Sustainable Cyber-Physical Production Systems in Big Data-Driven Smart Urban Economy: A Systematic Literature Review
Abstract
:1. Introduction
2. Methodology
3. Sustainable Industrial Value Creation in Data-Driven Sustainable Smart Manufacturing
4. Big Data-Driven Smart Sustainable Energy and Electric Systems
5. Sustainable Circular Economy Issues in Precision Agriculture and Smart Farming Production Systems
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pinzone, M.; Albè, F.; Orlandelli, D.; Barletta, I.; Berlin, C.; Johansson, B.; Taisch, M. A framework for operative and social sustainability functionalities in Human-Centric Cyber-Physical Production Systems. Comput. Ind. Eng. 2020, 139, 105132. [Google Scholar] [CrossRef]
- Delicato, F.C.; Al-Anbuky, A.; Wang, K.I.-K. Editorial: Smart Cyber–Physical Systems: Toward Pervasive Intelligence systems. Futur. Gener. Comput. Syst. 2020, 107, 1134–1139. [Google Scholar] [CrossRef]
- Kovacova, M.; Kliestik, T.; Valaskova, K.; Durana, P.; Juhaszova, Z. Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oeconomia Copernic. 2019, 10, 743–772. [Google Scholar] [CrossRef] [Green Version]
- White, T.; Grecu, I.; Grecu, G. Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing. J. Self-Gov. Manag. Econ. 2020, 8, 37–43. [Google Scholar] [CrossRef]
- Nica, E.; Miklencicova, R.; Kicova, E. Artificial Intelligence-supported Workplace Decisions: Big Data Algorithmic Analytics, Sensory and Tracking Technologies, and Metabolism Monitors. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Bratu, S. Nutritional genomics in personalized medicine: Data-driven customized treatments and lifestyle-based disease management and prevention. Linguist. Philos. Investig. 2019, 18, 140–146. [Google Scholar] [CrossRef]
- Ionescu, L. Robotic Process Automation, Deep Learning, and Natural Language Processing in Algorithmic Data-driven Accounting Information Systems. Anal. Metaphys. 2020, 19, 59–65. [Google Scholar] [CrossRef]
- Russell, H. Sustainable Urban Governance Networks: Data-driven Planning Technologies and Smart City Software Systems. Geopolit. Hist. Int. Relat. 2020, 12, 9–15. [Google Scholar] [CrossRef]
- Adams, C. Smart Sustainable Urban Mobility Behaviors: Public Attitudes and Adoption Intentions Concerning Self-Driving Cars. Contemp. Read. Law Soc. Justice 2020, 12, 16–22. [Google Scholar] [CrossRef]
- Napoleone, A.; Macchi, M.; Pozzetti, A. A review on the characteristics of cyber-physical systems for the future smart factories. J. Manuf. Syst. 2020, 54, 305–335. [Google Scholar] [CrossRef]
- Leng, J.; Ruan, G.; Jiang, P.; Xu, K.; Liu, Q.; Zhou, X.; Liu, C. Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey. Renew. Sustain. Energy Rev. 2020, 132, 110112. [Google Scholar] [CrossRef]
- Ngu, H.J.; Lee, M.D.; Bin Osman, M.S. Review on current challenges and future opportunities in Malaysia sustainable manufacturing: Remanufacturing industries. J. Clean. Prod. 2020, 273, 123071. [Google Scholar] [CrossRef]
- de Vass, T.; Shee, H.; Miah, S.J. Iot in supply chain management: A narrative on retail sector sustainability. Int. J. Logist. Res. Appl. 2020, 1–20. [Google Scholar] [CrossRef]
- He, B.; Li, F.; Cao, X.; Li, T. Product Sustainable Design: A Review from the Environmental, Economic, and Social Aspects. J. Comput. Inf. Sci. Eng. 2020, 20, 1–75. [Google Scholar] [CrossRef]
- Kliestik, T.; Valaskova, K.; Nica, E.; Kovacova, M.; Lăzăroiu, G. Advanced methods of earnings management: Monotonic trends and change-points under spotlight in the Visegrad countries. Oeconomia Copernic. 2020, 11, 371–400. [Google Scholar] [CrossRef]
- Duft, G.; Durana, P. Artificial Intelligence-based Decision-Making Algorithms, Automated Production Systems, and Big Data-driven Innovation in Sustainable Industry 4.0. Econ. Manag. Financ. Mark. 2020, 15, 9–18. [Google Scholar] [CrossRef]
- Noack, B. Big Data Analytics in Human Resource Management: Automated Decision-Making Processes, Predictive Hiring Algorithms, and Cutting-Edge Workplace Surveillance Technologies. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 37–42. [Google Scholar] [CrossRef]
- Popescu Ljungholm, D.; Olah, M.L. Will Autonomous Flying Car Regulation Really Free Up Roads? Smart Sustainable Air Mobility, Societal Acceptance, and Public Safety Concerns. Linguist. Philos. Investig. 2020, 19, 100–106. [Google Scholar] [CrossRef]
- Scott, R.; Poliak, M.; Vrbka, J.; Nica, E. COVID-19 Response and Recovery in Smart Sustainable City Governance and Management: Data-driven Internet of Things Systems and Machine Learning-based Analytics. Geopolit. Hist. Int. Relat. 2020, 12, 16–22. [Google Scholar] [CrossRef]
- Porter, T. The Design, Regulation, and Adoption of Autonomous Driving Systems in Smart Sustainable Urbanism. Contemp. Read. Law Soc. Justice 2020, 12, 30–36. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Ren, S.; Yang, M.; Wang, Y.; Huisingh, D. How can smart technologies contribute to sustainable product lifecycle management? J. Clean. Prod. 2020, 249, 119423. [Google Scholar] [CrossRef]
- Androniceanu, A. Major structural changes in the EU policies due to the problems and risks caused by COVID-19. Adm. Manag. Public 2020, 34, 137–149. [Google Scholar] [CrossRef]
- Hyers, D. Big Data-driven Decision-Making Processes, Industry 4.0 Wireless Networks, and Digitized Mass Production in Cyber-Physical System-based Smart Factories. Econ. Manag. Financ. Mark. 2020, 15, 19–28. [Google Scholar] [CrossRef]
- Olsen, M. Using Data Analytics in the Management of Employees: Digital Means of Tracking, Monitoring, and Surveilling Worker Activities. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 43–48. [Google Scholar] [CrossRef]
- Graessley, S.; Suler, P.; Kliestik, T.; Kicova, E. Industrial Big Data Analytics for Cognitive Internet of Things: Wireless Sensor Networks, Smart Computing Algorithms, and Machine Learning Techniques. Anal. Metaphys. 2019, 18, 23–29. [Google Scholar] [CrossRef]
- Grayson, J. Big Data Analytics and Sustainable Urbanism in Internet of Things-enabled Smart Governance. Geopolit. Hist. Int. Relat. 2020, 12, 23–29. [Google Scholar] [CrossRef]
- Atwell, G.J.; Lăzăroiu, G. Are Autonomous Vehicles Only a Technological Step? The Sustainable Deployment of Self-Driving Cars on Public Roads. Contemp. Read. Law Soc. Justice 2018, 11, 22–28. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Bai, K.-J. Digital twin-based sustainable intelligent manufacturing: A review. Adv. Manuf. 2020, 1–21. [Google Scholar] [CrossRef]
- Androniceanu, A.; Tvaronavičienė, M. Developing a holistic system for social assistance services based on effective and sustainable partnerships. Adm. Manag. Public 2019, 1, 103–118. [Google Scholar] [CrossRef]
- Popescu, G.H.; Valaskova, K.; Majerova, J. Real-Time Sensor Networks, Advanced Robotics, and Product Decision-Making Information Systems in Data-driven Sustainable Smart Manufacturing. Econ. Manag. Financ. Mark. 2020, 15, 29–38. [Google Scholar] [CrossRef]
- Meyers, T.D.; Vagner, L.; Janoskova, K.; Grecu, I.; Grecu, G. Big Data-driven Algorithmic Decision-Making in Selecting and Managing Employees: Advanced Predictive Analytics, Workforce Metrics, and Digital Innovations for Enhancing Organizational Human Capital. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 49–54. [Google Scholar] [CrossRef]
- Ionescu, D. Deep Learning Algorithms and Big Health Care Data in Clinical Natural Language Processing. Linguist. Philos. Investig. 2020, 19, 86–92. [Google Scholar] [CrossRef]
- Miller, K. Internet of Things-enabled Smart Devices in Medical Practice: Healthcare Big Data, Wearable Biometric Sensors, and Real-Time Patient Monitoring. Am. J. Med. Res. 2019, 7, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Siekelova, A.; Androniceanu, A.; Durana, P.; Michalikova, K.F. Earnings Management (EM), Initiatives and Company Size: An Empirical Study. Acta Polytech. Hung. 2020, 17, 41–56. [Google Scholar] [CrossRef]
- Keane, E.; Zvarikova, K.; Rowland, Z. Cognitive Automation, Big Data-driven Manufacturing, and Sustainable Industrial Value Creation in Internet of Things-based Real-Time Production Logistics. Econ. Manag. Financ. Mark. 2020, 15, 39–48. [Google Scholar] [CrossRef]
- Balica, R. Automated Data Analysis in Organizations: Sensory Algorithmic Devices, Intrusive Workplace Monitoring, and Employee Surveillance. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 61–66. [Google Scholar] [CrossRef]
- Mircică, N. Restoring Public Trust in Digital Platform Operations: Machine Learning Algorithmic Structuring of Social Media Content. Rev. Contemp. Philos. 2020, 19, 85–91. [Google Scholar] [CrossRef]
- Nelson, A. Neguriță, Big data-driven smart cities: Internet of Things devices and environmentally sustainable urban development. Geopolit. Hist. Int. Relat. 2020, 12, 37–43. [Google Scholar] [CrossRef]
- Zhuravleva, N.A.; Cadge, K.; Poliak, M.; Podhorska, I. Data Privacy and Security Vulnerabilities of Smart and Sustainable Urban Space Monitoring Systems. Contemp. Read. Law Soc. Justice 2019, 11, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Mörth, O.; Emmanouilidis, C.; Hafner, N.; Schadler, M. Cyber-physical systems for performance monitoring in production intralogistics. Comput. Ind. Eng. 2020, 142, 106333. [Google Scholar] [CrossRef]
- Xie, G.; Zeng, G.; Jiang, J.; Fan, C.; Li, R.; Li, K. Energy management for multiple real-time workflows on cyber–physical cloud systems. Futur. Gener. Comput. Syst. 2020, 105, 916–931. [Google Scholar] [CrossRef]
- Borocki, J.; Radisic, M.; Sroka, W.; Greblikaite, J.; Androniceanu, A.; Sroka, W. Methodology for Strategic Posture Determination of SMEs. Eng. Econ. 2019, 30, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Throne, O.; Lăzăroiu, G. Internet of Things-enabled Sustainability, Industrial Big Data Analytics, and Deep Learning-assisted Smart Process Planning in Cyber-Physical Manufacturing Systems. Econ. Manag. Financ. Mark. 2020, 15, 49–58. [Google Scholar] [CrossRef]
- Tisdell, C.; Ahmad, S.; Agha, N.; Steen, J.; Verreynne, M.-L. Microfinance for Wives: Fresh Insights Obtained from a Study of Poor Rural Women in Pakistan. J. Res. Gend. Stud. 2020, 10, 9–37. [Google Scholar] [CrossRef]
- Ionescu, L. Digital Data Aggregation, Analysis, and Infrastructures in FinTech Operations. Rev. Contemp. Philos. 2020, 19, 92–98. [Google Scholar] [CrossRef]
- Robinson, R. Computationally Networked Urbanism and Sensor-based Big Data Applications in Integrated Smart City Planning and Management. Geopolit. Hist. Int. Relat. 2020, 12, 44–50. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Y.; Liu, Y.; Yang, H.; Lv, J.; Ren, S. Data-driven sustainable intelligent manufacturing based on demand response for energy-intensive industries. J. Clean. Prod. 2020, 274, 123155. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.K.; Dwivedi, Y.K. Application of industry 4.0 technologies in SMEs for ethical and sustainable operations: Analysis of challenges. J. Clean. Prod. 2020, 275, 124063. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, L.; Li, W.; Zomaya, A.Y. Reinforcement learning in sustainable energy and electric systems: A survey. Annu. Rev. Control. 2020, 49, 145–163. [Google Scholar] [CrossRef]
- Coatney, K.; Poliak, M. Cognitive Decision-Making Algorithms, Internet of Things Smart Devices, and Sustainable Organizational Performance in Industry 4.0-based Manufacturing Systems. J. Self-Gov. Manag. Econ. 2020, 8, 9–18. [Google Scholar] [CrossRef]
- Davis, R.; Vochozka, M.; Vrbka, J.; Neguriță, O. Industrial Artificial Intelligence, Smart Connected Sensors, and Big Data-driven Decision-Making Processes in Internet of Things-based Real-Time Production Logistics. Econ. Manag. Financ. Mark. 2020, 15, 9–15. [Google Scholar] [CrossRef]
- Kral, P.; Janoskova, K.; Podhorska, I.; Pera, A.; Neguriță, O. The Automatability of Male and Female Jobs: Technological Unemployment, Skill Shift, and Precarious Work. J. Res. Gend. Stud. 2019, 9, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Bourke, E.; Kovacova, M.; Kliestikova, J.; Rowland, Z. Smart Industrial Internet of Things Devices, Services, and Applications: Ubiquitous Sensing and Sensory Data, Predictive Analytics Algorithms, and Cognitive Computing Technologies. Anal. Metaphys. 2019, 18, 50–56. [Google Scholar] [CrossRef]
- Bennett, S.; Durana, P.; Konecny, V. Urban Internet of Things Systems and Interconnected Sensor Networks in Sustainable Smart City Governance. Geopolit. Hist. Int. Relat. 2020, 12, 51–57. [Google Scholar] [CrossRef]
- Ashander, L.; Kliestikova, J.; Durana, P.; Vrbska, J. The Decision-Making Logic of Big Data Algorithmic Analytics. Contemp. Read. Law Soc. Justice 2019, 11, 57–62. [Google Scholar] [CrossRef]
- Majeed, A.; Zhang, Y.; Ren, S.; Lv, J.; Peng, T.; Waqar, S.; Yin, E. A big data-driven framework for sustainable and smart additive manufacturing. Robot. Comput. Manuf. 2021, 67, 102026. [Google Scholar] [CrossRef]
- Schulz, K.; Gstrein, O.J.; Zwitter, A. Exploring the governance and implementation of sustainable development initiatives through blockchain technology. Futures 2020, 122, 102611. [Google Scholar] [CrossRef]
- Gray-Hawkins, M.; Lăzăroiu, G. Industrial Artificial Intelligence, Sustainable Product Lifecycle Management, and Internet of Things Sensing Networks in Cyber-Physical Smart Manufacturing Systems. J. Self-Gov. Manag. Econ. 2020, 8, 19–28. [Google Scholar] [CrossRef]
- Davidson, R. Cyber-Physical Production Networks, Artificial Intelligence-based Decision-Making Algorithms, and Big Data-driven Innovation in Industry 4.0-based Manufacturing Systems. Econ. Manag. Financ. Mark. 2020, 15, 16–22. [Google Scholar] [CrossRef]
- Kovacova, M.; Kliestikova, J.; Grupac, M.; Grecu, I.; Grecu, G. Automating Gender Roles at Work: How Digital Disruption and Artificial Intelligence Alter Industry Structures and Sex-based Divisions of Labor. J. Res. Gend. Stud. 2019, 9, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Nica, E.; Kliestik, T.; Sabie, O.-M.; Ioanei (Gatan), M.-L. Socio-Affective Technologies for Psychological Health: Emotional Artificial Intelligence in Empathetic Robots. Am. J. Med. Res. 2020, 7, 9–14. [Google Scholar] [CrossRef]
- Walker, A. Internet of Things-enabled Smart Sustainable Cities: Big Data-based Urban Governance, Wireless Sensor Networks, and Automated Algorithmic Decision-Making Processes. Geopolit. Hist. Int. Relat. 2020, 12, 58–64. [Google Scholar] [CrossRef]
- Lenhard, R.; Malcho, M.; Jandačka, J. Modelling of Heat Transfer in the Evaporator and Condenser of the Working Fluid in the Heat Pipe. Heat Transf. Eng. 2019, 40, 215–226. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Chong, C.; Wang, C.-H.; Wang, X. A decision support framework for the design and operation of sustainable urban farming systems. J. Clean. Prod. 2020, 268, 121928. [Google Scholar] [CrossRef]
- Inderwildi, O.; Zhang, C.; Wang, X.; Kraft, M. The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy Environ. Sci. 2020, 13, 744–771. [Google Scholar] [CrossRef]
- Nica, E.; Janoskova, K.; Kovacova, M. Smart Connected Sensors, Industrial Big Data, and Real-Time Process Monitoring in Cyber-Physical System-based Manufacturing. J. Self-Gov. Manag. Econ. 2020, 8, 29–38. [Google Scholar] [CrossRef]
- Kliestik, T.; Nica, E.; Musa, H.; Poliak, M.; Mihai, E.-A. Networked, Smart, and Responsive Devices in Industry 4.0 Manufacturing Systems. Econ. Manag. Financ. Mark. 2020, 15, 23–29. [Google Scholar] [CrossRef]
- Ionescu, L. Big Data, Blockchain, and Artificial Intelligence in Cloud-based Accounting Information Systems. Anal. Metaphys. 2019, 18, 44–49. [Google Scholar] [CrossRef]
- Davis, R. Integrating Digital Technologies and Data-driven Telemedicine into Smart Healthcare during the COVID-19 Pandemic. Am. J. Med. Res. 2020, 7, 22–28. [Google Scholar] [CrossRef]
- Lyons, N.; Lăzăroiu, G. Addressing the COVID-19 Crisis by Harnessing Internet of Things Sensors and Machine Learning Algorithms in Data-driven Smart Sustainable Cities. Geopolit. Hist. Int. Relat. 2020, 12, 65–71. [Google Scholar] [CrossRef]
- Davies, S.; Kovacova, M.; Valaskova, K. Urban Big Data and Internet of Things Sensing Infrastructures in Smart and Environmentally Sustainable Cities. Geopolit. Hist. Int. Relat. 2020, 12, 72–78. [Google Scholar] [CrossRef]
- Tsao, Y.-C.; Thanh, V.-V. A multi-objective fuzzy robust optimization approach for designing sustainable and reliable power systems under uncertainty. Appl. Soft Comput. 2020, 92, 106317. [Google Scholar] [CrossRef]
- Plewnia, F.; Plewnia, F. The Transition Value of Business Models for a Sustainable Energy System: The Case of Virtual Peer-to-Peer Energy Communities. Organ. Environ. 2020. [Google Scholar] [CrossRef]
- Crişan-Mitra, C.; Stanca, L.; Dabija, D.-C. Corporate Social Performance: An Assessment Model on an Emerging Market. Sustainability 2020, 12, 4077. [Google Scholar] [CrossRef]
- Kurniadi, K.A.; Ryu, K. Maintaining Sustainability in Reconfigurable Manufacturing Systems Featuring Green-BOM. Int. J. Precis. Eng. Manuf. Technol. 2020, 7, 755–767. [Google Scholar] [CrossRef]
- Rustam, A.; Wang, Y.; Zameer, H. Environmental awareness, firm sustainability exposure and green consumption behaviors. J. Clean. Prod. 2020, 268, 122016. [Google Scholar] [CrossRef]
- Williams, A.; Suler, P.; Vrbka, J. Business Process Optimization, Cognitive Decision-Making Algorithms, and Artificial Intelligence Data-driven Internet of Things Systems in Sustainable Smart Manufacturing. J. Self-Gov. Manag. Econ. 2020, 8, 39–48. [Google Scholar] [CrossRef]
- Smith, A. Cognitive Decision-Making Algorithms, Real-Time Sensor Networks, and Internet of Things Smart Devices in Cyber-Physical Manufacturing Systems. Econ. Manag. Financ. Mark. 2020, 15, 30–36. [Google Scholar] [CrossRef]
- Costea, E.-A. Machine Learning-based Natural Language Processing Algorithms and Electronic Health Records Data. Linguist. Philos. Investig. 2020, 19, 93–99. [Google Scholar] [CrossRef]
- Hughes, A. Artificial Intelligence-enabled Healthcare Delivery and Real-Time Medical Data Analytics in Monitoring, Detection, and Prevention of COVID-19. Am. J. Med. Res. 2020, 7, 50–56. [Google Scholar] [CrossRef]
- Davidson, R. The Algorithmic Governance of Connected Autonomous Vehicles: Data-driven Decision Support Systems and Smart Sustainable Urban Mobility Behaviors. Contemp. Read. Law Soc. Justice 2020, 12, 16–24. [Google Scholar] [CrossRef]
- Dabija, D.-C.; Băbuț, R. Enhancing Apparel Store Patronage through Retailers’ Attributes and Sustainability. A Generational Approach. Sustainability 2019, 11, 4532. [Google Scholar] [CrossRef] [Green Version]
- Nik, V.M.; Perera, A.; Chen, D. Towards climate resilient urban energy systems: A review. Natl. Sci. Rev. 2020. [Google Scholar] [CrossRef]
- Chessell, D.; Neguriță, O. Smart Industrial Value Creation, Cyber-Physical Production Networks, and Real-Time Big Data Analytics in Sustainable Internet of Things-based Manufacturing Systems. J. Self-Gov. Manag. Econ. 2020, 8, 49–58. [Google Scholar] [CrossRef]
- Ionescu, L. Pricing carbon pollution: Reducing emissions or GDP growth? Econ. Manag. Financ. Mark. 2020, 15, 37–43. [Google Scholar] [CrossRef]
- Popescu Ljungholm, D. Governing Self-Driving Cars: Do Autonomous Vehicles Pose a Significant Regulatory Problem? Rev. Contemp. Philos. 2019, 18, 119–125. [Google Scholar] [CrossRef]
- Sheares, G. Internet of Things-enabled Smart Devices, Biomedical Big Data, and Real-Time Clinical Monitoring in COVID-19 Patient Health Prediction. Am. J. Med. Res. 2020, 7, 64–70. [Google Scholar] [CrossRef]
- Sawyer, J. Wearable Internet of Medical Things Sensor Devices, Artificial Intelligence-driven Smart Healthcare Services, and Personalized Clinical Care in COVID-19 Telemedicine. Am. J. Med. Res. 2020, 7, 71–77. [Google Scholar] [CrossRef]
- Nelson, A. Smart Transportation Systems: Sustainable Mobilities, Autonomous Vehicle Decision-Making Algorithms, and Networked Driverless Technologies. Contemp. Read. Law Soc. Justice 2020, 12, 25–33. [Google Scholar] [CrossRef]
- Grondys, K.; Androniceanu, A.; Dacko-Pikiewicz, Z. Energy Management in the Operation of Enterprises in the Light of the Applicable Provisions of the Energy Efficiency Directive (2012/27/EU). Energies 2020, 13, 4338. [Google Scholar] [CrossRef]
- Esmaeilian, B.; Sarkis, J.; Lewis, K.; Behdad, S. Blockchain for the future of sustainable supply chain management in Industry 4.0. Resour. Conserv. Recycl. 2020, 163, 105064. [Google Scholar] [CrossRef]
- Bell, E. Cognitive Automation, Business Process Optimization, and Sustainable Industrial Value Creation in Artificial Intelligence Data-driven Internet of Things Systems. J. Self-Gov. Manag. Econ. 2020, 8, 9–15. [Google Scholar] [CrossRef]
- Harrower, K. Algorithmic Decision-Making in Organizations: Network Data Mining, Measuring and Monitoring Work Performance, and Managerial Control. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 7–12. [Google Scholar] [CrossRef]
- Bratu, S. Can Social Media Influencers Shape Corporate Brand Reputation? Online Followers’ Trust, Value Creation, and Purchase Intentions. Rev. Contemp. Philos. 2017, 18, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Mircică, N. Cyber-Physical Systems for Cognitive Industrial Internet of Things: Sensory Big Data, Smart Mobile Devices, and Automated Manufacturing Processes. Anal. Metaphys. 2019, 18, 37–43. [Google Scholar] [CrossRef]
- Johnson, A. Medical Wearables and Biosensor Technologies as Tools of Internet of Things-based Health Monitoring Systems. Am. J. Med. Res. 2020, 7, 7–13. [Google Scholar] [CrossRef]
- Peters, E. Sustainable and Smart Urban Transport Systems: Sensing and Computing Technologies, Intelligent Vehicular Networks, and Data-driven Automated Decision-Making. Contemp. Read. Law Soc. Justice 2020, 12, 43–51. [Google Scholar] [CrossRef]
- Smetana, S.; Aganovic, K.; Heinz, V. Food Supply Chains as Cyber-Physical Systems: A Path for More Sustainable Personalized Nutrition. Food Eng. Rev. 2020, 1–12. [Google Scholar] [CrossRef]
- Castillejo, P.; Johansen, G.; Cürüklü, B.; Bilbao-Arechabala, S.; Fresco, R.; Martínez-Rodríguez, B.; Pomante, L.; Rusu, C.; Martínez, J.-F.; Centofanti, C.; et al. Aggregate Farming in the Cloud: The AFarCloud ECSEL project. Microprocess. Microsyst. 2020, 78, 103218. [Google Scholar] [CrossRef]
- Bag, S.; Pretorius, J.H.C. Relationships between industry 4.0, sustainable manufacturing and circular economy: Proposal of a research framework. Int. J. Organ. Anal. 2020. [Google Scholar] [CrossRef]
- Peters, E.; Kliestik, T.; Musa, H.; Durana, P. Product Decision-Making Information Systems, Real-Time Big Data Analytics, and Deep Learning-enabled Smart Process Planning in Sustainable Industry 4.0. J. Self-Gov. Manag. Econ. 2020, 8, 16–22. [Google Scholar] [CrossRef]
- Wingard, D. Data-driven Automated Decision-Making in Assessing Employee Performance and Productivity: Designing and Implementing Workforce Metrics and Analytics. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 13–18. [Google Scholar] [CrossRef]
- Ionescu, D. Semantically Enriched Internet of Things Sensor Data in Smart Networked Environments. Anal. Metaphys. 2019, 18, 30–36. [Google Scholar] [CrossRef]
- Brown, J.; Cug, J.; Kolencik, J. Internet of Things-based Smart Healthcare Systems: Real-Time Patient-Generated Medical Data from Networked Wearable Devices. Am. J. Med. Res. 2020, 7, 21–26. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.; Gunasekaran, A.; Kumarcd, V.; Kumar, A. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Comput. Oper. Res. 2020, 119, 104926. [Google Scholar] [CrossRef]
- Gupta, S.; Meissonier, R.; Drave, V.A.; Roubaud, D. Examining the impact of Cloud ERP on sustainable performance: A dynamic capability view. Int. J. Inf. Manag. 2020, 51, 102028. [Google Scholar] [CrossRef]
- Clarke, G. Sensing, Smart, and Sustainable Technologies in Big Data-driven Manufacturing. J. Self-Gov. Manag. Econ. 2020, 8, 23–29. [Google Scholar] [CrossRef]
- Pera, A. Towards effective workforce management: Hiring algorithms, big data-driven accountability systems, and organizational performance. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 19–24. [Google Scholar] [CrossRef]
- Popescu Ljungholm, D. Regulating Government and Private Use of Unmanned Aerial Vehicles: Drone Policymaking, Law Enforcement Deployment, and Privacy Concerns. Anal. Metaphys. 2019, 18, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Miller, E. Networked and Integrated Sustainable Urban Technologies in Internet of Things-enabled Smart Cities. Geopolit. Hist. Int. Relat. 2020, 12, 30–36. [Google Scholar] [CrossRef]
- Davies, S. Interconnected Sensor Networks and Decision-Making Self-Driving Car Control Algorithms in Smart Sustainable Urbanism. Contemp. Read. Law Soc. Justice 2020, 12, 88–96. [Google Scholar] [CrossRef]
- Androniceanu, A.-M.; Georgescu, I.; Tvaronavičienė, M.; Androniceanu, A. Canonical Correlation Analysis and a New Composite Index on Digitalization and Labor Force in the Context of the Industrial Revolution 4.0. Sustainability 2020, 12, 6812. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C. Big data in agriculture: Does the new oil lead to sustainability? Geoforum 2020, 109, 1–3. [Google Scholar] [CrossRef]
- Yin, D.; Ming, X.; Zhang, X. Sustainable and smart product innovation ecosystem: An integrative status review and future perspectives. J. Clean. Prod. 2020, 274, 123005. [Google Scholar] [CrossRef]
- Popescu, G.H.; Zvarikova, K.; Machova, V.; Mihai, E.-A. Industrial Big Data, Automated Production Systems, and Internet of Things Sensing Networks in Cyber-Physical System-based Manufacturing. J. Self-Gov. Manag. Econ. 2020, 8, 30–36. [Google Scholar] [CrossRef]
- Bekken, G. The Algorithmic Governance of Data Driven-Processing Employment: Evidence-based Management Practices, Artificial Intelligence Recruiting Software, and Automated Hiring Decisions Social Sciences, Sociology, Management and complex organizations. Psychosociol. Issues Hum. Resour. Manag. 2019, 7, 25–30. [Google Scholar] [CrossRef]
- Kovacova, M.; Kliestik, T.; Pera, A.; Grecu, I.; Grecu, G. Big Data Governance of Automated Algorithmic Decision-Making Processes. Rev. Contemp. Philos. 2019, 18, 126–132. [Google Scholar] [CrossRef]
- Moore, C. Medical Internet of Things-based Healthcare Systems: Wearable Sensor-based Devices, Patient-generated Big Data, and Real-Time Clinical Monitoring. Am. J. Med. Res. 2020, 7, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Keane, J. Can Self-Driving Cars Lead to Sustainability? Autonomous Smart Sensors, Perception and Planning Algorithms, and Data Processing Efficiency. Contemp. Read. Law Soc. Justice 2020, 12, 9–15. [Google Scholar] [CrossRef]
Topic | Identified | Selected |
---|---|---|
sustainable industrial value creation | 39 | 11 |
cyber-physical production systems | 78 | 34 |
sustainable smart manufacturing | 54 | 24 |
smart economy | 37 | 11 |
industrial big data analytics | 35 | 10 |
sustainable Internet of Things | 42 | 15 |
sustainable Industry 4.0 | 38 | 14 |
Type of paper | ||
original research | 275 | 107 |
review | 25 | 12 |
book | 4 | 0 |
conference proceedings | 11 | 0 |
editorial | 8 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andronie, M.; Lăzăroiu, G.; Iatagan, M.; Hurloiu, I.; Dijmărescu, I. Sustainable Cyber-Physical Production Systems in Big Data-Driven Smart Urban Economy: A Systematic Literature Review. Sustainability 2021, 13, 751. https://doi.org/10.3390/su13020751
Andronie M, Lăzăroiu G, Iatagan M, Hurloiu I, Dijmărescu I. Sustainable Cyber-Physical Production Systems in Big Data-Driven Smart Urban Economy: A Systematic Literature Review. Sustainability. 2021; 13(2):751. https://doi.org/10.3390/su13020751
Chicago/Turabian StyleAndronie, Mihai, George Lăzăroiu, Mariana Iatagan, Iulian Hurloiu, and Irina Dijmărescu. 2021. "Sustainable Cyber-Physical Production Systems in Big Data-Driven Smart Urban Economy: A Systematic Literature Review" Sustainability 13, no. 2: 751. https://doi.org/10.3390/su13020751
APA StyleAndronie, M., Lăzăroiu, G., Iatagan, M., Hurloiu, I., & Dijmărescu, I. (2021). Sustainable Cyber-Physical Production Systems in Big Data-Driven Smart Urban Economy: A Systematic Literature Review. Sustainability, 13(2), 751. https://doi.org/10.3390/su13020751