Eco-Efficiency for the G18: Trends and Future Outlook
Abstract
:1. Introduction
2. Literature Review
3. Methods and Data
3.1. The DEA Method
3.2. Forecasting
3.3. Data
4. Results
5. Discussion
6. Conclusions and Policy Implications
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, C.-N.; Hsu, H.-P.; Wang, Y.-H.; Nguyen, T.-T. Eco-Efficiency Assessment for Some European Countries Using Slacks-Based Measure Data Envelopment Analysis. Appl. Sci. 2020, 10, 1760. [Google Scholar] [CrossRef] [Green Version]
- Huppes, G.; Ishikawa, M. (Eds.) Quantified Eco-Efficiency: An Introduction with Applications; Eco-Efficiency in Industry and Science; Springer: New York, NY, USA, 2007; ISBN 978-1-4020-5398-6. [Google Scholar]
- Twum, F.A.; Long, X.; Salman, M.; Mensah, C.N.; Kankam, W.A.; Tachie, A.K. The Influence of Technological Innovation and Human Capital on Environmental Efficiency among Different Regions in Asia-Pacific. Environ. Sci. Pollut. Res. 2021, 28, 17119–17131. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Robaina, M. The Economic and Environmental Efficiency Assessment in EU Cross-Country: Evidence from DEA and Quantile Regression Approach. Ecol. Indic. 2017, 78, 85–97. [Google Scholar] [CrossRef]
- Moutinho, V.; Fuinhas, J.A.; Marques, A.C.; Santiago, R. Assessing Eco-Efficiency through the DEA Analysis and Decoupling Index in the Latin America Countries. J. Clean. Prod. 2018, 205, 512–524. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. A Survey of Data Envelopment Analysis in Energy and Environmental Studies. Eur. J. Oper. Res. 2008, 189, 1–18. [Google Scholar] [CrossRef]
- Łozowicka, A. Evaluation of the Efficiency of Sustainable Development Policy Implementation in Selected EU Member States Using DEA. The Ecological Dimension. Sustainability 2020, 12, 435. [Google Scholar] [CrossRef] [Green Version]
- Canada, G.A.C.-A. Mondiales Canada’s Participation at the 2019 G20 Summit. Available online: https://www.international.gc.ca/gac-amc/campaign-campagne/g20/index.aspx?lang=eng (accessed on 8 April 2020).
- De Graaf, T.V.; Westphal, K. The G8 and G20 as Global Steering Committees for Energy: Opportunities and Constraints. Glob. Policy 2011, 2, 19–30. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W. Linear Programming Models for Measuring Economy-Wide Energy Efficiency Performance. Energy Policy 2008, 36, 2911–2916. [Google Scholar] [CrossRef]
- Sueyoshi, T.; Yuan, Y.; Goto, M. A Literature Study for DEA Applied to Energy and Environment. Energy Econ. 2017, 62, 104–124. [Google Scholar] [CrossRef]
- Repkine, A.; Min, D. Foreign-Funded Enterprises and Pollution Halo Hypothesis: A Spatial Econometric Analysis of Thirty Chinese Regions. Sustainability 2020, 12, 5048. [Google Scholar] [CrossRef]
- Chen, B. Public–Private Partnership Infrastructure Investment and Sustainable Economic Development: An Empirical Study Based on Efficiency Evaluation and Spatial Spillover in China. Sustainability 2021, 13, 8146. [Google Scholar] [CrossRef]
- Wang, L.; Long, R.; Chen, H. Study of Urban Energy Performance Assessment and Its Influencing Factors Based on Improved Stochastic Frontier Analysis: A Case Study of Provincial Capitals in China. Sustainability 2017, 9, 1110. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Lin, B. Total Factor Energy Efficiency of China’s Industrial Sector: A Stochastic Frontier Analysis. Sustainability 2017, 9, 646. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, M.; del Valle, I.; Tapia, C. Measuring Eco-Efficiency in European Regions: Evidence from a Territorial Perspective. J. Clean. Prod. 2020, 276, 123246. [Google Scholar] [CrossRef]
- Halkos, G.E.; Tzeremes, N.G. Exploring the Existence of Kuznets Curve in Countries’ Environmental Efficiency Using DEA Window Analysis. Ecol. Econ. 2009, 68, 2168–2176. [Google Scholar] [CrossRef]
- Hsieh, J.; Lu, C.; Li, Y.; Chiu, Y.; Xu, Y. Environmental Assessment of European Union Countries. Energies 2019, 12, 295. [Google Scholar] [CrossRef] [Green Version]
- Iftikhar, Y.; He, W.; Wang, Z. Energy and CO2 Emissions Efficiency of Major Economies: A Non-Parametric Analysis. J. Clean. Prod. 2016, 139, 779–787. [Google Scholar] [CrossRef]
- Lacko, R.; Hajduová, Z. Determinants of Environmental Efficiency of the EU Countries Using Two-Step DEA Approach. Sustainability 2018, 10, 3525. [Google Scholar] [CrossRef] [Green Version]
- Marti, L.; Puertas, R. Analysis of the Efficiency of African Countries through Their Ecological Footprint and Biocapacity. Sci. Total Environ. 2020, 722, 137504. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M. A Two-Stage DEA Model to Evaluate the Technical Eco-Efficiency Indicator in the EU Countries. Int. J. Environ. Res. Public Health 2021, 18, 3038. [Google Scholar] [CrossRef]
- Sarkhosh-Sara, A.; Tavassoli, M.; Heshmati, A. Assessing the Sustainability of High-, Middle-, and Low-Income Countries: A Network DEA Model in the Presence of Both Zero Data and Undesirable Outputs. Sustain. Prod. Consum. 2020, 21, 252–268. [Google Scholar] [CrossRef]
- Tsai, W.-H.; Lee, H.-L.; Yang, C.-H.; Huang, C.-C. Input-Output Analysis for Sustainability by Using DEA Method: A Comparison Study between European and Asian Countries. Sustainability 2016, 8, 1230. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A Slacks-Based Measure of Efficiency in Data Envelopment Analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Picazo-Tadeo, A.J.; Beltrán-Esteve, M.; Gómez-Limón, J.A. Assessing Eco-Efficiency with Directional Distance Functions. Eur. J. Oper. Res. 2012, 220, 798–809. [Google Scholar] [CrossRef]
- Caves, D.W.; Christensen, L.R.; Diewert, W.E. The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity. Econometrica 1982, 50, 1393–1414. [Google Scholar] [CrossRef]
- Malmquist, S. Index Numbers and Indifference Surfaces. Trab. Estad. 1953, 4, 209–242. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Project for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Lim, D.-J. DJL: Distance Measure Based Judgment and Learning. 2021. Available online: https://rdrr.io/cran/DJL/ (accessed on 7 October 2021).
- Hyndman, R.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed. OTexts.com/fpp2. 2018. Available online: https://otexts.com/fpp2/ (accessed on 7 October 2021).
- Hyndman, R. Fpp2: Data for “Forecasting: Principles and Practice, 2nd ed. 2020. Available online: https://rdrr.io/cran/fpp2/ (accessed on 7 October 2021).
- International Energy Agency. World Energy Outlook 2016; OECD/IEA: Paris, France, 2016. [Google Scholar]
- US EIA Annual Energy Outlook 2021. Available online: https://www.eia.gov/outlooks/aeo/ (accessed on 1 October 2021).
- Feenstra, R.C.; Inklaar, R.; Timmer, M.P. The Next Generation of the Penn World Table. Am. Econ. Rev. 2015, 105, 3150–3182. [Google Scholar] [CrossRef] [Green Version]
- Dudley, B. BP Statistical Review of World Energy; BP Statistical Review: London, UK, 2019. [Google Scholar]
- European Union. 2020 Climate & Energy Package. Available online: https://ec.europa.eu/clima/policies/strategies/2020_en (accessed on 1 June 2020).
- CarbonBrief Analysis: Why the UK’s CO2 Emissions Have Fallen 38% Since 1990. Available online: https://www.carbonbrief.org/analysis-why-the-uks-co2-emissions-have-fallen-38-since-1990 (accessed on 12 April 2020).
- Cheung, G.; Davies, P.J.; Bassen, A. In the Transition of Energy Systems: What Lessons Can Be Learnt from the German Achievement? Energy Policy 2019, 132, 633–646. [Google Scholar] [CrossRef]
- Mikova, N.; Eichhammer, W.; Pfluger, B. Low-Carbon Energy Scenarios 2050 in North-West European Countries: Towards a More Harmonised Approach to Achieve the EU Targets. Energy Policy 2019, 130, 448–460. [Google Scholar] [CrossRef]
- Millot, A.; Krook-Riekkola, A.; Maïzi, N. Guiding the Future Energy Transition to Net-Zero Emissions: Lessons from Exploring the Differences between France and Sweden. Energy Policy 2020, 139, 111358. [Google Scholar] [CrossRef]
- IPCC Climate Change Widespread, Rapid, and Intensifying—IPCC—IPCC. Available online: https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ (accessed on 1 October 2021).
- den Elzen, M.; Kuramochi, T.; Höhne, N.; Cantzler, J.; Esmeijer, K.; Fekete, H.; Fransen, T.; Keramidas, K.; Roelfsema, M.; Sha, F.; et al. Are the G20 Economies Making Enough Progress to Meet Their NDC Targets? Energy Policy 2019, 126, 238–250. [Google Scholar] [CrossRef]
- Tienhaara, K. Governing the Global Green Economy. Glob. Policy 2016, 7, 481–490. [Google Scholar] [CrossRef]
2000 | 2010 | 2020 | 2030 | 2040 | GR1 | Rank | GR2 | Rank | |
---|---|---|---|---|---|---|---|---|---|
ARG | 5422.53 | 5694.28 | 5533.80 | 5534.30 | 5541.13 | 0.39 | 16 | −0.03 | 17 |
AUS | 2197.85 | 2653.32 | 3119.50 | 3513.58 | 3926.51 | 1.64 | 8 | 1.17 | 7 |
BRA | 6648.00 | 7187.09 | 6889.25 | 6870.16 | 6865.03 | 0.03 | 17 | −0.02 | 16 |
CAN | 2445.83 | 2927.63 | 3405.59 | 3809.89 | 4213.27 | 1.69 | 7 | 1.06 | 8 |
CHN | 1774.02 | 1712.71 | 2098.46 | 2123.93 | 2147.78 | 1.25 | 11 | 0.12 | 13 |
DEU | 3992.10 | 4743.18 | 6286.36 | 7461.81 | 8772.57 | 2.66 | 4 | 1.57 | 4 |
FRA | 6103.18 | 7316.91 | 10038.14 | 12078.57 | 14397.68 | 2.57 | 5 | 1.78 | 3 |
GBR | 3875.79 | 4852.46 | 8055.22 | 10591.27 | 13127.32 | 3.80 | 1 | 2.48 | 1 |
IDN | 4348.61 | 4555.83 | 4885.15 | 4893.71 | 4904.26 | −0.78 | 18 | −0.02 | 15 |
IND | 2836.82 | 3143.15 | 3727.49 | 4087.08 | 4446.67 | 1.39 | 10 | 0.88 | 11 |
ITA | 5508.29 | 6174.88 | 7656.65 | 8379.11 | 9152.01 | 1.48 | 9 | 0.89 | 10 |
JPN | 3554.71 | 3893.36 | 4568.16 | 4932.84 | 5297.52 | 1.09 | 13 | 0.73 | 12 |
KOR | 2432.16 | 2863.68 | 3495.61 | 4018.35 | 4541.09 | 2.11 | 6 | 1.33 | 5 |
MEX | 4755.46 | 4394.05 | 5281.04 | 5232.37 | 5222.25 | 0.67 | 15 | −0.06 | 18 |
RUS | 1510.82 | 2357.20 | 2686.68 | 3091.27 | 3470.76 | 3.26 | 2 | 1.30 | 6 |
TUR | 4523.68 | 4998.02 | 5826.36 | 5889.67 | 5952.98 | 1.02 | 14 | 0.08 | 14 |
USA | 2463.67 | 3062.75 | 4225.92 | 5257.28 | 6444.34 | 2.76 | 3 | 2.10 | 2 |
ZAF | 1223.90 | 1341.53 | 1561.66 | 1714.58 | 1867.85 | 1.22 | 12 | 0.95 | 9 |
2000 | klratio | ylratio | keratio | nffshare | eco |
mean | 277,076.531 | 56,563.527 | 964,298.382 | 0.148 | 3645.413 |
min | 21,421.861 | 6647.760 | 371,245.827 | 0.034 | 1223.902 |
max | 685,330.501 | 103,538.244 | 2,096,226.960 | 0.440 | 6648.001 |
sd | 181,172.821 | 32,356.395 | 444,240.280 | 0.126 | 1633.171 |
CV | 0.654 | 0.572 | 0.461 | 0.853 | 0.448 |
2010 | klratio | ylratio | keratio | nffshare | eco |
mean | 312,698.881 | 63,813.004 | 1,083,100.190 | 0.155 | 4104.001 |
min | 42,319.065 | 11,167.207 | 405,927.151 | 0.027 | 1341.533 |
max | 743,960.972 | 119,401.134 | 2,532,021.912 | 0.456 | 7316.906 |
sd | 195,609.458 | 32,417.909 | 529,437.749 | 0.128 | 1751.996 |
CV | 0.626 | 0.508 | 0.489 | 0.824 | 0.427 |
2020 | klratio | ylratio | keratio | nffshare | eco |
mean | 338,651.529 | 69,381.077 | 1,276,345.426 | 0.181 | 4963.391 |
min | 73,993.932 | 19,033.970 | 537,705.879 | 0.045 | 1561.656 |
max | 739,140.772 | 131,053.041 | 2,992,167.107 | 0.486 | 10,038.137 |
sd | 190,770.768 | 33,649.249 | 647,702.338 | 0.126 | 2227.819 |
CV | 0.563 | 0.485 | 0.507 | 0.697 | 0.449 |
2030 | klratio | ylratio | keratio | nffshare | eco |
mean | 363,826.895 | 74,172.020 | 1,388,752.686 | 0.190 | 5526.655 |
min | 105,706.833 | 26,265.436 | 558,296.433 | 0.044 | 1714.577 |
max | 756,740.844 | 141,610.885 | 3,224,594.427 | 0.489 | 12,078.572 |
sd | 194,533.247 | 34,807.152 | 719,988.070 | 0.128 | 2729.977 |
CV | 0.535 | 0.469 | 0.518 | 0.672 | 0.494 |
BAU | |||||
2040 | klratio | ylratio | keratio | nffshare | eco |
mean | 392,150.585 | 78,910.716 | 1,504,329.735 | 0.201 | 6127.279 |
min | 147,150.042 | 29,204.619 | 578,886.988 | 0.044 | 1867.851 |
max | 774,340.915 | 150,934.140 | 3,457,021.748 | 0.492 | 14,397.679 |
sd | 200,686.796 | 36,051.050 | 805,171.877 | 0.134 | 3364.628 |
CV | 0.512 | 0.457 | 0.535 | 0.666 | 0.549 |
GR1 | 1.003 | 1.021 | 1.402 | 1.006 | 1.543 |
GR2 | 0.733 | 0.644 | 0.822 | 0.507 | 1.053 |
2000 | 2010 | 2020 | 2030 | 2040 | Geom1 | Rank | Geom2 | Rank | Geom3 | Rank | |
---|---|---|---|---|---|---|---|---|---|---|---|
ARG | 0.974 | 1.030 | 0.997 | 1.001 | 1.000 | 1.003 | 11 | 1.000 | 11 | 1.002 | 10 |
AUS | 1.002 | 0.944 | 1.003 | 1.003 | 1.003 | 1.012 | 7 | 1.002 | 8 | 1.008 | 7 |
BRA | 1.031 | 0.970 | 1.001 | 1.000 | 1.000 | 1.001 | 12 | 1.001 | 10 | 1.000 | 12 |
CAN | 1.019 | 0.678 | 0.988 | 0.970 | 0.983 | 0.940 | 18 | 0.964 | 17 | 0.951 | 17 |
CHN | 0.969 | 0.912 | 0.954 | 0.910 | 0.963 | 0.957 | 17 | 0.916 | 18 | 0.936 | 18 |
DEU | 1.023 | 1.016 | 0.996 | 1.013 | 1.009 | 1.021 | 4 | 1.017 | 5 | 1.017 | 5 |
FRA | 1.050 | 0.999 | 1.014 | 1.018 | 1.016 | 1.050 | 1 | 1.019 | 3 | 1.035 | 2 |
GBR | 1.028 | 1.010 | 1.031 | 1.020 | 1.015 | 1.050 | 2 | 1.022 | 2 | 1.036 | 1 |
IDN | 0.987 | 0.921 | 1.006 | 0.992 | 0.993 | 0.977 | 16 | 0.990 | 14 | 0.985 | 15 |
IND | 0.994 | 0.977 | 1.007 | 0.988 | 0.986 | 0.980 | 15 | 0.988 | 16 | 0.984 | 16 |
ITA | 1.044 | 0.992 | 1.014 | 1.029 | 1.005 | 1.014 | 5 | 1.036 | 1 | 1.024 | 4 |
JPN | 1.004 | 1.009 | 0.999 | 1.006 | 1.006 | 1.005 | 9 | 1.005 | 7 | 1.005 | 8 |
KOR | 1.016 | 0.999 | 1.015 | 1.003 | 1.004 | 0.998 | 13 | 1.001 | 9 | 1.000 | 11 |
MEX | 1.170 | 0.999 | 1.010 | 0.999 | 1.000 | 1.007 | 8 | 1.000 | 12 | 1.004 | 9 |
RUS | 1.098 | 1.049 | 1.041 | 1.012 | 1.007 | 1.031 | 3 | 1.019 | 4 | 1.026 | 3 |
TUR | 0.989 | 1.009 | 1.003 | 0.991 | 0.991 | 1.004 | 10 | 0.990 | 15 | 0.998 | 13 |
USA | 1.014 | 1.008 | 1.000 | 1.010 | 1.014 | 1.014 | 6 | 1.008 | 6 | 1.011 | 6 |
ZAF | 0.954 | 0.986 | 1.004 | 1.000 | 1.000 | 0.990 | 14 | 1.000 | 13 | 0.995 | 14 |
mean | 1.020 | 0.973 | 1.005 | 0.998 | 1.000 | 1.005 | 0.999 | 1.002 |
2000 | 2010 | 2020 | 2030 | 2040 | Geom1 | Rank | Geom2 | Rank | Geom3 | Rank | |
---|---|---|---|---|---|---|---|---|---|---|---|
ARG | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 15 | 1.000 | 9 | 1.000 | 14 |
AUS | 1.018 | 0.968 | 0.964 | 1.005 | 1.002 | 1.009 | 10 | 1.005 | 4 | 1.006 | 10 |
BRA | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 12 | 1.000 | 6 | 1.000 | 11 |
CAN | 1.000 | 1.000 | 1.000 | 0.949 | 0.982 | 1.000 | 13 | 0.970 | 17 | 0.985 | 17 |
CHN | 1.000 | 1.000 | 1.000 | 1.000 | 0.963 | 1.000 | 13 | 0.961 | 18 | 0.980 | 18 |
DEU | 1.026 | 1.034 | 0.998 | 1.003 | 1.003 | 1.034 | 6 | 1.007 | 3 | 1.019 | 4 |
FRA | 1.046 | 1.811 | 1.000 | 1.000 | 1.000 | 1.036 | 5 | 1.000 | 10 | 1.019 | 5 |
GBR | 1.026 | 1.063 | 1.000 | 1.000 | 1.000 | 1.051 | 2 | 1.000 | 14 | 1.026 | 2 |
IDN | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 17 | 1.000 | 12 | 1.000 | 15 |
IND | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 16 | 1.000 | 11 | 1.000 | 13 |
ITA | 1.000 | 1.000 | 1.000 | 1.000 | 0.997 | 1.048 | 3 | 0.984 | 16 | 1.017 | 7 |
JPN | 1.002 | 1.030 | 0.978 | 1.007 | 1.006 | 1.026 | 8 | 1.007 | 2 | 1.016 | 8 |
KOR | 1.017 | 0.983 | 1.012 | 1.004 | 1.003 | 1.015 | 9 | 1.003 | 5 | 1.010 | 9 |
MEX | 1.261 | 1.000 | 1.000 | 1.000 | 1.000 | 1.033 | 7 | 1.000 | 7 | 1.017 | 6 |
RUS | 1.092 | 1.054 | 1.084 | 1.000 | 1.000 | 1.061 | 1 | 1.014 | 1 | 1.038 | 1 |
TUR | 1.026 | 1.018 | 1.007 | 0.988 | 0.989 | 0.998 | 18 | 0.986 | 15 | 0.994 | 16 |
USA | 1.045 | 0.994 | 1.000 | 1.000 | 1.000 | 1.041 | 4 | 1.000 | 8 | 1.021 | 3 |
ZAF | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 11 | 1.000 | 12 | 1.000 | 12 |
mean | 1.031 | 1.053 | 1.002 | 0.998 | 0.997 | 1.025 | 0.997 | 1.012 |
2000 | 2010 | 2020 | 2030 | 2040 | Geom1 | Rank | Geom2 | Rank | Geom3 | Rank | |
---|---|---|---|---|---|---|---|---|---|---|---|
ARG | 0.974 | 1.030 | 0.997 | 1.001 | 1.000 | 1.003 | 4 | 1.000 | 9 | 1.002 | 6 |
AUS | 0.985 | 0.976 | 1.040 | 0.997 | 1.001 | 1.004 | 3 | 0.997 | 14 | 1.002 | 5 |
BRA | 1.031 | 0.970 | 1.001 | 1.000 | 1.000 | 1.001 | 5 | 1.001 | 8 | 1.000 | 7 |
CAN | 1.019 | 0.678 | 0.988 | 1.022 | 1.000 | 0.940 | 18 | 0.994 | 15 | 0.965 | 17 |
CHN | 0.969 | 0.912 | 0.954 | 0.910 | 1.000 | 0.957 | 17 | 0.953 | 18 | 0.955 | 18 |
DEU | 0.997 | 0.982 | 0.999 | 1.010 | 1.007 | 0.987 | 8 | 1.010 | 4 | 0.998 | 8 |
FRA | 1.004 | 0.551 | 1.014 | 1.018 | 1.016 | 1.013 | 1 | 1.019 | 3 | 1.016 | 1 |
GBR | 1.002 | 0.950 | 1.031 | 1.020 | 1.015 | 0.999 | 6 | 1.022 | 2 | 1.009 | 2 |
IDN | 0.987 | 0.921 | 1.006 | 0.992 | 0.993 | 0.977 | 12 | 0.990 | 16 | 0.985 | 15 |
IND | 0.994 | 0.977 | 1.007 | 0.988 | 0.986 | 0.980 | 10 | 0.988 | 17 | 0.984 | 16 |
ITA | 1.044 | 0.992 | 1.014 | 1.029 | 1.008 | 0.967 | 16 | 1.053 | 1 | 1.007 | 3 |
JPN | 1.002 | 0.980 | 1.022 | 0.999 | 1.000 | 0.980 | 11 | 0.998 | 13 | 0.990 | 12 |
KOR | 0.999 | 1.016 | 1.004 | 0.999 | 1.001 | 0.983 | 9 | 0.999 | 12 | 0.991 | 10 |
MEX | 0.928 | 0.999 | 1.010 | 0.999 | 1.000 | 0.976 | 13 | 1.000 | 10 | 0.987 | 14 |
RUS | 1.006 | 0.995 | 0.961 | 1.012 | 1.007 | 0.972 | 15 | 1.005 | 6 | 0.988 | 13 |
TUR | 0.964 | 0.991 | 0.996 | 1.003 | 1.002 | 1.006 | 2 | 1.003 | 7 | 1.005 | 4 |
USA | 0.970 | 1.014 | 1.000 | 1.010 | 1.014 | 0.974 | 14 | 1.008 | 5 | 0.990 | 11 |
ZAF | 0.954 | 0.986 | 1.004 | 1.000 | 1.000 | 0.990 | 7 | 1.000 | 11 | 0.995 | 9 |
mean | 0.990 | 0.940 | 1.003 | 1.000 | 1.003 | 0.988 | 1.002 | 0.995 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadorsky, P. Eco-Efficiency for the G18: Trends and Future Outlook. Sustainability 2021, 13, 11196. https://doi.org/10.3390/su132011196
Sadorsky P. Eco-Efficiency for the G18: Trends and Future Outlook. Sustainability. 2021; 13(20):11196. https://doi.org/10.3390/su132011196
Chicago/Turabian StyleSadorsky, Perry. 2021. "Eco-Efficiency for the G18: Trends and Future Outlook" Sustainability 13, no. 20: 11196. https://doi.org/10.3390/su132011196
APA StyleSadorsky, P. (2021). Eco-Efficiency for the G18: Trends and Future Outlook. Sustainability, 13(20), 11196. https://doi.org/10.3390/su132011196