.M.; Ssemakula, G. Orange-fleshed sweetpotatoes for food, health and wealth in Uganda. Int. J. Agric. Sustain. 2011, 9, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Ohajianya, H.; Ugochukwu, I. An Ordered Probit Model Analysis of Transaction costs and Market Participation by Sweet Potato Farmers in South Eastern Nigeria. In Proceedings of the 85th Annual Conference of the Agricultural Economics Society, Warwick University, Coventry, UK, 18–20 April 2011; Available online: http://futospace.futo.edu.ng:8080/handle/123456789/1498 (accessed on 11 November 2019).
- Kapinga, R.; Andrade, M.; Lemaga, B.; Gani, A.; Crissman, C.; Mwanga, R. Role of orange-fleshed sweetpotato in disaster mitigation: Experiences from East and Southern Africa. Afr. Crop Sci. Conf. Proc. 2005, 7, 1321–1329. [Google Scholar]
- Laurie, S.; Faber, M.; Adebola, P.; Belete, A. Biofortification of sweet potato for food and nutrition security in South Africa. Food Res. Int. 2015, 76, 962–970. [Google Scholar] [CrossRef]
- Anderson, P.; Kapinga, R.; Zhang, D.; Hermann, M. Vitamin A for Africa (VITAA): An entry point for promoting orange-fleshed sweetpotato to combat vitamin A-deficiency in sub-Saharan Africa. In Proceedings of the 13th ISTRC Symposium, Arusha, Tanzania, 10–14 November 2007; pp. 711–720. Available online: http://www.istrc.org/images/Documents/Symposiums/Thirteenth/AndersonAbs.pdf (accessed on 14 October 2019).
- Hummel, M.; Talsma, E.F.; Van der Honing, A.; Gama, A.C.; Van Vugt, D.; Brouwer, I.D.; Spillane, C. Sensory and cultural acceptability tradeoffs with nutritional content of biofortified orange-fleshed sweetpotato varieties among households with children in Malawi. PLoS ONE 2018, 13, e0204754. [Google Scholar] [CrossRef] [PubMed]
- Fuglie, K.O. Priorities for Sweetpotato Research in Developing Countries: Results of a Survey. HortScience 2007, 42, 1200–1206. [Google Scholar] [CrossRef] [Green Version]
- Ntawuruhunga, P.; Andrade, M.I.; Demo, P.; Moyo, C.C. Brief on Achievements of the Improving the Rural Livelihoods in Southern Africa Project: 2004 to 2010. 2011. Available online: https://cgspace.cgiar.org/bitstream/handle/10568/73168/79035.pdf?sequence=2&isAllowed=y (accessed on 24 January 2020).
- Oumer, A.M.; de Neergaard, A. Understanding livelihood strategy-poverty links: Empirical evidence from central highlands of Ethiopia. Environ. Dev. Sustain. 2010, 13, 547–564. [Google Scholar] [CrossRef]
- Laurie, S.M.; Faber, M.; Claasen, N. Incorporating orange-fleshed sweet potato into the food system as a strategy for improved nutrition: The context of South Africa. Food Res. Int. 2018, 104, 77–85. [Google Scholar] [CrossRef]
- Mmasa, J.J.; Msuya, E.E. Mapping of the sweet potato value chain linkages between actors, processes and activities in the value chain: A case of “Michembe” and “Matobolwa” products—A case study of Shinyanga and Mwanza regions. Sustain. Agric. Res. 2012, 1, 130–146. [Google Scholar]
- Van Jaarsveld, P.J.; Faber, M.; Tanumihardjo, S.A.; Nestel, P.; Lombard, C.J.; Benadé, A.J.S. β-Carotene–rich orange-fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relative-dose-response test. Am. J. Clin. Nutr. 2005, 81, 1080–1087. [Google Scholar] [CrossRef]
- Van Vugt, D.; Franke, A.C. Exploring the yield gap of orange-fleshed sweet potato varieties on smallholder farmers’ fields in Malawi. Field Crops Res. 2018, 221, 245–256. [Google Scholar] [CrossRef]
- Iese, V.; Holland, E.; Wairiu, M.; Havea, R.; Patolo, S.; Nishi, M.; Hoponoa, T.; Bourke, M.R.; Dean, A.; Waqainabete, L. Facing food security risks: The rise and rise of the sweet potato in the Pacific Islands. Glob. Food Secur. 2018, 18, 48–56. [Google Scholar] [CrossRef]
- Odebode, S.O.; Egeonu, N.; Akoroda, M.O. Promotion of Sweetpotato for the Food Industry in Nigeria. Bulg. J. Agric. Sci. 2008, 14, 300–308. [Google Scholar]
- Okonya, J.S.; Kroschel, J. Gender differences in access and use of selected productive resources among sweet potato farmers in Uganda. Agric. Food Secur. 2014, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Van der Merwe, J.D.; Cloete, P.C.; Van der Hoeven, M. Promoting food security through indigenous and traditional food crops. Agroecol. Sustain. Food Syst. 2016, 40, 830–847. [Google Scholar] [CrossRef]
- Ellis, F.; Bahiigwa, G. Livelihoods and Rural Poverty Reduction in Uganda. World Dev. 2003, 31, 997–1013. [Google Scholar] [CrossRef]
- Mmasa, J.; Msuya, E.E.; Mlambiti, M. Socio-economic factors affecting consumption of sweet potato Products: An empirical approach. Res. Humanit. Soc. Sci. 2012, 2, 96–103. [Google Scholar]
- Low, J.W.; Ball, A.; Magezi, S.; Njoku, J.; Mwanga, R.; Andrade, M.; Tomlins, K.; Dove, R.; Van Mourik, T. Sweet potato development and delivery in sub-Saharan Africa. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 11955–11972. [Google Scholar] [CrossRef]
- Fetuga, G.O.; Tomlins, K.; Bechoff, A.; Henshaw, F.O.; Idowu, M.A.; Westby, A. A survey of traditional processing of sweet potato flour for amala, consumption pattern of sweet potato amala and awareness of orange-fleshed sweet potato (OFSP) in South West Nigeria. J. Food Agric. Environ. 2013, 11, 67–71. [Google Scholar]
- Hagenimana, V.; Low, J.; Anyango, M.; Kurz, K.; Gichuki, S.T.; Kabira, J. Enhancing Vitamin A Intake in Young Children in Western Kenya: Orange-Fleshed Sweet Potatoes and Women Farmers Can Serve as Key Entry Points. Food Nutr. Bull. 2001, 22, 376–387. [Google Scholar] [CrossRef]
- Makunde, G.S.; Andrade, M.I.; Menomussanga, J.; Grüneberg, W. Adapting sweetpotato production to changing climate in Mozambique. Open Agric. 2018, 3, 122–130. [Google Scholar] [CrossRef]
- Oselebe, H.O.; Nnamani, C.V.; Okporie, E.O. Ethnobotanical Survey of Underutilized Crops and Spices of Some Local Communities in Nigeria: Potentials for Improved Nutrition, Food Security and Poverty Reduction. IOSR J. Pharm. 2013, 3, 21–28. [Google Scholar]
- Mudombi, S. Adoption of Agricultural Innovations: The Case of Improved Sweet Potato in Wedza Community of Zimbabwe. Afr. J. Sci. Technol. Innov. Dev. 2013, 5, 459–467. [Google Scholar] [CrossRef]
- Neela, S.; Fanta, S.W. Review on nutritional composition of orange-fleshed sweet potato and its role in management of vitamin A deficiency. Food Sci. Nutr. 2019, 7, 1920–1945. [Google Scholar] [CrossRef] [Green Version]
- Walker, T.S. Reasonable expectations on the prospects for documenting the impact of agricultural research on poverty in ex-post case studies. Food Policy 2000, 25, 515–530. [Google Scholar] [CrossRef]
- Flores, E.D.; Cruz, R.S.D.; Antolin, M.C.R. Energy use and CO2 emissions of sweet potato production in Tarlac, Philippines. Agric. Eng. Int. CIGR J. 2016, 18, 127–135. [Google Scholar]
- Oke, M.O.; Workneh, T.S. A review on sweet potato postharvest processing and preservation technology. Afr. J. Agric. Res. 2013, 8, 4990–5003. [Google Scholar] [CrossRef]
- Alwang, J.; Gotor, E.; Thiele, G.; Hareau, G.; Jaleta, M.; Chamberlin, J. Pathways from research on improved staple crop germplasm to poverty reduction for smallholder farmers. Agric. Syst. 2019, 172, 16–27. [Google Scholar] [CrossRef]
- Kays, S.J. Sweetpotato Production Worldwide: Assessment, Trends and The Future. Acta Hortic. 2004, 670, 19–25. [Google Scholar] [CrossRef]
- Nelles, W. Sweetpotato Education, Research and Capacity Development through a CIP-Orissa Learning Site. In Advance Techniques in Quality Planting Material Production and Commercial Cultivation of Tropical Tuber Crops; Nedunchezhiyan, M., Ed.; Regional Centre of Central Tuber Crops Research Institute, CTCRI: Bhubaneswar, Orissa, India, 2009; pp. 14–21. [Google Scholar]
- Krishnan, J.G.; Menon, R.; Padmaja, G.; Sajeev, M.S.; Moorthy, S.N. Evaluation of nutritional and physico-mechanical characteristics of dietary fiber-enriched sweet potato pasta. Eur. Food Res. Technol. 2012, 234, 467–476. [Google Scholar] [CrossRef]
- Jata, S.K.; Nedunchezhian, M.; Misra, S.R. The Triple ‘f’ (food, fodder and fuel) Crop Sweet Potato [Ipomoea batatas (L.) Lam.]. Orissa Rev. 2011, 1, 82–92. [Google Scholar]
- Turner, T.; Burri, B. Orange sweet potatoes are an excellent source of vitamin A. Agro Food Ind. Hi-Tech 2001, 22, 14–16. [Google Scholar]
- Low, J.W.; Arimond, M.; Osman, N.; Cunguara, B.; Zano, F.; Tschirley, D. A Food-Based Approach Introducing Orange-Fleshed Sweet Potatoes Increased Vitamin A Intake and Serum Retinol Concentrations in Young Children in Rural Mozambique. J. Nutr. 2007, 137, 1320–1327. [Google Scholar] [CrossRef] [Green Version]
- Larochelle, C.; Labarta, R.; Katungi, E.; Herrington, C.; Alwang, J.; Asare-Marfo, D.; Ball, A.; Birol, E. Farming Practices and Crop Varietal Choice among Ugandan Bean and Sweet Potato Producers. HarvestPlus Research for Action; HarvestPlus of International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2018; Available online: http://ebrary.ifpri.org/utils/getfile/collection/p15738coll2/id/133014/filename/133223.pdf (accessed on 12 October 2019).
- Macnab, A.J.; Mukisa, R. The UN Sustainable Development Goals; using World Health Organization’s ‘Health Promoting Schools’ to create change. Glob. Health Manag. J. 2017, 1, 23–27. [Google Scholar] [CrossRef]
- Busse, H.; Kurabachew, H.; Ptak, M.; Fofanah, M. A food-based approach to reduce vitamin a deficiency in southern Ethiopia: A cross-sectional study of maternal nutrition and health indicators. Afr. J. Food Agric. Nutr. Dev. 2017, 17, 12227–12243. [Google Scholar] [CrossRef]
- Ezin, V.; Quenum, F.; Bodjrenou, R.H.; Kpanougo, C.M.; Kochoni, E.M.; Chabi, B.I.; Ahanchede, A. Assessment of production and marketing constraints and value chain of sweet potato in the municipalities of Dangbo and Bonou. Agric. Food Secur. 2018, 7, 15. [Google Scholar] [CrossRef]
- Sakala, P.; Kunneke, E.; Faber, M. Household Consumption of Orange-Fleshed Sweet Potato and its Associated Factors in Chipata District, Eastern Province Zambia. Food Nutr. Bull. 2018, 39, 127–136. [Google Scholar] [CrossRef]
- Simler, K.R. The Short-Term Impact of Higher Food Prices on Poverty in Uganda; Policy Research Working Paper No. 5210; World Bank: Washington, DC, USA, 2010; Available online: https://openknowledge.worldbank.org/handle/10986/24318 (accessed on 26 November 2019).
- Johns, T.; Eyzaguirre, P.B. Biofortification, biodiversity and diet: A search for complementary applications against poverty and malnutrition. Food Policy 2007, 32, 1–24. [Google Scholar] [CrossRef]
- Ruan, R.R.; Chen, P.; Hemmingsen, R.; Morey, V.; Tiffany, D. Size Matters: Small Distributed Biomass Energy Production Systems for Economic Viability. Int. J. Agric. Biol. Eng. 2008, 1, 64–68. [Google Scholar] [CrossRef]
- Waryoba, F.D.; Jing, L. Consumption Uncertainty Reduction among Sweet Potato Smallholder Farmers in Tanzania. Glob. J. Emerg. Mark. Econ. 2019, 11, 132–147. [Google Scholar] [CrossRef]
- Mazuze, F.M. Analysis of Adoption of Orange-Fleshed Sweet Potatoes: The Case Study of Gaza Province in Mozambique. Food Security Collaborative Working Papers 55868, Michigan State University, Department of Agricultural, Food, and Resource Economics. 2007. Available online: https://ideas.repec.org/p/ags/midcwp/55868.html (accessed on 26 November 2019).
- Vithu, P.; Dash, S.K.; Rayaguru, K. Post-Harvest Processing and Utilization of Sweet Potato: A Review. Food Rev. Int. 2019, 35, 726–762. [Google Scholar] [CrossRef]
- Woolfe, J.A. Sweet potato revisited. Nutr. Bull. 1992, 17, 180–189. [Google Scholar] [CrossRef]
- Moyo, C.C.; Benesi, I.R.M.; Chipungu, F.P.; Mwale, C.H.L.; Sandifolo, V.S.; Mahungu, N.M. Cassava and sweetpotato yield assessment in Malawi. Afr. Crop Sci. J. 2004, 12, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.H.; Runion, G.B.; Tomecek, M.; Prior, S.A.; Torbet, H.A.; Sicher, R. An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy 2009, 33, 1503–1508. [Google Scholar] [CrossRef]
- Mukhtar, A.A.; Tanimu, B.; Arunah, U.L.; Babaji, B.A. Evaluation of the Agronomic Characters of Sweet Potato Varieties Grown at Varying Levels of Organic and Inorganic Fertilizer. World J. Agric. Sci. 2010, 6, 370–373. [Google Scholar]
- Su, M.H.; Huang, C.H.; Li, W.Y.; Tso, C.T.; Lur, H.S. Water footprint analysis of bioethanol energy crops in Taiwan. J. Clean. Prod. 2015, 88, 132–138. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). Land and Water. 2020. Available online: http://www.fao.org/land-water/databases-and-software/crop-information/sugarcane/en/ (accessed on 2 May 2020).
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Drought effects on root and tuber production: A meta-analysis. Agric. Water Manag. 2016, 176, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Jusuf, M.; Ginting, E. The Prospects and Challenges of Sweet Potato as Bio-ethanol Source in Indonesia. Energy Procedia 2014, 47, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Biswas, P.K.; Hileman, D.R.; Ghosh, P.P.; Bhattacharya, N.C.; McCrimmon, J.N. Growth and yield responses of field-grown sweetpotato to elevated carbon dioxide. Crop Sci. 1996, 36, 1234–1239. [Google Scholar] [CrossRef]
- Raymundo, R.; Asseng, S.; Cammarano, D.; Quiroz, R. Potato, sweet potato, and yam models for climate change: A review. Field Crops Res. 2014, 166, 173–185. [Google Scholar] [CrossRef]
- Fujimura, S.; Shi, P.; Iwama, K.; Zhang, X.; Gopal, J.; Jitsuyama, Y. Effects of CO2 Increase on Wheat Growth and Yield under Different Atmospheric Pressures and Their Interaction with Temperature. Plant Prod. Sci. 2012, 15, 118–124. [Google Scholar] [CrossRef]
- UNIDO (United Nations Industrial Development Organization) [n.d.]. Baseline Report of Clean Cooking Fuels in the East African Community (EAC) Region. Available online: https://www.eacreee.org/document/clean-cooking-fuels-eac (accessed on 3 December 2020).
- Bouis, H.; Islam, Y. Scaling Up in Agriculture, Rural Development, and Nutrition: Delivering Nutrients Widely through Biofortification: Building on Orange Sweet Potato. International Food Policy Research Institute (IFPRI). Focus 19, Brief 11. June 2012. Available online: https://media.africaportal.org/documents/focus19_11.pdf (accessed on 12 October 2019).
- Hagenimana, V.; Low, J. Potential of orange-fleshed sweet potatoes for raising vitamin A intake in Africa. Food Nutr. Bull. 2000, 21, 414–418. [Google Scholar] [CrossRef] [Green Version]
- Nedunchezhiyan, M.; Byju, G.; Jata, S.K. Sweet potato agronomy. Fruit Veg. Cereal Sci. Biotechnol. 2012, 6, 1–10. [Google Scholar]
- Montoro, S.B.; Lucas, J.; Santos, D.F.L.; Costa, M.S.S.M. Anaerobic co-digestion of sweet potato and dairy cattle manure: A technical and economic evaluation for energy and biofertilizer production. J. Clean. Prod. 2019, 226, 1082–1091. [Google Scholar] [CrossRef]
- Ferrari, M.D.; Guigou, M.; Lareo, C. Energy consumption evaluation of fuel bioethanol production from sweet potato. Bioresour. Technol. 2013, 136, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, Y.; Xia, X.; Li, D.; Chen, Q. Life-cycle energy efficiency and environmental impacts of bioethanol production from sweet potato. Bioresour. Technol. 2013, 133, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Srichuwong, S.; Orikasa, T.; Matsuki, J.; Shiina, T.; Kobayashi, T.; Tokuyasu, K. Sweet potato having a low temperature-gelatinizing starch as a promising feedstock for bioethanol production. Biomass Bioenergy 2012, 39, 120–127. [Google Scholar] [CrossRef]
- Lay, C.; Lin, H.; Sen, B.; Chu, C.; Lin, C. Simultaneous hydrogen and ethanol production from sweet potato via dark fermentation. J. Clean. Prod. 2012, 27, 155–164. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, Y.; Guo, W.; Niu, K.; Zhang, R.; Hou, S.; Wang, M.; Yi, Y.; Zhu, C.; Jia, C.; et al. An environmentally friendly and productive process for bioethanol production from potato waste. Biotechnol. Biofuels 2016, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.A.K.; Yesmin, M.N. Bioethanol production from agricultural products and fruits of Bangladesh. Int. J. GEOMATE 2019, 17, 222–227. [Google Scholar] [CrossRef]
- Masiero, S.S.; Peretti, A.; Trierweiler, L.F.; Trierweiler, J.O. Simultaneous cold hydrolysis and fermentation of fresh sweet potato. Biomass Bioenergy 2014, 70, 174–183. [Google Scholar] [CrossRef]
- UN DESA (United Nations Department of Economic and Social Affairs). Small-Scale Production and Use of Liquid Biofuels in Sub-Saharan Africa: Perspectives for Sustainable Development. 2007. Available online: https://www.un.org/esa/sustdev/csd/csd15/documents/csd15_bp2.pdf (accessed on 12 November 2019).
- Utria, B.E. Ethanol and gelfuel: Clean renewable cooking fuels for poverty alleviation in Africa. Energy Sustain. Dev. 2004, 8, 107–114. [Google Scholar] [CrossRef]
- Schmidt, J.; Leduc, S.; Dotzauer, E.; Schmid, E. Cost-effective policy instruments for greenhouse gas emission reduction and fossil fuel substitution through bioenergy production in Austria. Energy Policy 2011, 39, 3261–3280. [Google Scholar] [CrossRef] [Green Version]
- Duvernay, W.H.; Chinn, M.S.; Yencho, G.C. Hydrolysis and fermentation of sweetpotatoes for production of fermentable sugars and ethanol. Ind. Crop. Prod. 2013, 42, 527–537. [Google Scholar] [CrossRef]
- Finco, M.V.A.; Doppler, W. Bioenergy and sustainable development: The dilemma of food security and climate change in the Brazilian savannah. Energy Sustain. Dev. 2010, 14, 194–199. [Google Scholar] [CrossRef]
- Amigun, B.; Musango, J.K.; Stafford, W. Biofuels and sustainability in Africa. Renew. Sustain. Energy Rev. 2011, 15, 1360–1372. [Google Scholar] [CrossRef]
- Haberl, H.; Schulze, E.D.; Körner, C.; Law, B.E.; Holtsmark, B.; Luyssaert, S. Response: Complexities of sustainable forest use. GCB Bioenergy 2013, 5, 1–2. [Google Scholar] [CrossRef]
- Beringer, T.; Lucht, W.; Schaphoff, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 2011, 3, 299–312. [Google Scholar] [CrossRef]
- Danielsen, F.; Beukema, H.; Burgess, N.D.; Parish, F.; Bruhl, C.A.; Donald, P.F.; Murdiyarso, D.; Phalan, B.; Reijnders, L.; Struebig, M.; et al. Biofuel plantations on forested lands: Double jeopardy for biodiversity and climate. Conserv. Biol. 2009, 23, 348–358. [Google Scholar] [CrossRef]
- Martinelli, L.A.; Filoso, S. Expansion of Sugarcane Ethanol Production in Brazil: Environmental and Social Challenges. Ecol. Appl. 2008, 18, 885–898. [Google Scholar] [CrossRef] [Green Version]
- Selfa, T.; Kulcsar, L.; Bain, C.; Goe, R.; Middendorf, G. Biofuels Bonanza? Exploring community perceptions of the promises and perils of biofuels production. Biomass Bioenergy 2011, 35, 1379–1389. [Google Scholar] [CrossRef]
- Lareo, C.; Ferrari, M.D.; Guigou, M.; Fajardo, L.; Larnaudie, V.; Ramírez, M.B.; Martínez-Garreiro, J. Evaluation of sweet potato for fuel bioethanol production: Hydrolysis and fermentation. SpringerPlus 2013, 2, 493. [Google Scholar] [CrossRef] [Green Version]
- Stringer, L.C.; Fraser, E.D.G.; Harris, D.; Lyon, C.; Pereira, L.; Ward, C.F.M.; Simelton, E. Adaptation and development pathways for different types of farmers. Environ. Sci. Policy 2020, 104, 174–189. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 034032. [Google Scholar] [CrossRef]
- Feng, S.; Krueger, A.B.; Oppenheimer, M. Linkages among climate change, crop yields and Mexico–US cross-border migration. Proc. Natl. Acad. Sci. USA 2010, 107, 14257–14262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
- Govender, L.; Pillay, K.; Siwela, M.; Modi, A.T.; Mabhaudhi, T. Improving the Dietary Vitamin A Content of Rural Communities in South Africa by Replacing Non-Biofortified White Maize and Sweet Potato with Biofortified Maize and Sweet Potato in Traditional Dishes. Nutrients 2019, 11, 1198. [Google Scholar] [CrossRef] [Green Version]
- Bovell-Benjamin, A.C. Sweet Potato: A Review of its Past, Present, and Future Role in Human Nutrition. Adv. Food Nutr. Res. 2007, 52, 1–59. [Google Scholar] [CrossRef]
- Abdissa, T.; Chali, A.; Tolessa, K.; Tadese, F.; Awas, G. Yield and yield components of sweet potato as influenced by plant density: In Adami Tulu Jido Kombolcha district, Central Rift Valley of Ethiopia. Am. J. Exp. Agric. 2011, 1, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Kassali, R. Economics of Sweet Potato Production. Int. J. Veg. Sci. 2011, 17, 313–321. [Google Scholar] [CrossRef]
- Lee, J.S.H.; Rist, L.; Obidzinski, K.; Ghazoul, J.; Koh, L.P. No farmer left behind in sustainable biofuel production. Biol. Conserv. 2011, 144, 2512–2516. [Google Scholar] [CrossRef]
- Schut, M.; van Paassen, A.; Leeuwis, C.; Bos, S.; Leonardo, W.; Lerner, A. Space for innovation for sustainable community-based biofuel production and use: Lessons learned for policy from Nhambita community, Mozambique. Energy Policy 2011, 39, 5116–5128. [Google Scholar] [CrossRef]
- Bhavani, R.V.; Gopinath, R. The COVID-19 pandemic crisis and the relevance of a farm-system-for-nutrition approach. Food Secur. 2020, 12, 881–884. [Google Scholar] [CrossRef]
- Kemerink-Seyoum, J.; Leonardelli, I. Small-Scale Agriculture in Crisis Due to COVID-19 Pandemic. UNESCO and IHE-Delft. 2020. Available online: https://www.un-ihe.org/stories/small-scale-agriculture-crisis-due-covid-19-pandemic (accessed on 16 September 2020).
- CIP (International Potato Center). Managing Asian Food Systems in the Time of COVID-19 and Beyond. 2020. Available online: https://cipotato.org/blog/managing-asian-food-systems-time-covid-19-and-beyond/ (accessed on 16 September 2020).
SDG 1: End Poverty in All Its Forms Everywhere | |
---|---|
1.1. | By 2030, eradicate extreme poverty for all people everywhere, currently measured as people living on less than $1.25 a day. |
1.2. | By 2030, reduce at least by half the proportion of men, women and children of all ages living in poverty in all its dimensions according to national definitions. |
1.3. | Implement nationally appropriate social protection systems and measures for all, including floors, and by 2030 achieve substantial coverage of the poor and the vulnerable. |
1.4. | By 2030, ensure that all men and women, in particular the poor and the vulnerable, have equal rights to economic resources, as well as access to basic services, ownership and control over land and other forms of property, inheritance, natural resources, appropriate new technology and financial services, including microfinance. |
1.5. | By 2030, build the resilience of the poor and those in vulnerable situations and reduce their exposure and vulnerability to climate-related extreme events and other economic, social and environmental shocks and disasters. |
SDG 2: Zero Hunger | |
2.1. | By 2030, end hunger and ensure access by all people, in particular the poor and people in vulnerable situations, including infants, to safe, nutritious and sufficient food all year round. |
2.2. | By 2030, end all forms of malnutrition, including achieving, by 2025, the internationally agreed targets on stunting and wasting in children under 5 years of age, and address the nutritional needs of adolescent girls, pregnant and lactating women and older persons. |
2.3. | By 2030, double the agricultural productivity and incomes of small-scale food producers, in particular women, indigenous peoples, family farmers, pastoralists and fishers, including through secure and equal access to land, other productive resources and inputs, knowledge, financial services, markets and opportunities for value addition and non-farm employment. |
2.4. | By 2030, ensure sustainable food production systems and implement resilient agricultural practices that increase productivity and production, that help maintain ecosystems, that strengthen capacity for adaptation to climate change, extreme weather, drought, flooding and other disasters and that progressively improve land and soil quality. |
2.5. | By 2020, maintain the genetic diversity of seeds, cultivated plants and farmed and domesticated animals and their related wild species, including through soundly managed and diversified seed and plant banks at the national, regional and international levels, and promote access to fair and equitable sharing of benefits arising from the utilisation of genetic resources and associated traditional knowledge, as internationally agreed. |
SDG 7: Ensure Access to Affordable, Reliable, Sustainable and Modern Energy | |
7.1. | By 2030, ensure universal access to affordable, reliable and modern energy services. |
7.2. | By 2030, increase substantially the share of renewable energy in the global energy mix. |
7.3. | By 2030, double the global rate of improvement in energy efficiency. |
Sweet Potato Characteristics | Contribution to SDG Targets |
---|---|
Sweet potato can create sustainable income generation opportunities due to its low-input requirements, high multiplication rate, high consumer acceptability and its potential for diversification into different uses. | 1.1, 1.2, 1.5, 2.1 and 2.3 |
Sweet potato can enhance food security by addressing hunger, malnutrition and micronutrient deficiency due to its high nutritional content. | 1.1, 1.2, 2.1 and 2.2 |
Sweet potato increased resilience during food shortages and mitigated the adverse impacts of disasters and famine. | 1.1, 1.2, 1.5, 2.1 and 2.2 |
Sweet potato can reduce risks and promote sustainable agricultural production. | 1.5 and 2.4 |
Sweet potato can empower women and girls and promote gender equality. | 1.4 and 2.3 |
Sweet potato can safeguard biodiversity as it can encourage sharing of benefits among the farmers from the utilisation of sweet potato genetic diversity. | 2.5 |
Sweet potato has important potential for biofuel production due to its high starch content and high bioethanol yield. | 7.1, 7.2, 7.3, 1.2 and 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, N.; Afionis, S.; Stringer, L.C.; Favretto, N.; Sakai, M.; Sakai, P. Benefits and Trade-Offs of Smallholder Sweet Potato Cultivation as a Pathway toward Achieving the Sustainable Development Goals. Sustainability 2021, 13, 552. https://doi.org/10.3390/su13020552
Afzal N, Afionis S, Stringer LC, Favretto N, Sakai M, Sakai P. Benefits and Trade-Offs of Smallholder Sweet Potato Cultivation as a Pathway toward Achieving the Sustainable Development Goals. Sustainability. 2021; 13(2):552. https://doi.org/10.3390/su13020552
Chicago/Turabian StyleAfzal, Nouman, Stavros Afionis, Lindsay C. Stringer, Nicola Favretto, Marco Sakai, and Paola Sakai. 2021. "Benefits and Trade-Offs of Smallholder Sweet Potato Cultivation as a Pathway toward Achieving the Sustainable Development Goals" Sustainability 13, no. 2: 552. https://doi.org/10.3390/su13020552
APA StyleAfzal, N., Afionis, S., Stringer, L. C., Favretto, N., Sakai, M., & Sakai, P. (2021). Benefits and Trade-Offs of Smallholder Sweet Potato Cultivation as a Pathway toward Achieving the Sustainable Development Goals. Sustainability, 13(2), 552. https://doi.org/10.3390/su13020552