Study of Persistent Pollution in Hefei during Winter Revealed by Ground-Based LiDAR and the CALIPSO Satellite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ground-Based Observations of Meteorological Elements and Ground-Based LiDAR Observations
2.2. CALIPSO Satellite Measurements and Model Product
3. Results
3.1. Ground Station Meteorological Measurements
3.2. Ground-Based LiDAR Observations of Tropospheric Aerosols
3.3. Transboundary Aerosol Transport Observed by the CALIPSO Satellite and a Comparison of CALIPSO and Mie LiDAR
3.4. HYSPLIT Backward Trajectory and Weather Condition Analysis
3.5. Analysis of Pollutant-Related Meteorological Elements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaufman, Y.J.; Tanre, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Koren, I.; Dagan, G.; Altaratz, O. From aerosol-limited to invigoration of warm convective clouds. Science 2014, 344, 1143–1146. [Google Scholar] [CrossRef]
- Guo, J.; Deng, M.; Lee, S.S.; Wang, F.; Li, Z.; Zhai, P.; Liu, H.; Lv, W.; Yao, W.; Li, X. Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. J. Geophys. Res. Atmos. 2016, 121, 6472–6488. [Google Scholar] [CrossRef]
- Li, Z.; Guo, J.; Ding, A.; Liao, H.; Liu, J.; Sun, Y.; Wang, T.; Xue, H.; Zhang, H.; Zhu, B. Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev. 2017, 4, 810–833. [Google Scholar] [CrossRef]
- Miao, Y.; Guo, J.; Liu, S.; Zhao, C.; Li, X.; Zhang, G.; Wei, W.; Ma, Y. Impacts of synoptic condition and planetary boundary layer structure on the trans-boundary aerosol transport from Beijing-Tianjin-Hebei region to northeast China. Atmos. Environ. 2018, 181, 1–11. [Google Scholar] [CrossRef]
- Cohen, J.B.; Wang, C. Estimating global black carbon emissions using a top-down Kalman Filter approach. J. Geophys. Res. Atmos. 2014, 119, 307–323. [Google Scholar] [CrossRef]
- Saikawa, E.; Naik, V.; Horowitz, L.W.; Liu, J.; Mauzerall, D.L. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing. Atmos. Environ. 2009, 43, 2814–2822. [Google Scholar] [CrossRef]
- Xie, C.; Zhao, M.; Wang, B.; Zhong, Z.; Wang, L.; Liu, D.; Wang, Y. Study of the scanning lidar on the atmospheric detection. J. Quant. Spectrosc. Radiat. Transf. 2015, 150, 114–120. [Google Scholar] [CrossRef]
- Qin, K.; Wu, L.; Wong, M.S.; Letu, H.; Hu, M.; Lang, H.; Sheng, S.; Teng, J.; Xiao, X.; Yuan, L. Trans-boundary aerosol transport during a winter haze episode in China revealed by ground-based Lidar and CALIPSO satellite. Atmos. Environ. 2016, 141, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Yuan, R.; Wu, B.; Meng, Y.; Zhang, H.; Gong, Z. Weather conditions conducive to PM2.5 pollution in western Yangtze River delta, China. Sci. Total Environ. 2018, 642, 1221–1232. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, D.; Wang, Z.; Wang, Y.; Khatri, P.; Zhou, J.; Takamura, T.; Shi, G. Seasonal characteristics of aerosol optical properties at the SKYNET Hefei site (31.90° N, 117.17° E) from 2007 to 2013. J. Geophys. Res. Atmos. 2014, 119, 6128–6139. [Google Scholar] [CrossRef]
- Whiteman, D.N. Examination of the traditional raman lidar technique. II. Evaluating the ratios for water vapor and aerosols. Appl. Opt. 2003, 42, 2593–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiyu, L.; Ke′e, Y.; Xu, W.; Lihui, L.; Bangxin, W.; Decheng, W.; Shunxing, H.; Jianguo, W.; Zhenfu, M. A mobile lidar system for aerosol and water vapor detection in troposphere with mobile lida. Infrared Laser Eng. 2016, 45, 0330001. [Google Scholar] [CrossRef]
- Shang, Z.; Xie, C.; Zhong, Z.; Wang, B.; Wang, Z.; Tan, M.; Zhao, M.; Wang, Y.; Liu, D. Raman lidar for measurement of tropospheric water vapor. Appl. Opt. 2016, 45, 1211003. [Google Scholar]
- Sun, G.; Qin, L.; Hou, Z.; Jing, X.; He, F.; Tan, F.; Zhang, S. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection. Optic Express 2018, 26, 7423–7435. [Google Scholar] [CrossRef]
- Tan, J.; Pan, W.; Zhu, K.; Deng, Z.; Wang, T.; Ma, J. Ground-based Lidar Measurements of Aerosol Vertical Distributions in Golmud, Qinghai. Plateau Mt. Meteorol. Res. 2015, 35, 63–70. [Google Scholar]
- Wu, Y.; Cordero, L.; Gross, B.; Moshary, F.; Ahmed, S.A. Assessment of CALIPSO attenuated backscatter and aerosol retrievals with a combined ground-based multi-wavelength lidar and sunphotometer measurement. Atmos. Environ. 2014, 84, 44–53. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J.K. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Yang, Y.; Yim, S.H.L.; Haywood, J.; Osborne, M.; Chan, C.S.; Zeng, Z.; Cheng, J.C. Characteristics of Heavy Particulate Matter Pollution Events Over Hong Kong and Their Relationships with Vertical Wind Profiles Using High-Time-Resolution Doppler Lidar Measurements. J. Geophys. Res. Atmos. 2019, 124, 9609–9623. [Google Scholar] [CrossRef] [Green Version]
- Revuelta, M.; Sastre, M.; Fernandez, A.; Martín, L.; Garcia, R.M.; Gómez-Moreno, F.; Artíñano, B.; Pujadas, M.; Molero, F. Characterization of the Eyjafjallajökull volcanic plume over the Iberian Peninsula by lidar remote sensing and ground-level data collection. Atmos. Environ. 2012, 48, 46–55. [Google Scholar] [CrossRef]
- Wu, Y.; Cordero, L.; Gross, B.; Moshary, F.; Ahmed, S. Smoke plume optical properties and transport observed by a multi-wavelength lidar, sunphotometer and satellite. Atmos. Environ. 2012, 63, 32–42. [Google Scholar] [CrossRef]
- Cottle, P.; Strawbridge, K.; McKendry, I. Long-range transport of Siberian wildfire smoke to British Columbia: Lidar observations and air quality impacts. Atmos. Environ. 2014, 90, 71–77. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, G.; Jin, C.; Qi, F.; Liu, D.; Hu, H.; Gong, Z.; Shi, G.; Nakajima, T.; Takamura, T. Lidar observations of Asian dust over Hefei, China, in spring 2000. J. Geophys. Res. Space Phys. 2002, 107, AAC 5-1–AAC 5-8. [Google Scholar] [CrossRef]
- Del Guasta, M. Daily cycles in urban aerosols observed in Florence (Italy) by means of an automatic 532~1064 nm LIDAR. Atmos. Environ. 2002, 36, 2853–2865. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef] [PubMed]
- Sassen, K. The polarization lidar technique for cloud research: A review and current assessment. Bull. Am. Meteorol. Soc. 1991, 72, 1848–1866. [Google Scholar] [CrossRef]
- Tan, M.; Xie, B.; Wang, B.X.; Wu, D.C.; Ma, H.; Liu, D.; Wang, Y.J. Correlation of Boundary Layer Height and Particulate Matter Concentration in Beijing in Winter 2014. Infrared Laser Eng. 2018, 47, 1–8. [Google Scholar]
- Korhonen, K.; Giannakaki, E.; Mielonen, T.; Pfüller, A.; Laakso, L.; Vakkari, V.; Baars, H.; Engelmann, R.; Beukes, J.P.; Van Zyl, P.G.; et al. Atmospheric boundary layer top height with lidar and radiosonde in South Africa: Atmospheric Reasurements compared to three atmospheric models. Atmos. Chem. Phys. 2014, 14, 4263–4278. [Google Scholar] [CrossRef] [Green Version]
- Menut, L.; Flamant, C.; Pelon, J.; Flamant, P.H. Urban boundary layer height area determination from lidar measurements over the Paris. Appl. Opt. 1999, 38, 945–954. [Google Scholar] [CrossRef]
- Pal, S.; Behrendt, A.; Wulfmeyer, V. Elastic—backscatter-lidar-based characterization of the convective boundary layer and investigation of related statistics. Ann. Geophys. 2010, 28, 825–847. [Google Scholar] [CrossRef] [Green Version]
- Burton, S.A.; Ferrare, R.; Vaughan, M.; Omar, A.H.; Rogers, R.R.A.; Hostetler, C.; Hair, J.W. Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask. Atmos. Meas. Tech. 2013, 6, 1397–1412. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.; Vaughan, M.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An overview of the hysplit-4 modeling system for trajectories. Aust. Meteorol. Mag. 1998, 47, 195–308. [Google Scholar]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Liu, B.; Ma, Y.; Shi, Y.; Jin, S.; Jin, Y.; Gong, W. The characteristics and sources of the aerosols within the nocturnal residual layer over Wuhan, China. Atmos. Res. 2020, 241, 104959. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Draxler, R.R. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
Instrument | Parameter |
---|---|
Wavelength (nm) | 355/532/1064 |
Laser energy (mJ/pulse) | 320/480/500 |
Pulse width (ns) | 6 |
Repetition frequency (Hz) | 30 |
Transmitted beam divergence (mrad) | 0.5 |
Telescope diameter (mm) | 400 |
Telescope field of view (mrad) | 1.5 |
Detector | PMT (355, 532 nm)/APD (1064 nm) |
Sample rate | 20 MHz |
Resolution | 16 bit |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; Yang, H.; Cao, Y.; Xing, K.; Liu, D.; Zhao, M.; Xie, C. Study of Persistent Pollution in Hefei during Winter Revealed by Ground-Based LiDAR and the CALIPSO Satellite. Sustainability 2021, 13, 875. https://doi.org/10.3390/su13020875
Fang Z, Yang H, Cao Y, Xing K, Liu D, Zhao M, Xie C. Study of Persistent Pollution in Hefei during Winter Revealed by Ground-Based LiDAR and the CALIPSO Satellite. Sustainability. 2021; 13(2):875. https://doi.org/10.3390/su13020875
Chicago/Turabian StyleFang, Zhiyuan, Hao Yang, Ye Cao, Kunming Xing, Dong Liu, Ming Zhao, and Chenbo Xie. 2021. "Study of Persistent Pollution in Hefei during Winter Revealed by Ground-Based LiDAR and the CALIPSO Satellite" Sustainability 13, no. 2: 875. https://doi.org/10.3390/su13020875
APA StyleFang, Z., Yang, H., Cao, Y., Xing, K., Liu, D., Zhao, M., & Xie, C. (2021). Study of Persistent Pollution in Hefei during Winter Revealed by Ground-Based LiDAR and the CALIPSO Satellite. Sustainability, 13(2), 875. https://doi.org/10.3390/su13020875