Insight into the Characteristics of Soil Microbial Diversity during the Ecological Restoration of Mines: A Case Study in Dabaoshan Mining Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. Determination of Soil Physicochemical Properties and Heavy Metal Content
2.3. 16S rRNA Gene Sequencing of Soil Bacteria
2.4. Statistical Analysis
3. Results and Analysis
3.1. Soil Physicochemical Properties and Heavy Metal Content
3.2. Analysis of OTU Abundance and Species Community
3.3. Alpha Diversity Analysis
3.4. Beta Diversity Analysis
3.5. Relationships between Bacterial Communities and Soil Physicochemical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Leng, W. Ecological damage status and common restoration technologies in Jinggong coal mine. Environ. Prot. Technol. 2019, 25, 47–54. [Google Scholar]
- Abdullah, M.; Fasola, M.; Muhammad, A.; Malik, S.A.; Bostan, N.; Bokhari, H.; Kamran, M.A.; Shafqat, M.N.; Alamdar, A.; Khan, M. Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: A case study from severely contaminated areas. Chemosphere 2015, 119, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Jianqiao, Q.; Huarong, Z.; Xiuyu, Z. Microbial characteristics and heavy metal content in soil ecosystem of lead zinc mining area in northern Guangdong. J. Soil Water Conserv. 2012, 4, 221–225. [Google Scholar]
- Wenbo, Y.; Dan, L.; Danli, P. Progress in ecological treatment and environmental restoration technology of heavy metal mines. J. Zhejiang Agric. For. Univ. 2015, 32, 467–477. [Google Scholar]
- Cheng, H.; Huang, L.; Ma, P.; Shi, Y. Ecological Risk and Restoration Measures Relating to Heavy Metal Pollution in Industrial and Mining Wastelands. Int. J. Environ. Res. Public Health 2019, 16, 3985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.H. Ecological Restoration of Mine Degraded Soils, with Emphasis on Metal Contaminated Soils. Chemosphere 2003, 50, 775–780. [Google Scholar] [CrossRef]
- Liang, T.; Li, K.; Wang, L. State of rare earth elements in different environmental components in mining areas of China. Environ. Monit. Assess. 2014, 186, 1499–1513. [Google Scholar] [CrossRef]
- Min, C.; Dachao, Z.; Qingjiang, Z. Research progress on ecological restoration of abandoned land of ionic rare earth mines. Chin. J. Rare Earth 2017, 35, 461–468. [Google Scholar]
- Zhenya, W.; Xianping, L.; Jian, L. Progress in ecological restoration technology of abandoned land of rare earth mines in South China. Nonferrous Met. Sci. Eng. 2018, 9, 102–106. [Google Scholar]
- Liping, D. Impact of mining on ecological environment and ecological restoration of mining area—Taking Coal Mine as an example. Acad. Theory 2010, 18, 109–110. [Google Scholar]
- Yoshida, F.; Hata, A.; Tonegawa, H. Itai-Itai disease and the countermeasures against cadmium pollution by the Kamioka mine. Environ. Econ. Policy Stud. 1999, 2, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.; Yitai, C.; Shufeng, W. Accumulation and nutrient absorption of heavy metals Pb and Zn by 15 plants in abandoned tailings pond. Environ. Sci. 2012, 33, 2021–2027. [Google Scholar]
- Jiantao, L.; Hankui, Y. Ecological restoration technology of mine pollution. Hunan For. Sci. Technol. 2018, 45, 66–70. [Google Scholar]
- Chen, J.; Jiskani, I.M.; Jinliang, C.; Yan, H. Evaluation and future framework of green mine construction in China based on the DPSIR model. Sustain. Environ. Res. 2020, 30, 13. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, W.; Lu, X.; Jiskani, I.M.; Li, L. Evaluation Index System of Green Surface Mining in China. Miner. Metall. Process. 2020, 72, 45–46. [Google Scholar] [CrossRef]
- Jiskani, I.M.; Cai, Q.X.; Wei, Z.; Shah, S. Green and climate-smart mining: A framework to analyze open-pit mines for cleaner mineral production. Resour. Policy 2021, 71, 102007. [Google Scholar] [CrossRef]
- Jiskani, I.M.; Cai, Q.; Zhou, W.; Lu, X. Assessment of risks impeding sustainable mining in Pakistan using fuzzy synthetic evaluation. Resour. Policy 2020, 69, 101820. [Google Scholar] [CrossRef]
- Jiskani, I.M.; Shah, S.; Cai, Q.; Wei, Z.; Xiang, L. A multi-criteria based SWOT analysis of sustainable planning for mining and mineral industry in Pakistan. Arab. J. Geosci. 2020, 13, 1108. [Google Scholar] [CrossRef]
- Shoujun, Z. Research progress of ecological restoration in mining areas. Anhui Agric. Sci. 2013, 34, 276–277. [Google Scholar]
- Liu, Y.; Lei, S.; Gong, C. Comparison of plant and microbial communities between an artificial restoration and a natural restoration topsoil in coal mining subsidence area. Environ. Earth Sci. 2019, 78, 1–13. [Google Scholar] [CrossRef]
- Xin, Y.; Songlin, S.; Yangyang, G. Study on ecological impact and ecological restoration effect of Zijin mine. Environ. Ecol. 2019, 1, 84–90. [Google Scholar]
- Junfang, W. Study on Vegetation and Soil Characteristics of Ecological Restoration of Typical Open Pit Mines in Grassland Area of Inner Mongolia; Inner Mongolia Agricultural University: Hohhot, China, 2020. [Google Scholar]
- Cardoso, E.B.; Júnior, P.P.; de Cássia Soares da Silva, M.; Cerqueira, A.E.S.; Jordao, T.C.; Moreira, B.C.; Pereira, E.G.; Kasuya, M.C.M. Composition and diversity of prokaryotes at an iron ore post-mining site revealed the natural resilience 10 years after mining exploitation. Land Degrad. Dev. 2021, 32, 256–269. [Google Scholar] [CrossRef]
- Cui, J.-L.; Zhao, Y.-P.; Chan, T.-S.; Zhang, L.-L.; Tsang, D.C.W.; Li, X.-D. Spatial distribution and molecular speciation of copper in indigenous plants from contaminated mine sites: Implication for phytostabilization. J. Hazard. Mater. 2020, 381, 121208. [Google Scholar] [CrossRef] [PubMed]
- Ngugi, M.R.; Neldner, V.J. Two-tiered methodology for the assessment and projection of mine vegetation rehabilitation against mine closure restoration goal. Ecol. Manag. Restor. 2015, 16, 215–223. [Google Scholar] [CrossRef]
- Ngugi, M.R.; Fechner, N.; Neldner, V.J.; Dennis, P.G. Successional dynamics of soil fungal diversity along a restoration chronosequence post-coal mining. Restor. Ecol. 2020, 28, 543–552. [Google Scholar] [CrossRef]
- Quideau, S.A.; Swallow, M.; Prescott, C.E.; Grayston, S.J.; Oh, S.-W. Comparing soil biogeochemical processes in novel and natural boreal forest ecosystems. Biogeosciences Discuss. 2013, 10, 7521–7548. [Google Scholar]
- Detheridge, A.P.; Comont, D.; Callaghan, T.M.; Bussell, J.; Brand, G.; Gwynn-Jones, D.; Scullion, J.; Griffith, G.W. Vegetation and edaphic factors influence rapid establishment of distinct fungal communities on former coal-spoil sites. Fungal Ecol. 2018, 33, 92–103. [Google Scholar] [CrossRef]
- Qiufang, W.; Lijiang, H.; Xinqiang, G.; Meiling, Z. High throughput sequencing analysis of microbial diversity in rhizosphere and non rhizosphere soil of beiai. J. Henan Agric. Univ. 2021, 2, 1–14. [Google Scholar]
- Wildman, H. Improving Mine Rehabilitation Success through Microbial Management. J. Environ. Solut. Oil Gas Min. 2014, 1, 32–46. [Google Scholar] [CrossRef]
- Yan, D.F.; Mills, J.G.; Gellie, N.; Bissett, A.; Lowe, A.J.; Breed, M.F. High-throughput eDNA monitoring of fungi to track functional recovery in ecological restoration. Biol. Conserv. 2018, 217, 113–120. [Google Scholar] [CrossRef]
- Gans, J.; Wolinsky, M.; Dunbar, J. Computational Improvements Reveal Great Bacterial Diversity and High Metal Toxicity in Soil. Science 2005, 309, 1387–1390. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, X.; Hao, M.; Cui, Y.; Zhu, S.; Zhang, Y. Effects of Vegetation Restoration on Soil Bacterial Communities, Enzyme Activities, and Nutrients of Reconstructed Soil in a Mining Area on the Loess Plateau, China. Sustainability 2019, 11, 2295. [Google Scholar] [CrossRef] [Green Version]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA. 2015, 112, 10967–10972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Baquerizo, M.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Maestre, F.T. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecol. Lett. 2017, 20, 1295–1305. [Google Scholar] [CrossRef] [Green Version]
- Jinbin, C.; Lin, L.; Jianhong, C. Application of microbial technology in mine ecological restoration. Energy Environ. 2020, 4, 102–103. [Google Scholar]
- Asensio, V.; Covelo, E.F.; Kandeler, E. Soil management of copper mine tailing soils—Sludge amendment and tree vegetation could improve biological soil quality. Sci. Total. Environ. 2013, 456–457, 82–90. [Google Scholar] [CrossRef]
- Van der Heyde, M.; Bunce, M.; Dixon, K.; Wardell-Johnson, G.; White, N.E.; Nevill, P. Changes in soil microbial communities in post mine ecological restoration: Implications for monitoring using high throughput DNA sequencing. Sci. Total. Environ. 2020, 749, 142262. [Google Scholar] [CrossRef]
- Shasha, X. Effect of Heavy Metal Pollution on Soil Microbial Community Structure in Mining Area; South China Agricultural University: Guangzhou, China, 2016. [Google Scholar]
- Xuexiu, C.; Xiaodong, S. Soil heavy metal pollution and food safety. Guide Environ. Sci. 2001, 20, 21–24. [Google Scholar]
- Chuxia, L.; Wenzhou, L.; Yonggui, W. Environmental impact of water discharge from Dabaoshan Mine. Agricultural ecosystem. J. Ecol. Environ. 2005, 14, 169–172. [Google Scholar]
- Yisheng, L.; Yi, G.; Kangwei, W. Etiological study of high incidence village of gastrointestinal malignancies in Guangdong. China Trop. Med. 2005, 5, 1139. [Google Scholar]
- Ingram, L.J.; Schuman, G.E.; Stahl, P.D.; Spackman, L.K. Microbial Respiration and Organic Carbon Indicate Nutrient Cycling Recovery in Reclaimed Soils. Soil Sci. Soc. Am. J. 2005, 69, 1737–1745. [Google Scholar] [CrossRef] [Green Version]
- Yuanyuan; Li; Hongyu; Wen; Longqian; Chen; Tingting; Yin, Succession of bacterial community structure and diversity in soil along a chronosequence of reclamation and re-vegetation on coal mine spoils in China. PLoS ONE 2014, 9, e115024.
- Shengxiang, Y. Ecological Restoration of Waste Dump of Dabaoshan Polymetallic Mine in Guangdong; Sun Yat-Sen University: Guangzhou, China, 2010. [Google Scholar]
- Huilu, C. Dabaoshan green is returning. Environment 2018, 476, 44–46. [Google Scholar]
- Yang, S.X.; Li, J.T.; Liao, B.; Zhang, J.T.; Shu, W.S. Effectiveness of amendments on re-acidification and heavy metal immobilization in an extremely acidic mine soil. J. Environ. Monit. JEM 2011, 13, 1849–2068. [Google Scholar] [CrossRef]
- Yang, S.X.; Liao, B.; Li, J.T.; Tao, G.; Shu, W.S. Acidification, heavy metal mobility and nutrient accumulation in the soil–plant system of a revegetated acid mine wasteland. Chemosphere 2010, 80, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, Y.; Xu, Z.; Huang, H.; Yang, G. Morphological and Physiological Changes of Broussonetia papyrifera Seedlings in Cadmium Contaminated Soil. Plants 2020, 9, 1698. [Google Scholar] [CrossRef]
- Xie, X.; Pu, L.; Zhu, M.; Meadows, M.; Sun, L.; Wu, T.; Bu, X.; Xu, Y. Differential effects of various reclamation treatments on soil characteristics: An experimental study of newly reclaimed tidal mudflats on the east China coast. Sci. Total. Environ. 2021, 768, 144–996. [Google Scholar] [CrossRef] [PubMed]
- Shiquan, N.; Yang, L. Application of illuminamiseq high-throughput sequencing technology to analyze microbial diversity of saline alkali soil in Hexi Corridor. Microbiol. Bull. 2017, 9, 63–74. [Google Scholar]
- Zhang, F.-P.; Li, C.-F.; Tong, L.-G.; Yue, L.-X.; Li, P.; Ciren, Y.-J.; Cao, C.-G. Response of microbial characteristics to heavy metal pollution of mining soils in central Tibet, China. Appl. Soil Ecol. 2010, 45, 144–151. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, W.; Yang, Y.; Ma, J.; Li, S.; Wen, Z. Analysis of Soil and Microbial Characteristics and Microbial Response in Rare Earth Mining Areas in Jiangxi Province, China. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.; Lesniewski, R.A.; Oakley, B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Boutros, P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 2011, 12, 1471–2105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, W.X.C. Microbial Community Structure and Functional Diversity in Rhizosphere Soil of Three Plants in Fengfeng Mining Area; Hebei University: Baoding, China, 2019. [Google Scholar]
- Yanhui, D.; Yuchuan, W.; Qiufen, C. Microbial diversity in rhizosphere soil of continuous cropping quinoa based on high-throughput sequencing. Acta Agric. Boreali Sin. 2019, 34, 205–211. [Google Scholar]
- Farbo, M.G.; Urgeghe, P.P.; Fiori, S.; Marceddu, S.; Jaoua, S.; Migheli, Q. Adsorption of ochratoxin A from grape juice by yeast cells immobilised in calcium alginate beads. Int. J. Food Microbiol. 2016, 217, 29–34. [Google Scholar] [CrossRef]
- Li, M.S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 2006, 357, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Adriano, D.C.; Wenzel, W.W.; Vangronsveld, J.; Bolan, N.S. Role of assisted natural remediation in environmental cleanup. Geoderma 2004, 122, 121–142. [Google Scholar] [CrossRef]
- Bolan, N.S.; Duraisamy, V.P. Role of inorganic and organic soil amendments on immobilisation and phytoavailability of heavy metals: A review involving specific case studies. Aust. J. Soil Res. 2003, 41, 533–555. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, L.; Luan, T.; Jin, J.; Lan, C. Structure and function of microbial communities during the early stages of revegetation of barren soils in the vicinity of a Pb/Zn Smelter. Geoderma 2007, 136, 555–565. [Google Scholar] [CrossRef]
- Lei, Z.; Yusen, L.; Xiande, H. Spatial distribution of bacterioplankton community and its relationship with environmental factors in hongchaojiang reservoir. Acta Microbiol. Sin. 2020, 60, 2253–2264. [Google Scholar]
- Yajuan, M. Effects of Fertilization on Nutrient Absorption Characteristics and Ecological Stoichiometry of Carbon, Nitrogen and Phosphorus in Chinese Fir; Northwest University of Agriculture and Forestry Science and Technology: Yangling, China, 2015. [Google Scholar]
- Gao, T.; Wan, Z.; Liu, X.; Fu, J. Effects of heavy metals on bacterial community structure in the rhizosphere of Salsola collina and bulk soil in the Jinchuan mining area. Geomicrobiol. J. 2021, 38, 620–630. [Google Scholar] [CrossRef]
- Delong, S.; Fengming, C.; Li, L. Development status and Prospect of bio organic fertilizer in China. Chin. Soil Fertil. 2007, 6, 1–5. [Google Scholar]
- Shanshan, L. Mechanism Analysis of Farmland Soil Microbial Response to Climate Change Based on Metagenetics; Tsinghua University: Beijing, China, 2014. [Google Scholar]
- Shun, L.; Zhenhua, W.; Xiaomin, G. Characteristics of soil microbial community structure in different forest ages of Larix chenshanensis. J. Appl. Environ. Biol. 2016, 22, 510–517. [Google Scholar]
- Xuna, L. Study on Soil Characteristics and Vegetation Restoration of Abandoned Land in Mining Area; Inner Mongolia University: Hohhot, China, 2019. [Google Scholar]
- Mikanova, O. Effects of heavy metals on some soil biological parameters. J. Geochem. Explor. 2006, 88, 220–223. [Google Scholar] [CrossRef]
- Berbel-Rodríguez, N.; Soria, R.; Ortega, R.; Bastia, F.; Miralles, I. Quarry restoration treatments from recycled waste modify the physicochemical soil properties, composition and activity of bacterial communities and priming effect in semi-arid areas. Sci. Total Environ. 2021, 774, 145693. [Google Scholar] [CrossRef] [PubMed]
- Zhenggang, X.; Yunlin, Z.; Xiaomei, Z.; Yongli, X. Research Progress on effects of heavy metal pollution on soil microorganisms. J. Jiangxi Agric. 2014, 26, 53–55. [Google Scholar]
- Hui, K. Effects of Lead Zinc Tailings on Soil Microbial Community Structure and Diversity of Ligustrum Lucidum; Central South University of Forestry Science and Technology: Changsha, China, 2020. [Google Scholar]
- Renella, G.; Ortigoza, A.; Landi, L.; Nannipieri, P. Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50). Soil Biol. Biochem. 2003, 35, 1203–1210. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.W.; Zhen-Cheng, S.U.; Zhang, C.G. Soil Microbial Characteristics Under Long-Term Heavy Metal Stress: A Case Study in Zhangshi Wastewater Irrigation Area, Shenyang. Pedosphere 2008, 18, 1–10. [Google Scholar] [CrossRef]
- Papa, S.; Bartoli, G.; Pellegrino, A.; Fioretto, A. Microbial activities and trace element contents in an urban soil. Environ. Monit. Assess. 2010, 165, 193–203. [Google Scholar] [CrossRef]
- Wei, Z.; Yu, D. Analysis of the succession of structure of the bacteria community in soil from long-term continuous cotton cropping in Xinjiang using high-throughput sequencing. Arch. Microbiol. 2018, 200, 653–662. [Google Scholar] [CrossRef]
- Pepper, I.L.; Zerzghi, H.G.; Bengson, S.A.; Iker, B.C.; Banerjee, M.J.; Brooks, J.P. Bacterial populations within copper mine tailings: Long-term effects of amendment with Class A biosolids. J. Appl. Microbiol. 2012, 113, 569–577. [Google Scholar] [CrossRef]
- Li, X.; Huang, L.; Bond, P.L.; Lu, Y.; Vink, S. Bacterial diversity in response to direct revegetation in the Pb–Zn–Cu tailings under subtropical and semi-arid conditions. Ecol. Eng. 2014, 68, 233–240. [Google Scholar] [CrossRef]
- Hongjie, C.; Hongwei, N. Research progress on soil microbial diversity and its influencing factors. Land Nat. Resour. Res. 2015, 3, 85–88. [Google Scholar]
- Zahran, H.H. Diversity, adaptation and activity of the bacterial flora in saline environments. Biol. Fertil. Soils 1997, 25, 211–223. [Google Scholar] [CrossRef]
- Prasenjit, B.; Sumathi, S. Uptake of chromium by Aspergillus foetidus. J. Mater. Cycles Waste Manag. 2005, 7, 88–92. [Google Scholar] [CrossRef]
- Xiangwei, Z.; Yongming, L. Study on genetic diversity of microbial community in Heavy Metal Contaminated Farmland Soil. J. Environ. Sci. 2005, 2, 186–191. [Google Scholar]
- Jianhua, G.; Huaping, L.; Honghui, Z. Analysis of dominant population of microbial community in heavy metal contaminated soil in Dabaoshan. J. South China Agric. Univ. 2010, 3, 56–60. [Google Scholar]
- Bocong, H.; Jian, L.; Lingfei, L. Distribution and correlation of antimony and arsenic forms and bacterial community structure in vertical profile of paddy soil around antimony mine. J. Environ. Sci. 2019, 39, 1274–1283. [Google Scholar]
- Tong, J.; Yushan, Y.; Ruihong, W. Characteristics of bacterial community in the rhizosphere and leaf of Leymus chinensis. Environ. Sci. 2020, 41, 417–424. [Google Scholar]
Sample | Organic Carbon (g/kg) | Total Nitrogen (g/kg) | Total Phosphorus (g/kg) | Moisture Content (%) | Cd (mg/kg) | Cu (mg/kg) |
---|---|---|---|---|---|---|
UD | 12.97 ± 1.15 a | 1.24 ± 0.02 a | 1.32 ± 0.05 a | 24.74 ± 4.70 b | 0.18 ± 0.06 b | 2.21 ± 0.40 b |
UR | 2.38 ± 1.99 c | 0.39 ± 0.04 a | 0.99 ± 0.13 b | 19.07 ± 1.57 b | 0.51 ± 0.17 a | 4.44 ± 0.65 a |
ER1 | 9.00 ± 1.15 b | 0.74 ± 0.05 a | 1.35 ± 0.13 a | 26.79 ± 3.75 b | 0.13 ± 0.07 b | 3.71 ± 0.28 a |
ER2 | 10.32 ± 1.99 a,b | 1.62 ± 0.60 a | 1.51 ± 0.16 a | 42.82 ± 4.88 a | 0.28 ± 0.21 a,b | 2.18 ± 0.49 b |
Sample ID | PD_Whole_Tree | Chao1 | Observed_Species | Shannon | Simpson |
---|---|---|---|---|---|
ER1 | 75 ± 0.193 b | 1020.429 ± 1.054 b | 857 ± 6.429 b | 4.76 ± 0.002 c | 0.903 ± 0.005 b |
ER2 | 73 ± 0.575 c | 1033.667 ± 14.818 b | 865 ± 11.533 b | 4.73 ± 0.005 d | 0.900 ± 0.006 b |
UD | 143 ± 0.006 a | 2373.550 ± 0.058 a | 2345 ± 0.01 a | 8.42 ± 0.001 a | 0.897 ± 0.010 b |
UR | 59 ± 0.382 d | 868.762 ± 9.335 c | 700 ± 3.055 c | 5.76 ± 0.005 b | 0.952 ± 0.006 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Zhao, W.; Feng, W.; Mo, P.; Zhao, Y.; Yang, G.; Xu, Z. Insight into the Characteristics of Soil Microbial Diversity during the Ecological Restoration of Mines: A Case Study in Dabaoshan Mining Area, China. Sustainability 2021, 13, 11684. https://doi.org/10.3390/su132111684
Fan L, Zhao W, Feng W, Mo P, Zhao Y, Yang G, Xu Z. Insight into the Characteristics of Soil Microbial Diversity during the Ecological Restoration of Mines: A Case Study in Dabaoshan Mining Area, China. Sustainability. 2021; 13(21):11684. https://doi.org/10.3390/su132111684
Chicago/Turabian StyleFan, Li, Weiping Zhao, Wendan Feng, Ping Mo, Yunlin Zhao, Guiyan Yang, and Zhenggang Xu. 2021. "Insight into the Characteristics of Soil Microbial Diversity during the Ecological Restoration of Mines: A Case Study in Dabaoshan Mining Area, China" Sustainability 13, no. 21: 11684. https://doi.org/10.3390/su132111684