Comparative Analyses of Glyphosate Alternative Weed Management Strategies on Plant Coverage, Soil and Soil Biota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herbicide Solution Preparations and Application Strategy
2.2. Treatment Sites and Design of Treatment Blocks for Testing Weed Management Strategies
2.3. Soil Bacterial Colony Counts including Assessment of Bacterial and Fungal Morphological Diversity after Herbicide Treatment
2.4. Extraction of Total Genomic DNA from Soil Samples and NGS Sequencing
2.5. Assessment of Arthropods in Quadrats Treated with Different Weed Management Strategies
2.6. Soil Physical and Chemical Properties
2.7. Data Analysis and Statistical Methods
3. Results
3.1. Effect of Weed Management Strategies on Weed Coverage 4 and 12Weeks Post Application
3.2. Effect of Weed Management Strategies on Bacterial Abundance and Diversity in Soil 4 Weeks Post Treatment
3.3. Effect of Weed Management Strategies on Arthropod Relative Abundance 4 Weeks Post Treatment
3.4. Effect of Weed Management Strategies on Bacterial Diversity in Soil 4 Weeks Post Treatment
3.5. Effect of Weed Management Strategies on Fungal Diversity in Soil 4 Weeks Post Treatment
3.6. Cumulative Effect of Weed Management Strategies on Soil Properties
4. Discussion
4.1. Glyphosate and Glufosinate Consistently Reduced Weed Coverage
4.2. Imazapyr Effectively Reduced Weed Coverage by 12 Weeks after the Initial Treatment and beyond
4.3. Steam Offers Instant Reductions to Weed Coverage and Has a Cumulative Longer-Term Effect
4.4. Selective Herbicides MCPA + Dicamba and Prodiamine Have Minimal Impacts on Reducing Overall Weed Coverage
4.5. Contact-Based Nonanoic Acid, Pine Oil, Clove Oil and Acetic Acid + Hydrochloric Acid Products Have Short Term Impacts on Weed Coverage in Areas with Low Plant Density
4.6. Weed Management Strategies Had Little or No Effect on Soil Physicochemical Properties
4.7. Seasonal Variation and Weed Species Composition and Density Impacted Biota More Than Weed Management Strategies Trailed
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Fagot, M.; de Cauwer, B.; Beeldens, A.; Boonen, E.; Bulcke, R.; Reheul, D. Weed flora in paved areas in relation to environment, pavement characteristics and weed control. Weed Res. 2011, 51, 650–660. [Google Scholar] [CrossRef]
- Bàrberi, P.; Burgio, G.; Dinelli, G.; Moonen, A.C.; Otto, S.; Vazzana, C.; Zanin, G. Functional biodiversity in the agricultural landscape: Relationships between weeds and arthropod fauna. Weed Res. 2010, 50, 388–401. [Google Scholar] [CrossRef]
- Carson, J.K.; Rooney, D.; Gleeson, D.; Clipson, N. Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiol. Ecol. 2007, 61, 414–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corneo, P.E.; Pellegrini, A.; Cappellin, L.; Gessler, C.; Pertot, I. Weeds influence soil bacterial and fungal communities. Plant Soil 2013, 373, 107–123. [Google Scholar] [CrossRef]
- Egan, J.F.; Bohnenblust, E.; Goslee, S.; Mortensen, D.; Tooker, J. Herbicide drift can affect plant and arthropod communities. Agric. Ecosyst. Environ. 2014, 185, 77–87. [Google Scholar] [CrossRef]
- Mandl, K.; Cantelmo, C.; Gruber, E.; Faber, F.; Friedrich, B.; Zaller, J.G. Effects of Glyphosate-, Glufosinate- and Flazasulfuron-Based Herbicides on Soil Microorganisms in a Vineyard. Bull. Environ. Contam. Toxicol. 2018, 101, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Marilley, L.; Aragno, M. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl. Soil Ecol. 1999, 13, 127–136. [Google Scholar] [CrossRef]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Asaduzzaman, M.; Parven, A.; Megharaj, M. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? Environ. Pollut. 2020, 263, 114372. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.P.; Antoniou, M.N.; Blumberg, B.; Carroll, L.; Colborn, T.; Everett, L.G.; Hansen, M.; Landrigan, P.J.; Lanphear, B.P.; Mesnage, R.; et al. Concerns over use of glyphosate-based herbicides and risks associated with exposures: A consensus statement. Environ. Health 2016, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Peillex, C.; Pelletier, M. The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. J. Immunotoxicol. 2020, 17, 163–174. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Organophosphate Insecticides and Herbicides: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC Monogr. Identif. Carcinog. Hazards Hum. 2017, 112, 321–399. Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Some-Organophosphate-Insecticides-And-Herbicides-2017 (accessed on 20 August 2021).
- Beckie, H.J.; Flower, K.C.; Ashworth, M.B. Farming without Glyphosate? Plants 2020, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci. 2008, 64, 441–456. [Google Scholar] [CrossRef]
- Gomes, M.P.; Smedbol, E.; Chalifour, A.; Hénault-Ethier, L.; Labrecque, M.; Lepage, L.; Lucotte, M.; Juneau, P. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: An overview. J. Exp. Bot. 2014, 65, 4691–4703. [Google Scholar] [CrossRef] [Green Version]
- Monquero, P.; Christoffoleti, P.; Osuna, M.; de Prado, R. Absorção, translocação e metabolismo do glyphosate por plantas tolerantes e suscetíveis a este herbicida. Planta Daninha 2004, 22, 445–451. [Google Scholar] [CrossRef] [Green Version]
- Cakmak, I.; Yazici, A.; Tutus, Y.; Ozturk, L. Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium, and iron in non-glyphosate resistant soybean. Eur. J. Agron. 2009, 31, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Marsh, H.V.; Evans, H.J.; Matrone, G. Investigations of the Role of Iron in Chlorophyll Metabolism: II: Effect of Iron Deficiency on Chlorophyll Synthesis. Plant Physiol. 1963, 38, 638–642. [Google Scholar] [CrossRef] [Green Version]
- Zabalza, A.; Orcaray, L.; Fernández-Escalada, M.; Zulet-González, A.; Royuela, M. The pattern of shikimate pathway and phenylpropanoids after inhibition by glyphosate or quinate feeding in pea roots. Pestic. Biochem. Physiol. 2017, 141, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zabalza, A.; Zulet-González, A.; Barco-Antoñanzas, M.; Eceiza, M.V.; Gil-Monreal, M.; Royuela, M. Physiological Approach to the Use of the Natural Compound Quinate in the Control of Sensitive and Resistant Papaver rhoeas. Plants 2020, 9, 1215. [Google Scholar] [CrossRef]
- Jansson, J.; Hofmockel, K.S. The soil microbiome—From metagenomics to metaphenomics. Curr. Opin. Microbiol. 2018, 43, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Premachandra, D.; Hudek, L.; Brau, L. Bacterial Modes of Action for Enhancing of Plant Growth. J. Biotechnol. Biomater. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef]
- Krzysko-Lupicka, T.; Sudol, T. Interactions between glyphosate and autochthonous soil fungi surviving in aqueous solution of glyphosate. Chemosphere 2008, 71, 1386–1391. [Google Scholar] [CrossRef] [PubMed]
- Means, N.E.; Kremer, R.J.; Ramsier, C. Effects of glyphosate and foliar amendments on activity of microorganisms in the soybean rhizosphere. J. Environ. Sci. Health Part B 2007, 42, 125–132. [Google Scholar] [CrossRef]
- Loranger-Merciris, G.; Ponge, J.-F.; Blanchart, E.; Lavelle, P. Influence of agricultural practices on arthropod communities in a vertisol (Martinique). Eur. J. Soil Biol. 1998, 34, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.M.; Umeozor, O.; Gbarakoro, T. The Effects of Glyphosate and Multrazine on the Abundance and Diversity of Soil Microarthropods at the University Park, University of Port-Harcourt, Nigeria. Eur. J. Exp. Biol. 2017, 07. [Google Scholar] [CrossRef]
- Palacios-Vargas, J.G.; Castaño-Meneses, G.; Gómez-Anaya, J.A.; Martínez-Yrizar, A.; Mejía-Recamier, B.E.; Martínez-Sánchez, J. Litter and soil arthropods diversity and density in a tropical dry forest ecosystem in Western Mexico. Biodivers. Conserv. 2007, 16, 3703–3717. [Google Scholar] [CrossRef]
- Evans, S.C.; Shaw, E.M.; Rypstra, A.L. Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology 2010, 19, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.F.Q.; Camacho, E.; Thakur, R.; Barron, A.J.; Dong, Y.; Dimopoulos, G.; Broderick, N.A.; Casadevall, A. Glyphosate inhibits melanization and increases susceptibility to infection in insects. PLoS Biol. 2021, 19, e3001182. [Google Scholar] [CrossRef]
- Saska, P.; Skuhrovec, J.; Lukáš, J.; Chi, H.; Tuan, S.-J.; Honěk, A. Treatment by glyphosate-based herbicide alters life history parameters of the rose-grain aphid Metopolophium dirhodum. Sci. Rep. 2016, 6, 27801. [Google Scholar] [CrossRef] [Green Version]
- Heap, I.; O Duke, S. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 2017, 74, 1040–1049. [Google Scholar] [CrossRef]
- Wikum, D.A.; Shanholtzer, G.F. Application of the Braun-Blanquet cover-abundance scale for vegetation analysis in land development studies. Environ. Manag. 1978, 2, 323–329. [Google Scholar] [CrossRef]
- McAuliffe, J.R. A rapid survey method for the estimation of density and cover in desert plant communities. J. Veg. Sci. 1990, 1, 653–656. [Google Scholar] [CrossRef]
- Damgaard, C. Estimating mean plant cover from different types of cover data: A coherent statistical framework. Ecosphere 2014, 5, 20. [Google Scholar] [CrossRef]
- Blood, K. Environmental Weeds: A Field Guide for SE Australia; Bloomings Books: Melbourne, Australia, 2001. [Google Scholar]
- Muyt, A. Bush Invaders of South-East Australia: A Guide to the Identification and Control of Environmental Weeds Found in South-East Australia; R.G. and F.J. Richardson: Melbourne, Australia, 2001. [Google Scholar]
- Richardson, F.J.; Richardson, R.G.; Shepherd, R.C.H. Weeds of the South-East: An Identification Guide for Australia, 3rd ed.; R.G. and F.J. Richardson: Melbourne, Australia, 2016. [Google Scholar]
- Nakatsu, C.H.; Byappanahalli, M.; Nevers, M.B. Bacterial Community 16S rRNA Gene Sequencing Characterizes Riverine Microbial Impact on Lake Michigan. Front. Microbiol. 2019, 10, 996. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; I Gordon, J.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Rideout, J.R.; He, Y.; Navas-Molina, J.A.; Walters, W.A.; Ursell, L.K.; Gibbons, S.M.; Chase, J.; McDonald, D.; Gonzalez, A.; Robbins-Pianka, A.; et al. Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. Peer J. 2014, 2, e545. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- McDonald, D.; Price, M.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2011, 6, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Abarenkov, K.; Nilsson, H.; Larsson, K.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.; Pennanen, T.; et al. The UNITE database for molecular identification of fungi—Recent updates and future perspectives. New Phytol. 2010, 186, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.D.; Black, M.J.; Filip, N.; Miller, M.R.; Mohns, K.; Mortimor, J.; Freitas, T.R.; Loerzer, R.G.; Gerwing, T.; Juanes, F.; et al. Community assessment techniques and the implications for rarefaction and extrapolation with Hill numbers. Ecol. Evol. 2017, 7, 11213–11226. [Google Scholar] [CrossRef]
- Work, T.T.; Buddle, C.M.; Korinus, L.M.; Spence, J.R. Pitfall Trap Size and Capture of Three Taxa of Litter-Dwelling Arthropods: Implications for Biodiversity Studies. Environ. Entomol. 2002, 31, 438–448. [Google Scholar] [CrossRef] [Green Version]
- Zborowski, P.; Storey, R. A Field Guide to Insects in Australia, 4th ed.; New Holland Publishers: Wahroonga, Australia, 2017; ISBN 101925546071. [Google Scholar]
- Whyte, R.; Anderson, G. Field Guide to Spiders of Australia; CSIRO Publishing: Clayton, VIC, Australia, 2017; ISBN 9780643107076. [Google Scholar]
- Farrow, R. Insects of South-Eastern Australia: An Ecological and Behavioural Guide; CSIRO Publishing: Clayton, VIC, Australia, 2016; ISBN 9781486304745. [Google Scholar]
- Zaller, J.G.; Simmer, L.; Santer, N.; Tataw, J.T.; Formayer, H.; Murer, E.; Hösch, J.; Baumgarten, A. Future rainfall variations reduce abundances of aboveground arthropods in model agroecosystems with different soil types. Front. Environ. Sci. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Annual Report 2009–10: Soil Proficiency Testing Program Report; Australasian Soil and Plant Analysis Council Inc.: Melbourne, VIC, Australia, 2009–2010; p. 73.
- Peech, M.; Cowan, R.L.; Baker, J.H. A Critical Study of the BaCl2-Triethanolamine and the Ammonium Acetate Methods for Determining the Exchangeable Hydrogen Content of Soils. Soil Sci. Soc. Am. J. 1962, 26, 37–40. [Google Scholar] [CrossRef]
- Ross, G.J.; Wang, C. Soil Sampling and Methods of Analysis; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Varanasi, V.K.; Godar, A.S.; Currie, R.S.; Dille, A.J.; Thompson, C.R.; Stahlman, P.W.; Jugulam, M. Field-evolved resistance to four modes of action of herbicides in a single kochia (Kochia scoparia L. Schrad.) population. Pest Manag. Sci. 2015, 71, 1207–1212. [Google Scholar] [CrossRef]
- Green, J.M.; Owen, M.D.K. Herbicide-Resistant Crops: Utilities and Limitations for Herbicide-Resistant Weed Management. J. Agric. Food Chem. 2011, 59, 5819–5829. [Google Scholar] [CrossRef]
- Sherwani, S.I.; Arif, I.A.; Khan, H.A. Modes of action of different classes of herbicides. In Herbicides, Physiology of Action, and Safety; Price, A., Kelton, J., Sarunaite, L., Eds.; InTechOpen: London, UK, 2015; pp. 165–186. [Google Scholar]
- Helander, M.; Pauna, A.; Saikkonen, K.; Saloniemi, I. Glyphosate residues in soil affect crop plant germination and growth. Sci. Rep. 2019, 9, 19653–19659. [Google Scholar] [CrossRef]
- Maeda, H.; Dudareva, N. The Shikimate Pathway and Aromatic Amino Acid Biosynthesis in Plants. Annu. Rev. Plant Biol. 2012, 63, 73–105. [Google Scholar] [CrossRef] [PubMed]
- Takano, H.K.; E Dayan, F. Glufosinate-ammonium: A review of the current state of knowledge. Pest Manag. Sci. 2020, 76, 3911–3925. [Google Scholar] [CrossRef]
- Sellers, B.A.; Smeda, R.J.; Johnson, W.G. Diurnal fluctuations and leafangle reduce glufosinate efficacy. Weed Technol 2003, 17, 302–306. [Google Scholar] [CrossRef]
- Martinson, K.B.; Durgan, B.R.; Gunsolus, J.L.; Sothern, R.B. Time of Day of Application Effect on Glyphosate and Glufosinate Efficacy. Crop Manag. 2005, 4, 1–7. [Google Scholar] [CrossRef]
- Takano, H.K.; Beffa, R.; Preston, C.; Westra, P.; Dayan, F.E. Reactive oxygen species trigger the fast action of glufosinate. Planta Daninha 2019, 249, 1837–1849. [Google Scholar] [CrossRef] [PubMed]
- Ulbrich, A.V.; Roberto, J.; Souza, P.; Shaner, D. Persistence and carryover effect of imazapic and imazapyr in Brazilian crop-ping systems. Weed Technol. 2005, 19, 986–991. [Google Scholar] [CrossRef]
- Cottet, M.; de Montaudouin, X.; Blanchet, H.; Lebleu, P. Spartina anglica eradication experiment and in situ monitoring assess structuring strength of habitat complexity on marine macrofauna at high tidal level. Estuar. Coast. Shelf Sci. 2007, 71, 629–640. [Google Scholar] [CrossRef]
- Pless, P. Use of Imazapyr Herbicide to Control Invasive Cordgrass (Spartina spp.) in the San Francisco Estuary; Leson & Associates: Berkeley, CA, USA, 2005; pp. 1–55. [Google Scholar]
- Cox, C. Imazapyr: Herbicide factsheet. J. Pestic. Reform 1996, 16, 16–20. [Google Scholar]
- Su, W.; Hao, H.; Ding, M.; Wu, R.; Xu, H.; Xue, F.; Shen, C.; Sun, L.; Lu, C. Adsorption and degradation of imazapic in soils under different environmental conditions. PLoS ONE 2019, 14, e0219462. [Google Scholar] [CrossRef]
- Wehtje, G.; Dickens, R.; Wilcut, J.W.; Hajek, B.F. Sorption and Mobility of Sulfometuron and Imazapyr in Five Alabama Soils. Weed Sci. 1987, 35, 858–864. [Google Scholar] [CrossRef]
- Varani, M.; Molari, G.; Mattetti, M.; Ferrari, A. Performance evaluation of a non-chemical weed control machine for vineyards and orchards operating with high pressure cold water. Acta Hortic. 2021, 1311, 533–540. [Google Scholar] [CrossRef]
- Kolberg, R.L.; Wiles, L.J. Effect of steam application on cropland weeds. Weed Technol. 2002, 16, 43–49. [Google Scholar] [CrossRef]
- Matysiak, K.; Miziniak, W.; Kaczmarek, S.; Kierzek, R. Herbicides with natural and synthetic biostimulants in spring wheat. Cienc. Rural. 2018, 48, 1–10. [Google Scholar] [CrossRef]
- Orr, J.P.; Canevari, M.; Jackson, L.; Wennig, R.; Carner, R.; Nishimoto, G. Postemergence herbicides and application time affect wheat yields. Calif. Agric. 1996, 50, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Vaughn, K.C.; Lehnen, L.P. Mitotic disruptor herbicides. Weed Sci. 1991, 39, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Brosnan, J.T.; Reasor, E.H.; Vargas, J.J.; Breeden, G.K.; Kopsell, D.A.; Cutulle, M.A.; Mueller, T.C. A Putative Prodiamine-Resistant Annual Bluegrass (Poa annua) Population is Controlled by Indaziflam. Weed Sci. 2014, 62, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Candy, K.; Melloul, E.; Bernigaud, C.; Chai, L.; Darmon, C.; Durand, R.; Botterel, F.; Chosidow, O.; Izri, A.; et al. In vitro activity of ten essential oils against Sarcoptes scabiei. Parasit. Vectors 2016, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Barua, A.; McDonald-Howard, K.-L.; Mc Donnell, R.J.; Rae, R.; Williams, C.D. Toxicity of essential oils to slug parasitic and entomopathogenic nematodes. J. Pest Sci. 2020, 93, 1411–1419. [Google Scholar] [CrossRef]
- Ebert, T.A.; Kevan, P.G.; Bishop, B.L.; Kevan, S.D.; A Downer, R. Oral toxicity of essential oils and organic acids fed to honey bees (Apis mellifera). J. Apic. Res. 2007, 46, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Perry, D.T.; Choe, D.-H. Volatile Essential Oils Can Be Used to Improve the Efficacy of Heat Treatments Targeting the Western Drywood Termite: Evidence from a Laboratory Study. J. Econ. Entomol. 2020, 113, 1373–1381. [Google Scholar] [CrossRef]
- Meyer, S.L.; Lakshman, D.; Zasada, I.A.; Vinyard, B.T.; Chitwood, D.J. Phytotoxicity of Clove Oil to Vegetable Crop Seedlings and Nematotoxicity to Root-knot Nematodes. HortTechnology 2008, 18, 631–638. [Google Scholar] [CrossRef]
- Soshinkova, T.N.; Radyukina, N.L.; Korolkova, D.V.; Nosov, A.V. Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress. Russ. J. Plant Physiol. 2012, 60, 41–54. [Google Scholar] [CrossRef]
- Sarathchandra, S.; Upsdell, M. Nitrogen mineralisation and the activity and populations of microflora in a high producing yellow-brown loam under pasture. N. Zeal. J. Agric. Res. 1981, 24, 171–176. [Google Scholar] [CrossRef]
- Tanaka, S.; Kobayashi, T.; Iwasaki, K.; Yamane, S.; Maeda, K.; Sakurai, K. Properties and metabolic diversity of microbial communities in soils treated with steam sterilization compared with methyl bromide and chloropicrin fumigations. Soil Sci. Plant Nutr. 2003, 49, 603–610. [Google Scholar] [CrossRef]
- Wang, C.H.; Wu, L.; Wang, Z.; Alabady, M.S.; Parson, D.; Molumo, Z.; Fankhauser, S.C. Characterizing changes in soil microbiome abundance and diversity due to different cover crop techniques. PLoS ONE 2020, 15, e0232453. [Google Scholar] [CrossRef] [PubMed]
- Hermans, S.M.; Buckley, H.L.; Case, B.S.; Curran-Cournane, F.; Taylor, M.; Lear, G. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 2020, 8, 1–13. [Google Scholar] [CrossRef]
- Ray, P.; Lakshmanan, V.; Labbé, J.L.; Craven, K.D. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Jankowiak, J.; Hattenrath-Lehmann, T.; Kramer, B.J.; Ladds, M.; Gobler, C.J. Deciphering the effects of nitrogen, phosphorus, and temperature on cyanobacterial bloom intensification, diversity, and toxicity in western Lake Erie. Limnol. Oceanogr. 2018, 64, 1347–1370. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.S.; Kumar, A.; Rai, A.N.; Singh, D.P. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability. Front. Microbiol. 2016, 7, 529. [Google Scholar] [CrossRef] [Green Version]
- Kuske, C.R.; Yeager, C.; Johnson, S.; Ticknor, L.; Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 2011, 6, 886–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roslycky, E. Glyphosate and the response of the soil microbiota. Soil Biol. Biochem. 1982, 14, 87–92. [Google Scholar] [CrossRef]
- Hoerlein, G. Glufosinate (Phosphinothricin), A Natural Amino Acid with Unexpected Herbicidal Properties. Rev. Environ. Contam. Toxicol. 1994, 138, 73–145. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.P.; Heron, J.K.; McMullan, G. Glufosinate tolerance and utilisation by soil and aquatic bacteria. Biol. Environ. 1993, 93B, 181–186. [Google Scholar] [CrossRef]
- Canarini, A.; Kaiser, C.; Merchant, A.; Richter, A.; Wanek, W. Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli. Front. Plant Sci. 2019, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-D.; Zhou, S.-M.; Wang, H.-L.; Fan, D.-F. Biodegradation of imazapyr in typical soils in Zhejiang Province, China. J. Environ. Sci. 2005, 17, 593–597. [Google Scholar]
- Bundt, A.; Avila, L.; Pivetta, A.; Agostinetto, D.; Dick, D.; Burauel, P. Imidazolinone Degradation in Soil in Response to Application History. Planta Daninha 2015, 33, 341–349. [Google Scholar] [CrossRef] [Green Version]
- Matte, W.; Cavalieri, S.; Pereira, C.; Ikeda, F.; Poltronieri, F. Residual Activity of [imazapic+imazapyr] Applied to Imidazolinones Resistant Soybean on Cotton in Succession. Planta Daninha 2018, 36. [Google Scholar] [CrossRef]
- Bunt, A.C. Recent investigations into the use of steam for soil sterilisation. Sci. Hortic. 1952, 11, 176–182. [Google Scholar]
- Bunt, A.C. Steam Pressure in Soil Sterilization: I. In Bins. J. Hortic. Sci. 1954, 29, 89–97. [Google Scholar] [CrossRef]
- Dietrich, P.; Cesarz, S.; Eisenhauer, N.; Roscher, C. Effects of steam sterilization on soil abiotic and biotic properties. Soil Org. 2020, 92, 99–108. [Google Scholar] [CrossRef]
- Gayed, S.K. The effect of steam sterilization on three pathogenic fungi in tobacco seed beds in the greenhouse. Lighter 1979, 49, 14–15. [Google Scholar]
- Sánchez-Bayo, F. Indirect Effect of Pesticides on Insects and Other Arthropods. Toxics 2021, 9, 177. [Google Scholar] [CrossRef]
- Kraus, E.C.; Stout, M.J. Direct and Indirect Effects of Herbicides on Insect Herbivores in Rice: Oryza sativa. Sci. Rep. 2019, 9, 6998. [Google Scholar] [CrossRef]
- Chari, L.; Mauda, E.; Martin, G.; Raghu, S. Insect Herbivores Associated with Lycium ferocissimum (Solanaceae) in South Africa and their Potential as Biological Control Agents in Australia. Afr. Entomol. 2020, 28, 359–373. [Google Scholar] [CrossRef]
Glyphosate | Pine Oil | Glufosinate | MCPA+ Dicamba | Acetic Acid + Hydrochloric Acid | Prodiamine | Imazapyr | Nonanoic Acid | Clove Oil | |
---|---|---|---|---|---|---|---|---|---|
Stock conc. | 360 g/L | 680 g/L | 200 g/L | 340 g/L MCPA + 80 g/L dicamba | 900 g/L acetic acid + 10 g/L hydrochloric acid | 480 g/L | 700 g/kg | 36.8 g/L | 40.4 g/L clove oil + 40.4 g/L acetic acid |
Dilution | 10 mL/L | 200 mL/L | 5 mL/L | 27 mL/L | 90 mL/L | 40 mL/L | 13 g/L | N/A | N/A |
Final active conc. | 36 g/L | 136 g/L | 2 g/L | 9.18 g/L MCPA + 2.16 g/L dicamba | 81 g/L acetic acid + 0.9 g/L hydrochloric acid | 19.2 g/L | 9.1 g/L | 36.8 g/L | 40.4 g/L clove oil + 40.4 g/L acetic acid |
Application rate per m2 | 7.2 g/m2 | 27.2 g/m2 | 0.4 g/m2 | 1.84 g/m2 MCPA + 0.43 g/m2 dicamba | 16.2 g/m2 Acetic acid + 0.18 g/m2 hydrochloric acid | 3.84 g/m2 | 1.82 g/m2 | 18.4 g/m2 | 8.08 g/m2 clove oil + 8.08 g/m2 acetic acid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudek, L.; Enez, A.; Bräu, L. Comparative Analyses of Glyphosate Alternative Weed Management Strategies on Plant Coverage, Soil and Soil Biota. Sustainability 2021, 13, 11454. https://doi.org/10.3390/su132011454
Hudek L, Enez A, Bräu L. Comparative Analyses of Glyphosate Alternative Weed Management Strategies on Plant Coverage, Soil and Soil Biota. Sustainability. 2021; 13(20):11454. https://doi.org/10.3390/su132011454
Chicago/Turabian StyleHudek, Lee, Aydin Enez, and Lambert Bräu. 2021. "Comparative Analyses of Glyphosate Alternative Weed Management Strategies on Plant Coverage, Soil and Soil Biota" Sustainability 13, no. 20: 11454. https://doi.org/10.3390/su132011454
APA StyleHudek, L., Enez, A., & Bräu, L. (2021). Comparative Analyses of Glyphosate Alternative Weed Management Strategies on Plant Coverage, Soil and Soil Biota. Sustainability, 13(20), 11454. https://doi.org/10.3390/su132011454