Applying Spatial Analysis to Create Modern Rich Pictures for Grassland Health Analysis
Abstract
:1. Introduction
1.1. Background
1.1.1. Designing Future Productive Landscapes and the Case Study of Lincoln University’s Mount Grand Station
1.1.2. Grassland Health
1.1.3. Rich Pictures and GIS
2. Materials and Methods
2.1. Rich Picture
2.1.1. Botanical Composition
2.1.2. Soil Analysis
2.1.3. Multi-Criteria Evaluation
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Duru, M.; Therond, O.; Fares, M.H. Designing agroecological transitions. A review. Agron. Sustain. Dev. 2015, 35, 1237–1257. [Google Scholar] [CrossRef] [Green Version]
- Thompson, J.; Scoones, I. Addressing the dynamics of agri-food systems: An emerging agenda for social science research. Environ. Sci. Policy 2009, 12, 386–397. [Google Scholar] [CrossRef]
- Martin, G.; Martin-Clouaire, R.; Duru, M. Farming system design to feed the changing world. A review. Agron. Sustain. Dev. 2012, 33, 131–149. [Google Scholar] [CrossRef] [Green Version]
- Walls, J.G.; Widmeyer, G.R.; El Sawy, O.A. Building an information system design theory for vigilant EIS. Inf. Syst. Res. 1992, 3, 36–59. [Google Scholar] [CrossRef]
- Lacombe, C.; Couix, N.; Hazard, L. Designing agroecological farming systems with farmers: A review. Agric. Syst. 2018, 165, 208–220. [Google Scholar] [CrossRef]
- Stankey, G.H.; Bormann, B.T.; Ryan, C.; Shindler, B.; Sturtevant, V.; Clark, R.N.; Philpot, C. Adaptive management and the Northwest Forest Plan: Rhetoric and reality. J. For. 2003, 101, 40–46. [Google Scholar]
- Fuhlendorf, S.D.; Engle, D.M. Restoring heterogeneity on rangelands: Ecosystem management based on evolutionary grazing patterns: We propose a paradigm that enhances heterogeneity instead of homogeneity to promote biological diversity and wildlife habitat on rangelands grazed by livestock. BioScience 2001, 51, 625–632. [Google Scholar]
- Behnke, R.H.; Scoones, I. Rethinking Range Ecology: Implications for Rangeland Management in Africa; International Institute for Environment and Development: London, UK, 1992. [Google Scholar]
- Conway, G.R. Agroecosystem analysis. Agric. Adm. 1985, 20, 31–55. [Google Scholar] [CrossRef]
- Kline, O.; Joshi, N.K. Mitigating the effects of habitat loss on solitary bees in agricultural ecosystems. Agriculture 2020, 10, 115. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, D.; Marraccini, E.; Lardon, S.; Rapey, H.; Debolini, M.; Benoît, M.; Thenail, C. Farming systems designing landscapes: Land management units at the interface between agronomy and geography. Geogr. Tidsskr. Dan. J. Geogr. 2013, 113, 71–86. [Google Scholar] [CrossRef]
- Banson, K.E.; Nguyen, N.C.; Bosch, O.J.H. A Systems Thinking Approach to the Structure, Conduct and Performance of the Agricultural Sector in Ghana. Syst. Res. Behav. Sci. 2018, 35, 39–57. [Google Scholar] [CrossRef]
- Armson, R. Growing Wings on the Way; Triarchy Press: Bridport, UK, 2011. [Google Scholar]
- Conte, K.P.; Davidson, S. Using a ‘rich picture’ to facilitate systems thinking in research coproduction. Health Res. Policy Syst. 2020, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.; Berg, T.; Morse, S. Towards an Understanding of Rich Picture Interpretation. Syst. Pract. Action Res. 2019, 32, 601–614. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.; Morse, S. How People Use Rich Pictures to Help Them Think and Act. Syst. Pract. Action Res. 2012, 26, 331–348. [Google Scholar] [CrossRef] [Green Version]
- Shongwe, M.I. A Systems Thinking Approach to Investigating Complex Sugarcane Supply and Processing Systems: Integrating Rich Pictures and Bayesian Networks. Syst. Pract. Action Res. 2017, 31, 75–85. [Google Scholar] [CrossRef]
- An, K.; Xie, G.D.; Leng, Y.F.; Xiao, Y. Design of farmland GIS for precision agriculture. Chin. Geogr. Sci. 2003, 13, 20–24. [Google Scholar] [CrossRef]
- Nath, S.S.; Bolte, J.P.; Ross, L.G.; Aguilar-Manjarrez, J. Applications of geographical information systems (GIS) for spatial decision support in aquaculture. Aquac. Eng. 2000, 23, 233–278. [Google Scholar] [CrossRef]
- Donovan, M.; Monaghan, R. Impacts of grazing on ground cover, soil physical properties and soil loss via surface erosion: A novel geospatial modelling approach. J. Environ. Manag. 2021, 287, 112206. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.; Johnson, M.; Lord, J.; Coutts, S.; Pagan, M.; Gbolagun, J.; Hall, G.B. Applying spatial analysis to the agroecology-led management of an indigenous farm in New Zealand. Ecol. Inform. 2016, 31, 49–58. [Google Scholar] [CrossRef]
- Su, Q.; Zhang, J.; Zhao, S.; Wang, L.; Liu, J.; Guo, J. Comparative assessment of three nonlinear approaches for landslide susceptibility mapping in a coal mine area. ISPRS Int. J. Geo-Inf. 2017, 6, 228. [Google Scholar] [CrossRef] [Green Version]
- Van der Merwe, J.H. GIS-aided land evaluation and decision-making for regulating urban expansion: A South African case study. GeoJournal 1997, 43, 135–151. [Google Scholar] [CrossRef]
- Maxwell, T.M.; Moir, J.L.; Edwards, G.R. Grazing and soil fertility effect on naturalized annual clover species in New Zealand high country. Rangel. Ecol. Manag. 2016, 69, 444–448. [Google Scholar] [CrossRef]
- Duncan, R.; Lucas, D.; Palmer, C. Mt Grand Station: Baseline Survey for Vegetation and Soils; Department of Plant Sciences, Lincoln University: Lincoln, New Zealand, 1997. [Google Scholar]
- Zhao, Y.; Liu, Z.; Wu, J. Grassland ecosystem services: A systematic review of research advances and future directions. Landsc. Ecol. 2020, 35, 793–814. [Google Scholar] [CrossRef]
- Sala, O.E.; Yahdjian, L.; Havstad, K.; Aguiar, M.R. Rangeland Ecosystem Services: Nature’s Supply and Humans’ Demand. In Rangeland Systems; Springer: Cham, Switzerland, 2017; pp. 467–489. [Google Scholar]
- White, R.P.; Murray, S.; Rohweder, M.; Prince, S.D.; Thompson, K.M. Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000; p. 81. [Google Scholar]
- O’Connor, K.F. Stability and instability of ecological systems in New Zealand mountains. Mt. Res. Dev. 1984, 4, 15–29. [Google Scholar] [CrossRef]
- Mark, A.F.; Barratt, B.I.; Weeks, E.; Dymond, J.R. Ecosystem services in New Zealand’s indigenous tussock grasslands: Conditions and trends. In Ecosystem Services in New Zealand—Conditions and Trends; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 1–33. [Google Scholar]
- Reynolds, M.; Holwell, S. Systems Approaches to Making Change: A Practical Guide; Springer Nature: Basingstoke, UK, 2020. [Google Scholar]
- Bell, S.; Berg, T.; Morse, S. Rich Pictures: Sustainable Development and Stakeholders—The Benefits of Content Analysis. Sustain. Dev. 2016, 24, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Weiner, D.; Harris, T.M.; Craig, W.J. Community Participation and Geographic Information Systems; CRC Press: Boca Raton, FL, USA, 2002; pp. 29–42. [Google Scholar]
- Das, A.C.; Noguchi, R.; Ahamed, T. Integrating an Expert System, GIS, and Satellite Remote Sensing to Evaluate Land Suitability for Sustainable Tea Production in Bangladesh. Remote Sens. 2020, 12, 4136. [Google Scholar] [CrossRef]
- GIS Geography. Available online: https://gisgeography.com/dem-dsm-dtm-differences/ (accessed on 15 July 2021).
- Xu, D.; Guo, X. Some insights on grassland health assessment based on remote sensing. Sensors 2015, 15, 3070–3089. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Yin, Q.; Li, L.; Xu, H. Ecosystem health assessment by using remote sensing derived data: A case study of terrestrial region along the coast in Zhejiang province. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 4526–4529. [Google Scholar]
- Rapport, D.J.; Costanza, R.; McMichael, A.J. Assessing ecosystem health. Trends Ecol. Evol. 1998, 13, 397–402. [Google Scholar] [CrossRef]
- Costanza, R. Toward an operational definition of ecosystem health. Ecosyst. Health New Goals Environ. Manag. 1992, 239, 269. [Google Scholar]
- Sundqvist, M.K.; Sanders, N.J.; Wardle, D.A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 261–280. [Google Scholar] [CrossRef] [Green Version]
- Pérez, C.A.; Frangi, J.L. Grassland biomass dynamics along an altitudinal gradient in the Pampa. Rangel. Ecol. Manag. J. Range Manag. Arch. 2000, 53, 518–528. [Google Scholar] [CrossRef]
- Coble, D.W.; Milner, K.S.; Marshall, J.D. Above-and below-ground production of trees and other vegetation on contrasting aspects in western Montana: A case study. For. Ecol. Manag. 2001, 142, 231–241. [Google Scholar] [CrossRef]
- Yang, J.; El-Kassaby, Y.A.; Guan, W. The effect of slope aspect on vegetation attributes in a mountainous dry valley, Southwest China. Sci. Rep. 2020, 10, 16465. [Google Scholar] [CrossRef]
- Imeson, A.C.; Lavee, H. Soil erosion and climate change: The transect approach and the influence of scale. Geomorphology 1998, 23, 219–227. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar, S.; Sheikh, M.A. Effect of altitudes on soil and vegetation characteristics of Pinus roxburghii forest in Garhwal Himalaya. J. Adv. Lab. Res. Biol. 2010, 1, 130–133. [Google Scholar]
- Xue, R.; Yang, Q.; Miao, F.; Wang, X.; Shen, Y. Slope aspect influences plant biomass, soil properties and microbial composition in alpine meadow on the Qinghai-Tibetan plateau. J. Soil Sci. Plant Nutr. 2018, 18, 1–12. [Google Scholar] [CrossRef]
- Ellenberg, D.; Mueller-Dombois, D. Aims and Methods of Vegetation Ecology; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Hallett, L.M.; Stein, C.; Suding, K.N. Functional diversity increases ecological stability in a grazed grassland. Oecologia 2017, 183, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Allan, E.; Manning, P.; Alt, F.; Binkenstein, J.; Blaser, S.; Bluthgen, N.; Bohm, S.; Grassein, F.; Holzel, N.; Klaus, V.H.; et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 2015, 18, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Milestad, R.; Dedieu, B.; Darnhofer, I.; Bellon, S. Farms and farmers facing change: The adaptive approach. In Farming Systems Research into the 21st Century: The New Dynamic; Springer: Dordrecht, The Netherlands, 2012; pp. 365–385. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Package ‘vegan’. Community Ecol. Package Version 2013, 2, 1–295. [Google Scholar]
- The R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Vapnik, V.N. Statistical Learning Theory; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Ludwig, M.; Wilmes, P.; Schrader, S. Measuring soil sustainability via soil resilience. Sci. Total Environ. 2018, 626, 1484–1493. [Google Scholar] [CrossRef]
- Lavelle, P.; Decaëns, T.; Aubert, M.; Barot, S.; Blouin, M.; Bureau, F.; Margerie, P.; Mora, P.; Rossi, J.P. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3–S15. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Blakemore, L.C.; Searle, P.L.; Daly, B.K. Methods for chemical analysis of soils. In NZ Soil Bureau Scientific Report 80; NZ Soil Bureau: Wellington, New Zealand, 1987. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939); US Department of Agriculture: Washington, DC, USA, 1954.
- Watkinson, J.H.; Kear, M.J. Sulfate and mineralisable organic sulfur in pastoral soils of New Zealand. I. A quasi equilibrium between sulfate and mineralisable organic sulfur. Soil Res. 1996, 34, 385–403. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. arXiv 2014, arXiv:1406.5823. [Google Scholar]
- Saaty, T. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Teddlie, C.; Yu, F. Mixed methods sampling: A typology with examples. J. Mix. Methods Res. 2007, 1, 77–100. [Google Scholar] [CrossRef]
- Hugelius, G.; Tarnocai, C.; Broll, G.; Canadell, J.G.; Kuhry, P.; Swanson, D.K. The Northern Circumpolar Soil Carbon Database: Spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 2013, 5, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Mosaffaei, Z.; Jahani, A.; Chahouki, M.A.Z.; Goshtasb, H.; Etemad, V.; Saffariha, M. Soil texture and plant degradation predictive model (STPDPM) in national parks using artificial neural network (ANN). Modeling Earth Syst. Environ. 2020, 6, 715–729. [Google Scholar] [CrossRef]
- Landcare Research. New Zealand Soil Classification (NZSC). Available online: https://soils.landcareresearch.co.nz/describing-soils/nzsc/ (accessed on 16 June 2021).
- Hewitt, A.E. New Zealand Soil Classification; Landcare Research 362 Science Series, No. 1; Manaaki Whenua Press: Lincoln, New Zealand, 1998. [Google Scholar]
- Drewry, J.J.; Littlejohn, R.P.; Paton, R.J. A survey of soil physical properties on sheep and dairy farms in southern New Zealand. N. Z. J. Agric. Res. 2010, 43, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhang, C.; Wilmshurst, J.F.; Sissons, R. Monitoring grassland health with remote sensing approaches. Prairie Perspect. 2005, 8, 11–22. [Google Scholar]
- Schiere, J.B.; Grasman, J. Agro-ecosystem health: Aggregation of systems in time and space. In Proceedings of the Seminar on Agro-Ecosystem Health, Wageningen, The Netherlands, 26 September 1996; Volume 26, pp. 22–36. [Google Scholar]
Altitude | Species | Importance Value |
---|---|---|
Low | Arrhenatherum elatius | 15.29 |
Anthoxanthum odoratum | 12.11 | |
Dactylis glomerata | 10.56 | |
Bromus diandrus | 7.41 | |
Mid | Arrhenatherum elatius | 13.91 |
Trifolium repens | 14.10 | |
Anthoxanthum odoratum | 13.48 | |
Hieracium lepidulum | 9.46 | |
Poa cita | 8.76 | |
Chionochloa rigida | 5.76 | |
High | Hieracium lepidulum | 20.17 |
Poa cita | 12.90 | |
Dracophyllum pronun | 7.40 | |
Aciphylla aurea | 6.75 | |
Anthoxanthum odoratum | 6.55 |
Range | Classification | |||||
---|---|---|---|---|---|---|
Low | Medium | High | Low Altitude | Mid Altitude | High Altitude | |
pH | <4.5–5.2 | 5.3–6.5 | >6.6 | Low | Low | Low |
EC (dS/m) | 0.15–15 | 15–50 | 50–>150 | Low | Low | Low |
C (%) | <2–4 | 4–10 | 10–>20 | Medium | Medium | Medium |
N (%) | <0.1–0.3 | 0.3–0.6 | 0.6–>1 | Medium | Medium | Medium |
C/N ratio | <10–12 | 12–16 | 16–>24 | Low | Medium | Medium |
P (μg/g) | <10–20 | 20–30 | 30–>50 | Medium | Low | Low |
CEC (me/100 g) | <6–12 | 12–25 | 25–>40 | Medium | Medium | Medium |
K (me/100 g) | <0.3–0.5 | 0.5–0.8 | 0.8–>1.2 | Medium | Medium | Medium |
Ca (me/100 g) | <2–5 | 5–10 | 10–>20 | Medium | Medium | Low |
Mg (me/100 g) | <0.5–1 | 1–3 | 3–>7 | Medium | Medium | Low |
Extractable org S (mg/kg) | <5–15 | 15–50 | 50–>150 | Low | Low | Low |
Altitude | p-Value | Aspect | p-Value | Alt*Asp | |||||
---|---|---|---|---|---|---|---|---|---|
Low | Mid | High | Sunny | Moderate | Shady | ||||
pH | 5.28 | 5.18 | 4.89 | <0.01 | 5.18 | 5.29 | 4.99 | <0.01 | <0.01 |
EC (dS/m) | 0.024 a | 0.020 b | 0.018 b | <0.01 | 0.021 | 0.021 | 0.021 | 0.94 | 0.51 |
Moisture (%) | 19.91 | 34.55 | 40.71 | <0.01 | 24.93 | 29.99 | 38.00 | <0.01 | 0.01 |
C (%) | 4.44 b | 5.06 a | 4.59 ab | 0.02 | 4.55 | 4.86 | 4.74 | 0.17 | 0.24 |
N (%) | 0.41 a | 0.37 a | 0.30 b | <0.01 | 0.36 | 0.39 | 0.35 | 0.54 | 0.36 |
C/N ratio | 10.86 | 13.60 b | 14.89 a | <0.01 | 12.64 | 12.50 | 13.77 | 0.02 | 0.01 |
P (μg/g) | 24.42 a | 17.75 b | 15.07 b | <0.01 | 20.71 | 20.60 | 17.17 | 0.56 | 0.05 |
CEC (me/100 g) | 16.76 | 18.33 | 17.73 | 0.07 | 17.19 | 17.15 | 18.15 | 0.20 | 0.70 |
K (me/100 g) | 0.64 | 0.72 | 0.65 | 0.50 | 0.71 | 0.70 | 0.63 | 0.46 | 0.56 |
Ca (me/100 g) | 5.97 a | 4.68 a | 1.98 b | <0.01 | 4.53 | 4.84 | 3.75 | 0.72 | 0.14 |
Mg (me/100 g) | 1.28 a | 1.00 b | 0.52 c | <0.01 | 1.02 | 1.05 | 0.81 | 0.68 | 0.55 |
Extractable org S (mg/kg) | 4.81 a | 5.60 b | 5.50 ab | 0.02 | 5.17 | 5.52 | 5.30 | 0.46 | 0.31 |
S (mg/kg) | 11.06 a | 7.36 b | 4.73 b | <0.01 | 8.48 | 7.84 | 7.07 | 0.88 | 0.37 |
Field capacity (gH2O/gsoil) | 0.40 | 0.47 | 0.45 | 0.043 | 0.44 | 0.41 | 0.45 | 0.31 | 0.10 |
Bulk density (g/cm3) | 0.93 | 0.85 | 0.87 | 0.14 | 0.88 | 0.94 | 0.86 | 0.16 | 0.05 |
Porosity (%) | 64.53 | 67.72 | 66.93 | 0.25 | 66.65 | 67.51 | 64.16 | 0.13 | |
Macroporosity (%) | 43.67 | 41.59 | 42.22 | 0.78 | 41.85 | 41.85 | 43.22 | 0.64 | 0.05 |
VWC (%) | 36.27 | 39.25 | 38.32 | 0.07 | 38.63 | 37.07 | 38.01 | 0.74 | 0.11 |
Water filled pore space (%) | 56.32 | 58.40 | 57.77 | 0.44 | 58.14 | 58.14 | 56.77 | 0.64 |
Criteria/Attribute | Factor of Influence (%) |
---|---|
Soil resilience | 25.6 |
NDVI | 15.0 |
Soil organic matter | 14.13 |
Aspects | 12.5 |
Simpson’s diversity index | 11.7 |
Soil chemical map | 11.3 |
Soil physical map | 9.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, F.C.; Smith, C.M.S.; Maxwell, T.M.R.; Charters, S.M.; Logan, C.M.; Donovan, M.; Jayathunga, S.; Gregorini, P. Applying Spatial Analysis to Create Modern Rich Pictures for Grassland Health Analysis. Sustainability 2021, 13, 11535. https://doi.org/10.3390/su132011535
Pereira FC, Smith CMS, Maxwell TMR, Charters SM, Logan CM, Donovan M, Jayathunga S, Gregorini P. Applying Spatial Analysis to Create Modern Rich Pictures for Grassland Health Analysis. Sustainability. 2021; 13(20):11535. https://doi.org/10.3390/su132011535
Chicago/Turabian StylePereira, Fabiellen C., Carol M. S. Smith, Thomas M. R. Maxwell, Stuart M. Charters, Chris M. Logan, Mitchell Donovan, Sadeepa Jayathunga, and Pablo Gregorini. 2021. "Applying Spatial Analysis to Create Modern Rich Pictures for Grassland Health Analysis" Sustainability 13, no. 20: 11535. https://doi.org/10.3390/su132011535
APA StylePereira, F. C., Smith, C. M. S., Maxwell, T. M. R., Charters, S. M., Logan, C. M., Donovan, M., Jayathunga, S., & Gregorini, P. (2021). Applying Spatial Analysis to Create Modern Rich Pictures for Grassland Health Analysis. Sustainability, 13(20), 11535. https://doi.org/10.3390/su132011535