Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques
Abstract
:1. Introduction
2. Perception of the Industry and Community in Waste Recycling
3. Valorisation of Agricultural Waste
4. Potential By-Products from Agriculture Waste
4.1. Phenolics
4.2. Alkaloids
4.3. Aroma, Flavour and Fragrance
4.4. Production of Food Microorganisms
4.5. Organic Fertilizers and Feed
4.6. Nutraceuticals
4.7. Other Components from Agricultural Wastes
5. Importance of Sustainable Extraction Approaches
5.1. Green Extraction
5.1.1. Supercritical Fluid Extraction (SFE)
5.1.2. Ultrasound-Assisted Extraction (UAE)
5.1.3. Microwave-Assisted Extraction (MAE)
6. Economic and Market Demand
6.1. Economic Analysis
6.2. Market Demand and Economic Value
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; Van Otterdijk, R.; Meybeck, A. Global food losses and food waste. In Proceedings of the Save Food Congress, Düsseldorf, Germany, 16–17 May 2011. [Google Scholar]
- Cho, E.J.; Trinh, L.T.P.; Song, Y.; Lee, Y.G.; Bae, H.J. Bioconversion of biomass waste into high value chemicals. Bioresour. Technol. 2020, 298, 122386. [Google Scholar] [CrossRef] [PubMed]
- Obi, F.O.; Ugwuishiwu, B.O.; Nwakaire, J.N. Agricultural waste concept, generation, utilization and management. Niger. J. Technol. 2016, 35, 957–964. [Google Scholar] [CrossRef]
- Shehrawat, P.; Sindhu, N. Agricultural waste utilization for healthy environment and sustainable lifestyle. Ann. Agric. Biol. Res 2015, 20, 110–114. [Google Scholar]
- Szabo, K.; Dulf, F.V.; Diaconeasa, Z.; Vodnar, D.C. Antimicrobial and antioxidant properties of tomato processing byproducts and their correlation with the biochemical composition. LWT 2019, 116, 108558. [Google Scholar] [CrossRef]
- Singh, K.; Kumar, T.; Prince, V.K.; Sharma, S.; Rani, J. A review on conversion of food wastes and by-products into value added products. IJCS 2019, 7, 2068–2073. [Google Scholar]
- Coman, V.; Teleky, B.E.; Mitrea, L.; Martau, G.A.; Szabo, K.; Calinoiu, L.F.; Vodnar, D.C. Bioactive potential of fruit and vegetable wastes. In Advances in Food and Nutrition Research; Toldra, F., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 91, pp. 157–225. [Google Scholar]
- Beltrán-Ramírez, F.; Orona-Tamayo, D.; Cornejo-Corona, I.; González-Cervantes, J.L.N.; de Jesús Esparza-Claudio, J.; Quintana-Rodríguez, E. Agro-Industrial Waste Revalorization: The Growing Biorefinery. Biomass for Bioenergy-Recent Trends and Future Challenges. IntechOpen 2019, 21. [Google Scholar] [CrossRef] [Green Version]
- Lucarini, M.; Durazzo, A.; Romani, A.; Campo, M.; Lombardi-Boccia, G.; Cecchini, F. Bio-based compounds from grape seeds: A biorefinery approach. Molecules 2018, 23, 1888. [Google Scholar] [CrossRef] [Green Version]
- Hoang, G.M.; Fujiwara, T.; Phu, T.S.P.; Nguyen, L.D. Sustainable solid waste management system using multi-objective decision-making model: A method for maximizing social acceptance in Hoi An city, Vietnam. Environ. Sci. Pollut. Res. 2019, 26, 34137–34147. [Google Scholar] [CrossRef]
- Bom, U.B.; Belbase, S.; Bibriven Lila, R. Public Perceptions and Practices of Solid Waste Recycling in the City of Laramie in Wyoming, U.S.A. Recycling 2017, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Morone, P.; Imbert, E. Food waste and social acceptance of a circular bioeconomy: The role of stakeholders. Curr. Opin. Green Sustain. Chem. 2020, 23, 55–60. [Google Scholar] [CrossRef]
- Meneses, G.D.; Palacio, A.B. Recycling behavior a multidimensional approach. Environ. Behav. 2005, 37, 837–860. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.M.; Bai, J.F.; Wang, J.X.; Qiu, H.G. Disposal of domestic solid wastes and determinants in rural China. China Popul. Resour. Environ. 2012, 22, 63–68. [Google Scholar]
- Leicht, A.; Heiss, J.; Byun, W.J. (Eds.) Issues and Trends in Education for Sustainable Development; UNESCO: Paris, France, 2018. [Google Scholar]
- Thomas, C.; Sharp, V. Understanding the normalisation of recycling behaviour and its implications for other pro-environmental behaviours: A review of social norms and recycling. Resour. Conserv. Recycl. 2013, 79, 11–20. [Google Scholar] [CrossRef]
- Handayani, D.; Gitaharie, B.Y.; Yussac, R.N.; Rahmani, R.S. How do household characteristics influence their waste management? E3S Web Conf. 2019, 74, 06005. [Google Scholar] [CrossRef]
- Sung, S.H.; Kim, K.H.; Jeon, B.T.; Cheong, S.H.; Park, J.H.; Kim, D.H.; Kweon, H.J.; Moon, S.H. Antibacterial and antioxidant activities of tannins extracted from agricultural by-products. J. Med. Plants Res. 2012, 6, 3072–3079. [Google Scholar] [CrossRef]
- Chen, C.Y.O.; Milbury, P.E.; Blumberg, J.B. Polyphenols in almond skins after blanching modulate plasma biomarkers of oxidative stress in healthy humans. Antioxidants 2019, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Amin, I.; Mukhrizah, O. Antioxidant capacity of methanolic and water extracts prepared from food-processing by-products. J. Sci. Food Agric. 2006, 86, 778–784. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Fermoso, F.G.; Serrano, A.; Alonso-Farinas, B.; Fernandez-Bolanos, J.; Borja, R.; Rodriguez-Gutierrez, G. Valuable compound extraction, anaerobic digestion, and composting: A leading biorefinery approach for agricultural wastes. J. Agric. Food Chem. 2018, 66, 8451–8468. [Google Scholar] [CrossRef] [PubMed]
- Mourtzinos, I.; Goula, A. Polyphenols in agricultural byproducts and food waste. In Polyphenols in Plants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 23–44. [Google Scholar]
- Tlais, A.Z.A.; Fiorino, G.M.; Polo, A.; Filannino, P.; Di Cagno, R. High-value compounds in fruit, vegetable and cereal byproducts: An overview of potential sustainable reuse and exploitation. Molecules 2020, 25, 2987. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess. 2017, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Padam, B.S.; Tin, H.S.; Chye, F.Y.; Abdullah, M.I. Banana by-products: An under-utilized renewable food biomass with great potential. J. Food Sci. Technol. 2014, 51, 3527–3545. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Abu-Ghannam, N.; Gallaghar, E. Barley for brewing: Characteristic changes during malting, brewing and applications of its by-products. Compr. Rev. Food Sci. Food Saf. 2010, 9, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Routray, W.; Orsat, V. Plant by-products and food industry waste: A source of nutraceuticals and biopolymers. In Food Bioconversion; Grumezescu, A.M., Holban, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 2, pp. 279–315. [Google Scholar]
- Campos-Vega, R.; Nieto-Figueroa, K.H.; Oomah, B.D. Cocoa (Theobroma Cacao L.) Pod Husk: Renewable Source bioactive Compounds. Trends Food Sci. Technol. 2018, 81, 172–184. [Google Scholar] [CrossRef]
- Esquivel, P.; Jimenez, V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M. Production and application of xylanase from Penicillium sp. utilizing coffee by-products. Food Bioprocess Technol. 2012, 5, 657–664. [Google Scholar] [CrossRef]
- Shrikhande, A.J. Wine by-products with health benefits. Food Res. Int. 2000, 33, 469–474. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, A.M.; Dellacassa, E.; Medrano-Fernandez, A.; Del Castillo, M.D. Citrus waste recovery for sustainable nutrition and health. In Food Wastes and By-Products: Nutraceutical and Health Potential; Campos-Vega, R., Oomah, B.D., Vergara-Castaneda, H.A., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2020; pp. 193–222. [Google Scholar]
- Dominguez-Perles, R.; Moreno, D.A.; Carvajal, M.; Garcia-Viguera, C. Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli. Innov. Food Sci. Emerg. Technol. 2011, 12, 361–368. [Google Scholar] [CrossRef]
- Aiello, F.; Armentano, B.; Polera, N.; Carullo, G.; Loizzo, M.R.; Bonesi, M.; Cappello, M.S.; Capobianco, L.; Tundis, R. From vegetable waste to new agents for potential health applications: Antioxidant properties and effects of extracts, fractions and pinocembrin from Glycyrrhiza glabra L. aerial parts on viability of five human cancer cell lines. J. Agric. Food Chem. 2017, 65, 7944–7954. [Google Scholar] [CrossRef] [PubMed]
- Wall-Medrano, A.; Olivas-Aguirre, F.J.; Ayala-Zavala, J.F.; Domínguez-Avila, J.A.; Gonzalez-Aguilar, G.A.; Herrera-Cazares, L.A.; Gaytan-Martinez, M. Health Benefits of Mango By-products. In Food Wastes and By-Products: Nutraceutical and Health Potential; Campos-Vega, R., Oomah, B.D., Vergara-Castaneda, H.A., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2020; pp. 159–191. [Google Scholar]
- Meselhy, K.M.; Shams, M.M.; Sherif, N.H.; El-Sonbaty, S.M. Phytochemical study, potential cytotoxic and antioxidant activities of selected food byproducts (Pomegranate peel, Rice bran, Rice straw & Mulberry bark). Nat. Prod. Res. 2020, 34, 530–533. [Google Scholar]
- Knorr, D.; Kohler, G.O.; Betschart, A.A. Potato protein concentrates: The influence of various methods of recovery upon yield, compositional and functional characteristics. J. Food Process. Preserv. 1977, 1, 235–247. [Google Scholar] [CrossRef]
- Knorr, D. Effect of recovery methods on yield, quality and functional properties of potato protein concentrates. J. Food Sci. 1980, 45, 1183–1186. [Google Scholar] [CrossRef]
- Calleja, G.B.; Yaguchi, M.; Levy-Rick, S.; Seguin, J.R.H.; Roy, C.; Lusena, C.V. Single-cell protein production from potato starch by the yeast Schwanniomyces alluvius. J. Ferment. Technol. 1986, 64, 71–75. [Google Scholar] [CrossRef]
- Slominska, L.; Starogardzka, G. Application of a Multi-enzyme Complex in the Utilization of Potato Pulp. Starch Stärke 1987, 39, 121–125. [Google Scholar] [CrossRef]
- Gonzalez, J.M.; Lindamood, J.B.; Desai, N. Recovery of protein from potato plant waste effluents by complexation with carboxymethylcellulose. Food Hydrocoll. 1991, 4, 355–363. [Google Scholar] [CrossRef]
- Mayer, F. Potato pulp: Properties, physical modification and applications. Polym. Degrad. Stab. 1998, 59, 231–235. [Google Scholar] [CrossRef]
- Fox, S.L.; Bala, G.A. Production of surfactant from Bacillus subtilis ATCC 21332 using potato substrates. Bioresour. Technol. 2000, 75, 235–240. [Google Scholar] [CrossRef]
- Kleekayai, T.; Suntornsuk, W. Production and characterization of chitosan obtained from Rhizopus oryzae grown on potato chip processing waste. World J. Microbiol. Biotechnol. 2011, 27, 1145–1154. [Google Scholar] [CrossRef]
- Izmirlioglu, G.; Demirci, A. Strain selection and medium optimization for glucoamylase production from industrial potato waste by Aspergillus niger. J. Sci. Food Agric. 2016, 96, 2788–2795. [Google Scholar] [CrossRef]
- Khodaei, N.; Karboune, S.; Orsat, V. Microwave-assisted alkaline extraction of galactan-rich rhamnogalacturonan I from potato cell wall by-product. Food Chem. 2016, 190, 495–505. [Google Scholar] [CrossRef]
- Fritsch, C.; Staebler, A.; Happel, A.; Cubero Márquez, M.A.; Aguiló-Aguayo, I.; Abadias, M.; Gallur, M.; Cigognini, I.M.; Montanari, A.; López, M.J.; et al. Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A review. Sustainability 2017, 9, 1492. [Google Scholar] [CrossRef] [Green Version]
- Bodie, A.R.; Micciche, A.C.; Atungulu, G.G.; Rothrock Jr, M.J.; Ricke, S.C. Current trends of rice milling byproducts for agricultural applications and alternative food production systems. Front. Sustain. Food Syst. 2019, 3, 47. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Iwamoto, S. Bioactive compounds from by-products of rice cultivation and rice processing: Extraction and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2019, 86, 109–117. [Google Scholar] [CrossRef]
- Tyug, T.S.; Prasad, K.N.; Ismail, A. Antioxidant capacity, phenolics and isoflavones in soybean by-products. Food Chem. 2010, 123, 583–589. [Google Scholar] [CrossRef]
- Akoetey, W.; Britain, M.M.; Morawicki, R.O. Potential use of byproducts from cultivation and processing of sweet potatoes. Cienc. Rural 2017, 47, e20160610. [Google Scholar] [CrossRef] [Green Version]
- Hamza, M.; Sayadi, S. Valorisation of olive mill wastewater by enhancement of natural hydroxytyrosol recovery. Int. J. Food Sci. Technol. 2015, 50, 826–833. [Google Scholar] [CrossRef]
- Henderson, A.J.; Ollila, C.A.; Kumar, A.; Borresen, E.C.; Raina, K.; Agarwal, R.; Ryan, E.P. Chemopreventive properties of dietary rice bran: Current status and future prospects. Adv. Nutr. 2012, 3, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Gul, K.; Yousuf, B.; Singh, A.K.; Singh, P.; Wani, A.A. Rice bran: Nutritional values and its emerging potential for development of functional food—A review. Bioact. Carbohydrates Diet. Fibre 2015, 6, 24–30. [Google Scholar] [CrossRef]
- Kurowska, E.M.; Manthey, J.A. Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia. J. Agric. Food Chem. 2004, 52, 2879–2886. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, R.; Yoshida, T.; Nii, Y.; Okahisa, N.; Iwata, S.; Tsukayama, M.; Hashimoto, R.; Taniguchi, Y.; Sakaue, H.; Hosaka, T.; et al. Sudachitin, a polymethoxylated flavone, improves glucose and lipid metabolism by increasing mitochondrial biogenesis in skeletal muscle. Nutr. Metab. 2014, 11, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, H.J.; Kim, M.J.; Lee, J.M.; Choi, S.J.; Cho, H.Y.; Hong, B.; Kim, H.K.; Kim, E.; Shin, D.H. Naringenin from Citrus junos has an inhibitory effect on acetylcholinesterase and a mitigating effect on amnesia. Dement. Geriatr. Cogn. Disord. 2004, 17, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, H.; Butt, M.S.; Iqbal, M.J.; Suleria, H.A.R. Citrus peel extract and powder attenuate hypercholesterolemia and hyperglycemia using rodent experimental modeling. Asian Pac. J. Trop. Biomed. 2017, 7, 870–880. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M.C.; Chinnici, G.; Selvaggi, R.; Cascone, G.; Arcidiacono, C.; Pecorino, B. Use of citrus pulp for biogas production: A GIS analysis of citrus-growing areas and processing industries in South Italy. Land Use Policy 2017, 66, 151–161. [Google Scholar] [CrossRef]
- Palaniveloo, K.; Amran, M.A.; Norhashim, N.A.; Mohamad-Fauzi, N.; Peng-Hui, F.; Hui-Wen, L.; Kai-Lin, Y.; Jiale, L.; Chian-Yee, M.G.; Jing-Yi, L.; et al. Food waste composting and microbial community structure profiling. Processes 2020, 8, 723. [Google Scholar] [CrossRef]
- Camilia, E.D.; Zaghloul, A.; Fikry, A.W.A.D. Utilization of rice straw as a low-cost natural by-product in agriculture. Int. J. Environ. Pollut. Environ. Model. 2018, 1, 91–102. [Google Scholar]
- Gutiérrez Barrutia, M.B.; Curutchet, A.; Arcia, P.; Cozzano, S. New functional ingredient from orange juice byproduct through a green extraction method. J. Food Process. Preserv. 2019, 43, e13934. [Google Scholar] [CrossRef]
- Rafiq, S.; Kaul, R.; Sofi, S.A.; Bashir, N.; Nazir, F.; Nayik, G.A. Citrus peel as a source of functional ingredient: A review. J. Saudi Soc. Agric. Sci. 2018, 17, 351–358. [Google Scholar] [CrossRef] [Green Version]
- Fava, F.; Zanaroli, G.; Vannini, L.; Guerzoni, E.; Bordoni, A.; Viaggi, D.; Robertson, J.; Waldron, K.; Bald, C.; Esturo, A.; et al. New advances in the integrated management of food processing by-products in Europe: Sustainable exploitation of fruit and cereal processing by-products with the production of new food products (NAMASTE EU). New Biotechnol. 2013, 30, 647–655. [Google Scholar] [CrossRef]
- Figuerola, F.; Hurtado, M.L.; Estevez, A.M.; Chiffelle, I.; Asenjo, F. Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 2005, 91, 395–401. [Google Scholar] [CrossRef]
- Bravo, J.; Monente, C.; Juaniz, I.; De Pena, M.P.; Cid, C. Influence of extraction process on antioxidant capacity of spent coffee. Food Res. Int. 2013, 50, 610–616. [Google Scholar] [CrossRef]
- Batista, J.R.; de Morais, M.P.; Caliari, M.; Soares, J. Physical, microbiological and sensory quality of gluten-free biscuits prepared from rice flour and potato pulp. J. Food Nutr. Res. 2016, 55, 101–107. [Google Scholar]
- Neves, L.; Ribeiro, R.; Oliveira, R.; Alves, M.M. Enhancement of methane production from barley waste. Biomass Bioenergy 2006, 30, 599–603. [Google Scholar] [CrossRef] [Green Version]
- Battestin, V.; Macedo, G.A. Tannase production by Paecilomyces variotii. Bioresour. Technol. 2007, 98, 1832–1837. [Google Scholar] [CrossRef] [PubMed]
- Murthy, P.S.; Naidu, M.M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- Saini, A.; Panesar, P.; Bera, M. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 2019, 6, 1–12. [Google Scholar] [CrossRef]
- Scherhaufer, S.; Moates, G.; Hartikainen, H.; Waldron, K.; Obersteiner, G. Environmental impacts of food waste in Europe. Waste Manag. 2018, 77, 98–113. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.; Guo, J.; Dore, M.; Chow, C. The Progressive Increase of Food Waste in America and Its Environmental Impact. PLoS ONE 2009, 4, e7940. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, M.; Cabred, S.; Ramirez, C.; Fanovich, M. Valorization of an agroindustrial soybean residue by supercritical fluid extraction of phytochemical compounds. J. Supercrit. Fluids 2019, 143, 90–96. [Google Scholar] [CrossRef]
- Cannell, R.J. (Ed.) Natural Products Isolation; Humana Press: Totowa, NJ, USA, 1998; Volume 4, p. 480. [Google Scholar]
- Ameer, K.; Shahbaz, H.; Kwon, J. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Munir, M.; Kheirkhah, H.; Baroutian, S.; Quek, S.; Young, B. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Cravotto, G.; Binello, A.; Orio, L. Green extraction techniques for high quality natural products. Agro Food Industry Hi Tech 2011, 22, 24–36. [Google Scholar]
- Tiwari, B. Ultrasound: A clean, green extraction technology. Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron Processing Wastes as a Bioresource of High-Value Added Compounds: Development of a Green Extraction Process for Polyphenol Recovery Using a Natural Deep Eutectic Solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anastas, P.; Zimmerman, J. Peer Reviewed: Design Through the 12 Principles of Green Engineering. Environ. Sci. Technol. 2003, 37, 94A–101A. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Abert-Vian, M.; Fabiano-Tixier, A.; Strube, J.; Uhlenbrock, L.; Gunjevic, V.; Cravotto, G. Green extraction of natural products. Origins, current status, and future challenges. Trends Anal. Chem. 2019, 118, 248–263. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.; Meullemiestre, A.; Fabiano-Tixier, A.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Karaj, S.; Müller, J. Optimizing mechanical oil extraction of Jatropha curcas L. seeds with respect to press capacity, oil recovery and energy efficiency. Ind. Crop. Prod. 2011, 34, 1010–1016. [Google Scholar] [CrossRef]
- Chemat, F.; Fabiano-Tixier, A.S.; Vian, M.A.; Allaf, T.; Vorobiev, E. Solvent-free extraction of food and natural products. TrAC Trends Anal. Chem. 2015, 71, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Putnik, P.; Lorenzo, J.M.; Barba, F.J.; Roohinejad, S.; Režek Jambrak, A.; Granato, D.; Montesano, D.; Bursać Kovačević, D. Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods 2018, 7, 106. [Google Scholar] [CrossRef] [Green Version]
- Rombaut, N.; Tixier, A.; Bily, A.; Chemat, F. Green extraction processes of natural products as tools for biorefinery. Biofuels Bioprod. Biorefin. 2014, 8, 530–544. [Google Scholar] [CrossRef]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Brunner, G. Supercritical fluids: Technology and application to food processing. J. Food Eng. 2005, 67, 21–33. [Google Scholar] [CrossRef]
- Sihvonen, M. Advances in supercritical carbon dioxide technologies. Trends Food Sci. Technol. 1999, 10, 217–222. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.; Rahman, M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Yin, J.; Wang, A.; Wei, W.; Liu, Y.; Shi, W. Analysis of the operation conditions for supercritical fluid extraction of seed oil. Sep. Purif. Technol. 2005, 43, 163–167. [Google Scholar] [CrossRef]
- Herrero, M.; Cifuentes, A.; Ibanez, E. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgaeA review. Food Chem. 2006, 98, 136–148. [Google Scholar] [CrossRef] [Green Version]
- de Andrade Lima, M.; Kestekoglou, I.; Charalampopoulos, D.; Chatzifragkou, A. Supercritical Fluid Extraction of Carotenoids from Vegetable Waste Matrices. Molecules 2019, 24, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buszewski, B.; Rafińska, K.; Cvetanovic, A.; Walczak, J.; Krakowska, A.; Rudnicka, J.; Zekovic, Z. Phytochemical analysis and biological activity of Lupinus luteus seeds extracts obtained by supercritical fluid extraction. Phytochem. Lett. 2019, 30, 338–348. [Google Scholar] [CrossRef]
- de Lucas, A.; Martinez de la Ossa, E.; Rincon, J.; Blanco, M.; Gracia, I. Supercritical fluid extraction of tocopherol concentrates from olive tree leaves. J. Supercrit. Fluids 2002, 22, 221–228. [Google Scholar] [CrossRef]
- Sabio, E.; Lozano, M.; Montero de Espinosa, V.; Mendes, R.; Pereira, A.; Palavra, A.; Coelho, J. Lycopene and β-Carotene Extraction from Tomato Processing Waste Using Supercritical CO2. Ind. Eng. Chem. Res. 2003, 42, 6641–6646. [Google Scholar] [CrossRef]
- Macias-Sanchez, M.; Mantell, C.; Rodriguez, M.; Martinez de la Ossa, E.; Lubian, L.; Montero, O. Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J. Food Eng. 2005, 66, 245–251. [Google Scholar] [CrossRef]
- Fornari, T.; Vicente, G.; Vazquez, E.; García-Risco, M.; Reglero, G. Isolation of essential oil from different plants and herbs by supercritical fluid extraction. J. Chromatogr. A 2012, 1250, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Capuzzo, A.; Maffei, M.; Occhipinti, A. Supercritical Fluid Extraction of Plant Flavors and Fragrances. Molecules 2013, 18, 7194–7238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esclapez, M.; Garcia-Perez, J.; Mulet, A.; Carcel, J. Ultrasound-Assisted Extraction of Natural Products. Food Eng. Rev. 2011, 3, 108–120. [Google Scholar] [CrossRef]
- Chemat, F.; Zill-e-Huma.; Khan, M. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef] [PubMed]
- Safdar, M.N.; Kausar, T.; Jabbar, S.; Mumtaz, A.; Ahad, K.; Saddozai, A.A. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J. Food Drug Anal. 2017, 25, 488–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safdar, M.N.; Kausar, T.; Nadeem, M. Comparison of Ultrasound and Maceration Techniques for the Extraction of Polyphenols from the Mango Peel. J. Food Process. Preserv. 2016, 41, e13028. [Google Scholar] [CrossRef]
- Hao, J.; Han, W.; Huang, S.; Xue, B.; Deng, X. Microwave-assisted extraction of artemisinin from Artemisia annua L. Sep. Purif. Technol. 2002, 28, 191–196. [Google Scholar] [CrossRef]
- Singh, A.; Nair, G.; Liplap, P.; Gariepy, Y.; Orsat, V.; Raghavan, V. Effect of Dielectric Properties of a Solvent-Water Mixture Used in Microwave-Assisted Extraction of Antioxidants from Potato Peels. Antioxidants 2014, 3, 99–113. [Google Scholar] [CrossRef]
- Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave Assisted Extraction-An Innovative and Promising Extraction Tool for Medicinal Plant Research. Pharmacogn. Rev. 2007, 1, 7–18. [Google Scholar]
- Kratchanova, M.; Pavlova, E.; Panchev, I. The effect of microwave heating of fresh orange peels on the fruit tissue and quality of extracted pectin. Carbohydr. Polym. 2004, 56, 181–185. [Google Scholar] [CrossRef]
- Eskilsson, S.C.; Björklund, E. Analytical-scale microwave-assisted extraction. J. Chromatogr. A 2000, 902, 227–250. [Google Scholar] [CrossRef]
- Zhongdong, L.; Guohua, W.; Yunchang, G.; Kennedy, J. Image study of pectin extraction from orange skin assisted by microwave. Carbohydr. Polym. 2006, 64, 548–552. [Google Scholar] [CrossRef]
- Chen, S.; Spiro, M. Study of Microwave Extraction of Essential Oil Constituents from Plant Materials. J. Microw. Power Electromagn. Energy 1994, 29, 231–241. [Google Scholar] [CrossRef]
- Mattina, M.; Berger, W.; Denson, C. Microwave-Assisted Extraction of Taxanes from Taxus Biomass. J. Agric. Food Chem. 1997, 45, 4691–4696. [Google Scholar] [CrossRef]
- Pan, X.; Niu, G.; Liu, H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process. Process. Intensif. 2003, 42, 129–133. [Google Scholar] [CrossRef]
- Proestos, C.; Komaitis, M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT Food Sci. Technol. 2003, 41, 652–659. [Google Scholar] [CrossRef]
- Saoud, A.; Yunus, R.; Aziz, R. Microwave-Assisted Extraction of Essential Oil from Eucalyptus: Study of the Effects of Operating Conditions. J. Eng. Res. 2006, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Wang, J.; Wang, G.; Wang, J.; Li, G. Evaluation of vacuum microwave-assisted extraction technique for the extraction of antioxidants from plant samples. J. Chromatogr. A 2009, 1216, 8867–8873. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioprocess 2018, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hee, L.Y. Waste Management and Economic Growth. In World Cities Summit Issue; 2008. Available online: https://www.csc.gov.sg/articles/waste-management-and-economic-growth (accessed on 1 October 2021).
- Wei, J.; Liang, G.; Alex, J.; Zhang, T.; Ma, C. Research Progress of Energy Utilization of AgriculturalWaste in China: Bibliometric Analysis by Citespace. Sustainability 2020, 12, 812. [Google Scholar] [CrossRef] [Green Version]
- Atinkut, H.B.; Yan, T.; Zhang, F.; Qin, S.; Gai, H.; Liu, Q. Cognition of agriculture waste and payments for a circular agriculture model in Central China. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Wang, B.; Dong, F.; Chen, M.; Zhu, J.; Tan, J.; Fu, X.; Wang, Y.; Chen, S. Advances in recycling and utilization of agricultural wastes in China: Based on environmental risk, crucial pathways, influencing factors, policy mechanism. Procedia Environ. Sci. 2016, 31, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Din, G.Y.; Cohen, Y. Modeling Municipal Solid Waste Management in Africa: Case Study of Matadi, the Democratic Republic of Congo. J. Environ. Prot. 2012, 4, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Gontard, N.; Sonesson, U.; Birkved, M.; Majone, M.; Bolzonella, D.; Celli, A.; Angellier-Coussy, H.; Jang, G.-W.; Verniquet, A.; Broeze, J.; et al. A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Crit. Rev. Environ. Sci. Technol. 2018, 48, 614–654. [Google Scholar] [CrossRef] [Green Version]
- Donner, M.; Verniquet, A.; Broeze, J.; Kayser, K.; De Vries, H. Critical success and risk factors for circular business models valorising agricultural waste and by-products. Resour. Conserv. Recycl. 2021, 165, 105236. [Google Scholar] [CrossRef]
Origin | Processing (Part) | Bioactivity and Compound Example | References |
---|---|---|---|
Acorn | Milling
| Anti-microbial, antioxidant
| [18] |
Almond | Blanching
| Antioxidant, anti-microbial, anti-viral, dietary fibre, neuroprotective, photoprotective, prebiotic
| [19] |
Apple | Milling
| Anti-cancer, anti-microbial, antioxidant, dietary fibre
| [7,20,21,22,23,24] |
Apricot | Grinding
| Anti-cancer, anti-inflammatory, anti-microbials, antioxidant, dietary fibre
| [7,21] |
Avocado | Peeling
| Anti-cancer, anti-inflammatory, antioxidant, dietary fibre, food additive
| [7,24,25] |
Banana | Milling
| Anti-microbial, anti-inflammatory, antioxidant, dietary fibre, nutraceuticals
| [7,22,24,25,26] |
Barley | Milling
| Anti-allergic, anti-cancer, anti-inflammatory, anti-microbial, anti-thrombotic, anti-viral
| [24,27] |
Beetroot | Peeling
| Anti-anaemia, anti-cancer, anti-hypertensive, anti-inflammatory, anti-microbial, antioxidant, food additive
| [7] |
Carrot | Peeling
| Anti-inflammatory, Anti-microbial, anti-mutagenic, antioxidant, anti-viral, dietary fibre
| [7,22,24] |
Cauliflower | Cutting
| Anti-microbial, anti-inflammatory, antioxidant, nutraceuticals, dietary fibre
| [7,24,28] |
Chestnut | Milling
| Anti-microbial, antioxidant
| [18] |
Cocoa | Grinding
| Anti-microbial, antioxidant, dietary fibre, food additives, nutraceuticals,
| [29] |
Coffee | Milling
| Anti-cancer, antioxidant, anti-viral, hepatoprotective, hypoglycaemic, nutraceuticals
| [23,30,31] |
Corn | Milling
| Antioxidant, dietary fibre
| [24] |
Cucumber | Peel | Caryophyllene, chlorophyll, pheophytin, phellandrene | [25] |
Date | Pulp, Seed | Antioxidant, dietary fibre | [24] |
Garlic | Peeling
| Anti-microbial, antioxidant, dietary fibre
| [7] |
Grape | Stemming
| Anti-carcinogenic, anti-inflammatory, antioxidant, dietary fibre, neuroprotective, nutraceutical
| [9,21,22,23,32] |
Grapefruit | Pressing
| Anti-allergic, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotic, anti-viral, vasodilators
| [33] |
Green tea | Soaking
| Anti-microbial, antioxidant
| [18,34] |
Guava | Peeling
| Antioxidant
| [25] |
Lemon | Pressing
| Anti-allergic, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotic, anti-viral, vasodilator
| [33] |
Lime | Pressing
| Anti-allergic, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotic, anti-viral, vasodilator
| [33] |
Liquorice | Cutting
| Anti-microbial, anti-inflammatory, antioxidant, anti-proliferative
| [35] |
Mandarin | Pressing
| Anti-allergics, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotics, anti-virals, vasodilators
| [33] |
Mango | Peeling
| Anti-inflammatory, antioxidant, dietary fibre, nutraceutical
| [7,20,36] |
Olive | Milling
| Anti-atherogenic, anti-cancer, anti-microbial, anti-inflammatory, antioxidant, antiviral, hypolipidemic, hypoglycaemic
| [7,23] |
Onion | Peeling
| Anti-cancer, anti-diabetic, anti-microbial, anti-inflammatory, antioxidant, dietary fibre, prebiotic
| [7,22,35] |
Orange | Pressing
| antioxidant, anti-inflammatory, anti-allergics, anti-thrombotics, anti-microbial, anti-viral, vasodilators,
| [33] |
Papaya | Grinding
| Anti-microbial, antioxidant, food additives
| [22] |
Peach | Soaking
| Antioxidant
| [21] |
Pineapple | Milling
| Antioxidant, dietary fibre, prebiotic, probiotic
| [22] |
Pomegranate | Milling
| Anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, anti-mutagenic, antioxidant
| [23,24,37] |
Potato | Cutting
| Peeling
| [38,39,40,41,42,43,44,45,46,47,48] |
Rice | Dehulling
| Anti-cancer, anti-inflammatory, antioxidant, dietary fibre, food additive
| [24,25,28,49,50] |
Soybean | Soaking
| Antioxidant, dietary fibre, food additive, nutraceutical
| [51] |
Sweet potato | Cutting
| antioxidant, biofuel, dietary fibre, phenolic compound, soluble protein
| [52] |
Tomato | Heating
| Anticancer, anti-cholesterol, antioxidant, dietary fibre, food additive
| [5,7,22,24] |
Wheat | Milling
| Anti-cancer, antioxidant, dietary fibre
| [24] |
Extraction Technique | |||
---|---|---|---|
SFE | UAE | MAE | |
Advantage [111] |
|
|
|
Drawback [111] |
|
|
|
Compounds Isolated [85,96,97,98,99,100,101,102,104,105,106,113,114,115,116,117,118] |
|
|
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amran, M.A.; Palaniveloo, K.; Fauzi, R.; Satar, N.M.; Mohidin, T.B.M.; Mohan, G.; Razak, S.A.; Arunasalam, M.; Nagappan, T.; Sathiya Seelan, J.S. Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques. Sustainability 2021, 13, 11432. https://doi.org/10.3390/su132011432
Amran MA, Palaniveloo K, Fauzi R, Satar NM, Mohidin TBM, Mohan G, Razak SA, Arunasalam M, Nagappan T, Sathiya Seelan JS. Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques. Sustainability. 2021; 13(20):11432. https://doi.org/10.3390/su132011432
Chicago/Turabian StyleAmran, Muhammad Azri, Kishneth Palaniveloo, Rosmadi Fauzi, Nurulhuda Mohd Satar, Taznim Begam Mohd Mohidin, Gokula Mohan, Shariza Abdul Razak, Mirushan Arunasalam, Thilahgavani Nagappan, and Jaya Seelan Sathiya Seelan. 2021. "Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques" Sustainability 13, no. 20: 11432. https://doi.org/10.3390/su132011432
APA StyleAmran, M. A., Palaniveloo, K., Fauzi, R., Satar, N. M., Mohidin, T. B. M., Mohan, G., Razak, S. A., Arunasalam, M., Nagappan, T., & Sathiya Seelan, J. S. (2021). Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques. Sustainability, 13(20), 11432. https://doi.org/10.3390/su132011432