Sustainable Configuration of the Tunisian Olive Oil Supply Chain Using a Fuzzy TOPSIS-Based Approach
Abstract
:1. Introduction
1.1. Background and Research Motivation
1.2. Literature Overview
1.3. Adopted Methodology and Objective of the Study
2. Materials and Methods
2.1. Study Area
2.1.1. Tunisian Olive Oil Supply Chain
2.1.2. Tunisian Olive Oil Supply Chain
2.2. The Proposed Approach
2.2.1. Objective of the Proposed Approach
2.2.2. Fuzzy Logic
2.2.3. Fuzzy TOPSIS Method
- Step 1
- Construction of the collective preference fuzzy decision matrix
- Step 2
- Normalization of the fuzzy decision matrix
- Step 3
- The weighting of the normalized fuzzy decision matrix
- Step 4
- Calculation of fuzzy positive ideal solution and fuzzy negative ideal solution
- Step 5
- The calculation of the distances of each alternative compared to FPIS and FNIS
- Step 6
- Calculation of proximity coefficients and classification of alternatives
3. Results
3.1. The Selected Sustainability Indicators
3.2. Dataset
3.3. Identification of Possibles Scenarios
3.3.1. Agricultural Scenarios
- Plantation type, i.e., extensive or intensive system;
- Irrigation, i.e., rainfed or irrigated agriculture;
- Cultivation practices, i.e., conventional or organic practices;
- Soil management, pruning, and harvesting, i.e., manual or mechanized.
- Extensive olive growing, i.e., densities <60 trees/ha;
- Intensive olive growing, i.e., densities between 150 et 600 trees/ha;
- Hyper-intensive olive growing, i.e., densities of 600 to 1666 trees/ha.
Scenario 1 (ASc1): Intensive System
Scenario 2 (ASc2): Hyper-Intensive System
- An increased planting density (>1000 olive trees per hectare);
- Intensive soil management, with the systematic use of chemical fertilizers and pesticides;
- Maximization of productivity thanks to the mechanization of the harvest, which reduces its duration (between 2 and 3 h per hectare).
Scenario 3 (ASc3): Conventional Extensive System
Scenario 4 (ASc4): Organic Extensive System
Scenario 5 (ASc5): Intensified Organic System
3.3.2. Transformation Scenarios
3.4. Fuzzy TOPSIS Application
3.4.1. Application for Agricultural Phase
- Scenario 1 (ASc1), an intensive system;
- Scenario 2 (ASc2), a hyper-intensive system;
- Scenario 3 (ASc3), a conventional extensive system;
- Scenario 4 (ASc4), an organic extensive system;
- Scenario 5 (ASc5), an intensified organic system.
3.4.2. Application for Transformation Phase
- Scenario 1 (TSc1), traditional extraction system;
- Scenario 2 (TSc2), three-phase extraction system;
- Scenario 3 (TSc3), two-phase extraction system.
4. Discussion
4.1. Configuration of the Agricultural Phase
4.2. Configuration of the Transformation Phase
4.3. Final Proposed Configuration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salomone, R.; Ioppolo, G. Environmental impacts of olive oil production: A Life Cycle Assessment case study in the province of Messina (Sicily). J. Clean. Prod. 2012, 28, 88–100. [Google Scholar] [CrossRef]
- Ozkaya, G.; Erdin, C. Evaluation of sustainable forest and air quality management and the current situation in Europe through operation research methods. Sustainability 2020, 12, 10588. [Google Scholar] [CrossRef]
- Riesgo, L.; Gallego-Ayala, J. Multicriteria analysis of olive farms sustainability: An application of TOPSIS models. In Handbook of Operations Research in Agriculture and the Agri-Food Industry; International Series in Operations Research & Management Science; Plà-Aragonés, L., Ed.; Springer: New York, NY, USA, 2015; Volume 224, pp. 327–353. [Google Scholar]
- Rigo, P.D.; Rediske, G.; Rosa, C.B.; Gastaldo, N.G.; Michels, L.; Neuenfeldt Júnior, A.L.; Siluk, J.C.M. renewable energy problems: Exploring the methods to support the decision-making process. Sustainability 2020, 12, 10195. [Google Scholar] [CrossRef]
- Roghanian, E.; Sheykhan, A.; Abendankashi, E.S. An application of fuzzy TOPSIS to improve the process of supply chain management in the food industries: A case study of protein products manufacturing company. Decis. Sci. Lett. 2014, 3, 17–26. [Google Scholar] [CrossRef]
- Henke, I.; Cartenì, A.; Di Francesco, L. A sustainable evaluation processes for investments in the transport sector: A combined multi-criteria and cost–benefit analysis for a new highway in Italy. Sustainability 2020, 12, 9854. [Google Scholar] [CrossRef]
- Kozarević, S.; Puška, A. Use of fuzzy logic for measuring practices and performances of supply chain. Oper. Res. Perspect. 2018, 5, 150–160. [Google Scholar] [CrossRef]
- Ilak Peršurić, A.S. Segmenting olive oil consumers based on consumption and preferences toward extrinsic, intrinsic and sensorial attributes of olive oil. Sustainability 2020, 12, 6379. [Google Scholar] [CrossRef]
- Jackson, D.; Paglietti, L.; Ribeiro, M.; Karray, B. Tunisie: Analyse de la Filière Oléicole. Organisation des Nations Unies pour L’alimentation et L’agriculture. 2015. Available online: http://www.fao.org/3/a-i4104f.pdf (accessed on 10 November 2020).
- Guermazi, Z.; Gharsallaoui, M.; Enzo, P.; Gabsi, S.; Benincasa, C. Integrated approach for the eco design of a new process through the life cycle analysis of olive oil: Total use of olive by-products. Eur. J. Lipid Sci. Technol. 2017, 119, 1–31. [Google Scholar] [CrossRef]
- Avraamides, M.; Fatta, D. Resource consumption and emissions from olive oil production: A life cycle inventory case study in Cyprus. J. Clean. Prod. 2008, 16, 809–821. [Google Scholar] [CrossRef]
- Proietti, S.; Sdringola, P.; Regni, L.; Evangelisti, N.; Brunori, A.; Ilarioni, L.; Nasini, L.; Proietti, P. Extra Virgin Olive oil as carbon negative product: Experimental analysis and validation of results. J. Clean. Prod. 2017, 166, 550–562. [Google Scholar] [CrossRef]
- Pattara, C.; Salomone, R.; Cichelli, A. Carbon footprint of extra virgin olive oil: A comparative and driver analysis of different production processes in Centre Italy. J. Clean. Prod. 2016, 127, 533–547. [Google Scholar] [CrossRef]
- Recchia, L.; Boncinelli, P.; Cini, E.; Vieri, M.; Pegna, F.G.; Sarri, D. Green Energy and Technology with Applications to Agro-Engineering Problems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 99–128. [Google Scholar]
- Cappelletti, G.M.; Grilli, L.; Nicoletti, G.M.; Russo, C. Innovations in the olive oil sector: A fuzzy multicriteria approach. J. Clean. Prod. 2017, 159, 95–105. [Google Scholar] [CrossRef]
- Salabun, W.; Wątróbski, J.; Shekhovtsov, A. Are MCDA methods benchmarkable? A comparative study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II Methods. Symmetry 2020, 12, 1549. [Google Scholar] [CrossRef]
- Watrobski, J.; Jankowski, J.; Ziemba, P.; Karczmarczyk, A.; Ziolo, M. Generalised framework for multi-criteria method selection. Omega 2019, 86, 107–124. [Google Scholar] [CrossRef]
- Behzadian, M.; Otaghsara, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Triantaphyllou, E.; Lin, C.T. Development and evaluation of five fuzzy multi-attribute decision-making methods. Int. J. Approx. Reason. 1996, 14, 281–310. [Google Scholar] [CrossRef] [Green Version]
- Ziemba, P.; Becker, A.; Becker, J. A consensus measure of expert judgment in the fuzzy TOPSIS method. Symmetry 2020, 12, 204. [Google Scholar] [CrossRef] [Green Version]
- Palczewski, K.; Salabun, W. The fuzzy TOPSIS applications in the last decade. Procedia Comput. Sci. 2019, 159, 2294–2303. [Google Scholar] [CrossRef]
- Shekhovtsov, A.; Kolodziejczyk, J.; Sałabun, W. Fuzzy model identification using monolithic and structured approaches in decision problems with partially incomplete data. Symmetry 2020, 12, 1541. [Google Scholar] [CrossRef]
- Karray, B. Enjeux de la filière oléicole en Tunisie et Axes de développement dans le nouveau contexte politique. Notes D’analyse CIHEAM 2012, 66, 33. [Google Scholar]
- Vassiliou, A.; Kabourakis, E.; Papadopoulos, D. Ethical traceability and communicating food. In Traceability and Ethical Traceability in the Greek Olive Oil Chain; Springer: Dordrecht, The Netherlands, 2008; pp. 167–191. [Google Scholar]
- Ghedira, A. The olive sector in Tunisia. Olivae Off. J. Int. Olive Counc. 2017, 124. Available online: http://www.onagri.nat.tn/uploads/filieres/huile-olive/Journal-officiel-du-conseil-oleicole-international.pdf (accessed on 4 July 2020).
- Niklis, D.; Baourakis, G.; Thabet, B.; Manthoulis, G. Trade and logistics: The case of the olive oil sector. Mediterra 2014, 11, 203–226. [Google Scholar]
- Conseil Oléicole International (COI). L’oléiculture en Tunisie. Marché Oléicole 2016, 106, 6. [Google Scholar]
- Conseil Oléicole International (COI). Communiqué de Presse Hammamet; Tunisie, 2016. Available online: http://docplayer.fr/66306488-Communique-de-presse-conseil-oleicole-international-hammamet-tunisie-juillet-2016.html (accessed on 6 October 2020).
- Zabaniotou, A.; Rovas, D.; Monteleone, M. Management of olive grove pruning and solid waste from olive oil extraction via thermochemical processes. Waste Biomass Valoriz. 2015, 6, 831–842. [Google Scholar] [CrossRef]
- Olive Oil Extraction Systems. Available online: https://www.extraevo.com/olive-oil-extraction-systems/ (accessed on 10 December 2020).
- Souissi, M. Gestion des Sous-Produits de L’olivier: Cas de la Région de Sfax; Editions Universitaires Européennes: Saarbrücken, Germany, 2018; pp. 1–104. [Google Scholar]
- Tsarouhas, P.; Achillas, C.; Aidonis, D.; Folinas, D.; Maslis, V. Life Cycle Assessment of olive oil production in Greece. J. Clean. Prod. 2015, 93, 75–83. [Google Scholar] [CrossRef]
- Zouggari, A. Une Approche Couplant Logique Floue et Capitalisation des Connaissances pour la Résolution du Problème de Choix des Fournisseurs. Ph.D. Thesis, Automation, Signal and Image Processing, Computer Engineering at Paul Verlaine University-METZ, Metz, France, 2011. [Google Scholar]
- Sodhi, B.; Prabhakar, T.V. A simplified description of fuzzy TOPSIS. arXiv 2012, arXiv:1205.5098. [Google Scholar]
- Chen, C.T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Akkoç, S.; Vatansever, K. Fuzzy performance evaluation with AHP and TOPSIS methods: Evidence from turkish banking sector after the global financial crisis. Eurasian J. Bus. Econ. 2013, 6, 53–74. [Google Scholar]
- Lima-Junior, F.R.; Osiro, L.; Carpinetti, L.C.R. A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Appl. Soft Comput. J. 2014, 21, 194–209. [Google Scholar] [CrossRef]
- Memari, A.; Dargi, A.; Akbari Jokar, M.R.; Ahmad, R.; Abdul Rahim, A.R. Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. J. Manuf. Syst. 2019, 50, 9–24. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, H. Optimal site selection of electric vehicle charging station by using fuzzy TOPSIS based on sustainability perspective. Appl. Energy 2015, 158, 390–402. [Google Scholar] [CrossRef]
- Kahraman, C.; Kutlu Gundogdu, F.; Cevik Onar, S.; Oztaysi, B. Hospital location selection using spherical fuzzy TOPSIS. In Proceedings of the 11th Conference of the European Society for Fuzzy Logic and Technology, Prague, Czech Republic, 9–13 September 2019; Volume 1, pp. 77–82. [Google Scholar]
- Baumli, K.; Jamasb, T. Assessing private investment in african renewable energy infrastructure: A multi-criteria decision analysis approach. Sustainability 2020, 12, 9425. [Google Scholar] [CrossRef]
- Ahmed, M.; Mallick, J.; AlQadhi, S.; Ben Kahla, N. Development of concrete mixture design process using MCDM approach for sustainable concrete quality management. Sustainability 2020, 12, 8110. [Google Scholar] [CrossRef]
- Saeli, M.; Micale, R.; Seabra, M.P.; Labrincha, J.A.; La Scalia, G. Selection of novel geopolymeric mortars for sustainable construction applications using fuzzy topsis approach. Sustainability 2020, 12, 5987. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Thuc, L.D. Sustainable location selection for investing in public–Private partnership infrastructure projects: From a developing country’s perspective. Sustainability 2020, 12, 5914. [Google Scholar] [CrossRef]
- Selim, H.; Yunusoglu, M.G.; Yilmaz Balaman, Ş. A dynamic maintenance planning framework based on fuzzy TOPSIS and FMEA: Application in an international food company. Qual. Reliab. Eng. Int. 2016, 32, 795–804. [Google Scholar] [CrossRef]
- Orlitzky, M.; Schmidt, F.L.; Rynes, S.L. Corporate social and financial performance: A meta-analysis. Organ. Stud. 2003, 24, 403–441. [Google Scholar] [CrossRef]
- Baumann, E. Modèles D’évaluation des Performances Économique, Environnementale et Sociale dans les Chaînes Logistiques. Ph.D. Thesis, Productique, Institut National des Sciences Appliquées de Lyon, Lyon, France, 2011. [Google Scholar]
Fuzzy Numbers | Alternatives Assessment | Weights Assessment |
---|---|---|
(1,1,3) | Very Poor (VP) | Very Low (VL) |
(1,3,5) | Poor (P) | Low (L) |
(3,5,7) | Fair (F) | Medium (M) |
(5,7,9) | Good (G) | High (H) |
(7,9,9) | Very Good (VG) | Very High (VH) |
Criteria | C1 | C2 | C3 | … | Cn | |
---|---|---|---|---|---|---|
lternatives | ||||||
A1 | 11 | 12 | 13 | … | 1n | |
A2 | 21 | 22 | 23 | … | 2n | |
A3 | 31 | 32 | 33 | … | 3n | |
… | … | … | … | … | … | |
Am | m1 | m2 | m3 | … | mn |
Economic, Environmental, and Social Criteria | Financial Performance | Quality | Environmental Management | Pollution | Work Rights | Social Commitment |
---|---|---|---|---|---|---|
Weights assessment | (7,9,9) | (7,9,9) | (5,7,9) | (5,7,9) | (3,5,7) | (3,5,7) |
ASc1 | (5,8,9) | (5,7,9) | (3,6,9) | (1,3,5) | (5,7,9) | (5,8.5,9) |
ASc2 | (5,8.33,9) | (3,5.66,9) | (3,6.33,9) | (1,1,3) | (5,8.33,9) | (5,7,9) |
ASc3 | (3,5,7) | (5,7,9) | (1,4,7) | (3,5.6,9) | (1,4.6,7) | (5,7,9) |
ASc4 | (3,5,7) | (7,9,9) | (3,6.5,9) | (7,9,9) | (1,4.5,7) | (3,6.5,9) |
ASc5 | (5,7,9) | (7,9,9) | (7,9,9) | (7,9,9) | (5,7,9) | (5,7,9) |
Alternatives | Rankings | |||
---|---|---|---|---|
ASc1 | 7.071 | 8.71 | 0.551 | 3 |
ASc2 | 10.217 | 6.227 | 0.378 | 4 |
ASc3 | 11.202 | 5.730 | 0.338 | 5 |
ASc4 | 6.571 | 9.715 | 0.596 | 2 |
ASc5 | 1.666 | 14.879 | 0.899 | 1 |
Economic, Environmental, and Social Criteria | Financial Performance | Quality | Environmental Management | Pollution | Work Rights | Social Commitment |
---|---|---|---|---|---|---|
Weights assessment | (7,9,9) | (7,9,9) | (5,7,9) | (5,7,9) | (3,5,7) | (3,5,7) |
TSc1 | (1,3.5,7) | (1,4.3,7) | (5,6.16,9) | (3,5,7) | (1,4.6,7) | (3,6.6,9) |
TSc2 | (3,6.5,9) | (5,7.5,9) | (1,3.5,7) | (1,2.5,5) | (5,7.25,9) | (3,5.5,9) |
TSc3 | (5,8.6,9) | (5,8.6,9) | (3,6,9) | (5,7,9) | (5,8.6,9) | (3,5.6,9) |
Alternatives | Rankings | |||
---|---|---|---|---|
TSc1 | 10.23 | 4.234 | 0.292 | 3 |
TSc2 | 8.207 | 6.547 | 0.443 | 2 |
TSc3 | 0.7 | 14.735 | 0.994 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jellali, A.; Hachicha, W.; Aljuaid, A.M. Sustainable Configuration of the Tunisian Olive Oil Supply Chain Using a Fuzzy TOPSIS-Based Approach. Sustainability 2021, 13, 722. https://doi.org/10.3390/su13020722
Jellali A, Hachicha W, Aljuaid AM. Sustainable Configuration of the Tunisian Olive Oil Supply Chain Using a Fuzzy TOPSIS-Based Approach. Sustainability. 2021; 13(2):722. https://doi.org/10.3390/su13020722
Chicago/Turabian StyleJellali, Ahlem, Wafik Hachicha, and Awad M. Aljuaid. 2021. "Sustainable Configuration of the Tunisian Olive Oil Supply Chain Using a Fuzzy TOPSIS-Based Approach" Sustainability 13, no. 2: 722. https://doi.org/10.3390/su13020722
APA StyleJellali, A., Hachicha, W., & Aljuaid, A. M. (2021). Sustainable Configuration of the Tunisian Olive Oil Supply Chain Using a Fuzzy TOPSIS-Based Approach. Sustainability, 13(2), 722. https://doi.org/10.3390/su13020722