Evaluation of China’s Targeted Poverty Alleviation Policies: A Decomposition Analysis Based on the Poverty Reduction Effects
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Framework and Research Methods
3.1. Theoretical Analysis Framework
3.2. Research Ideas and Methods
4. Measurement of the Poverty Reduction Effects of Targeted Poverty Alleviation Policies
5. Analysis of the Poverty Reduction Mechanism of Targeted Poverty Alleviation Policies
5.1. Regression Model Construction
5.1.1. Index Selection and Data Sources
5.1.2. Model Checking
5.1.3. Regression Analysis Results
6. Decomposition of the Poverty Reduction Effects of Targeted Poverty Alleviation Policies
7. Conclusions and Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Feng, X.; Wang, S.; Qiu, H. China’s poverty alleviation over the last 40 years: Successes and challenges. Aust. J. Agric. Resour. Econ. 2020, 64, 209–228. [Google Scholar] [CrossRef]
- Dewi, S.; Majid, M.S.A.; Aliasuddin, A.; Kassim, S.H. Dynamics of financial development, economic growth, and poverty alleviation: The indonesian experience. South East Eur. J. Econ. Bus. 2018, 13, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.Z.; Wang, J.Y. Poverty alleviation through labor transfer in rural China: Evidence from Hualong County. Habitat Int. 2021, 116, 102402. [Google Scholar] [CrossRef]
- John, S.; Paul, D.; Caroline, S. Applying sen’s capability approach to poverty alleviation programs: Two case studies. J. Hum. Dev. Capab. 2008, 9, 229–246. [Google Scholar]
- Fan, S.; Hazell, P.; Thorat, S. Government spending, growth and poverty in rural India. Am. J. Agric. Econ. 2000, 82, 1038–1051. [Google Scholar] [CrossRef]
- Agénor, P.R.; Bayraktar, N.; El Aynaoui, K. Roads out of poverty? Assessing the links between aid, public investment, growth, and poverty reduction. J. Dev. Econ. 2008, 86, 277–295. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Abdulai, A. The adoption of genetically modified cotton and poverty reduction in Pakistan. J. Agric. Econ. 2010, 61, 175–192. [Google Scholar] [CrossRef]
- Sen, A. Poverty and Famines; The Commercial Press: Beijing, China, 2004; pp. 1–21. [Google Scholar]
- Park, A. Community-based development and poverty alleviation: An evaluation of China’s poor village investment program. J. Public Econ. 2010, 94, 790–799. [Google Scholar] [CrossRef]
- Drago, C. The analysis and the measurement of poverty: An interval based composite indicator approach. Economies 2021, 9, 145. [Google Scholar] [CrossRef]
- Zurovec, O.; Vedeld, P.O. Rural livelihoods and climate change adaptation in laggard transitional economies: A case from bosnia and herzegovina. Sustainability 2019, 11, 6079. [Google Scholar] [CrossRef] [Green Version]
- Sen, A. Development as Freedom; OUP Oxford: Oxford, UK, 1999. [Google Scholar]
- Fowler, C.S.; Kleit, R.G. The effects of industrial clusters on the poverty rate. Econ. Geogr. 2014, 90, 129–154. [Google Scholar] [CrossRef]
- Mercader-Moyano, P.; Morat-Pérez, O.; Muñoz-González, C. Housing evaluation methodology in a situation of social poverty to guarantee sustainable cities: The satisfaction dimension for the case of mexico. Sustainability 2021, 13, 11199. [Google Scholar] [CrossRef]
- De Janvry, A.; Graff, G.; Sadoulet, E.; Zilberman, D. Technological change in agriculture and poverty reduction: The potential role of biotechnology. Nat. Resour. Manag. Policy 2005, 27, 361–386. [Google Scholar]
- Bertoli, S.; Marchetta, F. Migration, remittances and poverty in Ecuador. J. Dev. Stud. 2014, 50, 1067–1089. [Google Scholar] [CrossRef] [Green Version]
- Brady, D. The welfare state and relative poverty in rich western democracies 1967–1997. Soc. Forces 2005, 83, 1329–1364. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.S.; Gaiha, R.; Kang, W. Vulnerability and poverty dynamics in Vietnam. Appl. Econ. 2011, 43, 3603–3618. [Google Scholar] [CrossRef] [Green Version]
- Gertler, P.J.; Martinez, S.W.; Rubio-Codina, M. Investing cash transfers to raise long-term living standards. Am. Econ. J. Appl. Econ. 2012, 4, 164–192. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.-M.; Yoon, S.-J.; Jung, Y.-M.; Kwon, G.-Y.; Jo, S.-N.; Jang, E.-J.; Kwon, M.-O. Assessing the impact of meteorological factors on malaria patients in demilitarized zones in Republic of Korea. Infect. Dis. Poverty 2016, 5, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndlovu, G.; Toerien, F.; Segot, T.L. The distributional impact of access to finance on poverty: Evidence from selected countries in Sub-Saharan Africa. Res. Int. Bus. Financ. 2020, 52, 101190. [Google Scholar] [CrossRef]
- Ren, B.Y.; Meng, W.F. Inclusive financial development, rural labor transfer and poverty reduction effects. Res. Financ. Issues 2020, 6, 49–56. [Google Scholar]
- Zhou, J.K.; Wang, W.B.; Gong, M.Y.; Huang, Z.X. Agricultural land transfer, occupational stratification and the effect of poverty reduction. Econ. Res. 2020, 55, 155–171. [Google Scholar]
- Gong, W.J.; Qin, C.L.; Li, C. The poverty reduction effect of China’s fiscal expenditure—Based on the structural and spatial perspective. Econ. Manag. Res. 2018, 39, 24–37. [Google Scholar]
- Zhang, X.; Zhao, Y.D. The heterogeneity test of the poverty reduction effect of social medical insurance—Based on the panel data of 31 provinces from 2010 to 2017. Nankai J. 2020, 2, 80–91. [Google Scholar]
- Chen, M.; Zhou, F.M. Research on the poverty reduction effect of agricultural scientific research based on threshold panel model. Econ. Syst. Reform 2016, 6, 93–98. [Google Scholar]
- Guo, J.P.; Ning, A.Z.; Qu, S. Is the comprehensive development of participatory communities “promoting the poor” or “overflowing the rich”?—Based on the perspective of targeted poverty alleviation and income distribution effects. Agric. Econ. Issues 2017, 38, 52–62. [Google Scholar]
- Liu, J.M.; Ouyang, L.; Mao, J. Research on the rural poverty reduction effect of financial education expenditure—Based on the analysis of cyberspace structure. Financ. Econ. Theory Pract. 2018, 39, 64–68. [Google Scholar]
- Sun, B.W.; Xie, X.J.; Cheng, Z.Q. The sustainable poverty reduction effect of the integration of urban and rural labor market—Based on the green poverty reduction efficiency under the OECD green growth framework. Ecol. Econ. 2019, 35, 197–204. [Google Scholar]
- Zhang, Q.; Sun, H. Analysis of my country’s rural financial poverty reduction effect under multidimensional poverty agglomeration. J. Hum. Agric. Univ 2019, 20, 18–24. [Google Scholar]
- Li, K.; Wang, Z.Z.; Liu, T. Analysis of the poverty reduction effect of rural tourism in southwest contiguous destitute areas—Based on the survey of 235 villages in Guangxi. Hum. Geogr. 2020, 35, 115–121. [Google Scholar]
- Wang, L.Y.; Xu, M. Research on the poverty reduction effect of China’s precision poverty alleviation policies: Empirical evidence from Quasi-natural experiments. Stat. Res. 2019, 36, 15–26. [Google Scholar]
- Lin, P. Research on the poverty reduction effect of Fujian’s precision poverty alleviation policy—Determining the key counties of provincial poverty alleviation and development as an example. Fujian Forum 2020, 5, 177–185. [Google Scholar]
- Yang, F.H.; Peng, X.W.; Meng, X.H. Research on the poverty reduction effect of public investment in my country’s targeted poverty alleviation. New Financ. 2020, 5, 49–54. [Google Scholar]
- Jiang, L. Analysis of the causes of social family poverty in our country from the perspective of income distribution. J. Shaanxi Norm. Univ. 2015, 44, 5–12. [Google Scholar]
- Foster, J.; Greer, J.; Thorbecke, E. A class of decomposable poverty measures. Econometrica 1984, 52, 761–766. [Google Scholar] [CrossRef]
- Datt, G. Computational Tools for Poverty Measurement and Analysis; FCND Discussion Paper No. 50; International Food Policy Research Institute: Washington, DC, USA, 1998. [Google Scholar]
- Hu, Z.G. Research on the theoretical optimal value of Gini coefficient and its simple calculation formula. Econ. Res. 2004, 9, 60–69. [Google Scholar]
- Zhang, W.B.; Wang, S.G. Poverty alleviation policies, income distribution and poverty reduction in China’s rural areas. Agric. Econ. Issues 2013, 34, 66–75. [Google Scholar]
- Tong, D.J.; Fang, X.Z.; Zhang, S.Y.; Ying, R.Y. Evaluation of the poverty reduction effect in the poverty alleviation reform pilot area—Based on the research of synthetic control method. Agric. Technol. Econ. 2020, 10, 131–144. [Google Scholar]
- Wei, X.B.; Cao, W.; Liu, X.F.; Wang, J.; Shi, N.F. Research on the multidimensional poverty reduction effect of fiscal decentralization. Econ. Geogr. 2021, 1–21. Available online: http://kns.cnki.net/kcms/detail/43.1126.K.20200922.0950.002.html (accessed on 19 October 2021).
- Ma, W.L.; Li, Q.Y.; Zhang, X.W. Fiscal decentralization factors of income distribution gap: An analysis framework. Economist 2013, 4, 13–23. [Google Scholar]
- Li, X.S.; Ran, G.H. Fiscal decentralization, agricultural economic growth and urban-rural income gap. Agric. Technol. Econ. 2013, 1, 86–94. [Google Scholar]
- Shorrocks, A.F. Decomposition Procedures for Distributional Analysis: A Unified Framework based on the Shapley Value. J. Econ. Inequal. 2013, 11, 99. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.Z. Contribution of Relationship to Rural Income Gap and Its Regional Differences. Ph.D. Thesis, Fudan University, Shanghai, China, 2009; pp. 363–390. [Google Scholar]
- Liu, J.P.; Wang, X.Y.; Liu, M.M. Analysis of the poverty and alleviation effects and influencing factors of non-agricultural employment of labor force—Based on the survey data of 14 poor villages in Gansu. J. Xi’an Univ. Financ. Econ. 2019, 32, 100–108. [Google Scholar]
Year | Indicators | Low-Income Group | Low- and Middle-Income Group | Middle-Income Group | Middle- and High-Income Group | High-Income Group |
---|---|---|---|---|---|---|
2013 | Population percentage | 20% | ||||
Per capita income | 2877.9 (350.029) | 5965.6 (725.574) | 8438.3 (1026.32) | 11,816.0 (1437.137) | 21,323.7 (2593.525) | |
2014 | Population percentage | 20% | ||||
Per capita income | 2768.1 (339.016) | 6604.4 (808.857) | 9503.9 (1163.966) | 13,449.2 (1647.157) | 23,947.4 (2932.897) | |
2015 | Population percentage | 20% | ||||
Per capita income | 3085.6 (446.276) | 7220.9 (1044.373) | 10,310.6 (1491.243) | 14,537.3 (2102.559) | 26,013.9 (3762.442) | |
2016 | Population percentage | 20% | ||||
Per capita income | 3006.5 (409.46) | 7827.7 (1066.067) | 11,159.1 (1519.775) | 15,727.4 (2141.939) | 28,448.0 (3874.377) | |
2017 | Population percentage | 20% | ||||
Per capita income | 3301.9 (432.735) | 8348.6 (1094.138) | 11,978.0 (1569.794) | 16,943.6 (2220.568) | 31,299.3 (4101.975) | |
2018 | Population percentage | 20% | ||||
Per capita income | 3666.2 (469.929) | 8508.5 (1090.61) | 12,530.2 (1606.106) | 18,051.5 (2313.82) | 34,042.6 (4363.541) | |
2019 | Population percentage | 20% | ||||
Per capita income | 4262.57 (551.753) | 9754.07 (1262.581) | 13,984.22 (1810.138) | 19,732.43 (2554.195) | 36,049.41 (4666.289) |
Income Grouping | L | P | L(1 − L) | P2 − L | L(P − 1) | P − L |
---|---|---|---|---|---|---|
Low-income group | 0.0509 | 0.2 | 0.0482881 | −0.01088 | −0.0407 | 0.149124 |
Middle- and low-income group | 0.167298 | 0.4 | 0.1393091 | −0.0073 | −0.10038 | 0.232702 |
Middle-income group | 0.334208 | 0.6 | 0.2225131 | 0.025792 | −0.13368 | 0.265792 |
Middle- and high-income group | 0.569727 | 0.8 | 0.2451381 | 0.070273 | −0.11395 | 0.230273 |
High-income group | 1 | 1 | 0 | 0 | 0 | 0 |
Coefficients | T Value | Test Result | ||
---|---|---|---|---|
a | 1.128 | 42.47 | R2 | 1.0000 |
b | −1.398 | −25.72 | Adjusted R2 | 0.9999 |
c | 0.028 | 1.07 | F value | 10,000.56 |
Year | H Index | PG Index | SPG Index |
---|---|---|---|
2013 | 8.67 | 3.89 | 2.48 |
2014 | 9.47 | 4.25 | 2.73 |
2015 | 8.31 | 3.99 | 2.66 |
2016 | 8.78 | 4.65 | 3.37 |
2017 | 8.04 | 4.07 | 2.84 |
2018 | 6.89 | 2.53 | 1.23 |
2019 | 5.74 | 2.17 | 0.94 |
Variable | Variable Name | Index Quantification | Mean | Standard Deviation |
---|---|---|---|---|
DV | Income level (Income) | Per capita disposable income of rural residents in each province | 9.125 | 0.382 |
Income Gap (Gini) | Gini coefficient of rural residents in each province | 0.223 | 0.037 | |
Poverty incidence (PI) | Poverty incidence rate in poverty-stricken areas of each province | 9.792 | 9.301 | |
IV | Targeted poverty alleviation (Policy) | 0 before 2014, 1 during and after 2014 | 0.556 | 0.498 |
Poverty alleviation funds investment (Paf) | Provincial poverty alleviation funds investment | 11.175 | 1.071 | |
CV | Government participation in economic activities (Fpg) | The ratio of provincial fiscal expenditure to regional GDP | 28.458 | 21.867 |
Industrial structure (Indus) | The ratio of the sum of the output value of the secondary and tertiary industries of each province to the regional GDP | 89.041 | 4.313 | |
Degree of fiscal decentralization (Fide) | The ratio of public budget revenue to public budget expenditure in each province and city | 45.925 | 17.478 |
Testing Method | Model (12) | Model (13) | Model (14) |
---|---|---|---|
F test Prob | 20.87 | 1.07 | 12.17 |
0.0000 | 0.3755 | 0.0000 | |
Hausman test Prob | 61.82 | - | 71.88 |
0.0000 | - | 0.0000 |
Variable | Model (12) | Model (13) | Model (14) | ||||||
---|---|---|---|---|---|---|---|---|---|
Case (1) | Case (2) | Case (3) | Case (1) | Case (2) | Case (3) | Case (1) | Case (2) | Case (3) | |
Policy | 0.2917 *** (0.0264) | 0.2811 *** (0.0234) | 0.2644 *** (0.0220) | −0.0248 *** (0.0054) | −0.0246 *** (0.0054) | −0.0254 *** (0.0055) | −3.8226 *** (0.8291) | −3.1819 *** (0.7789) | −3.4064 *** (0.8790) |
Lnpaf | 0.1660 *** (0.0163) | 0.1534 *** (0.0195) | 0.1413 *** (0.0220) | −0.0036 (0.0025) | −0.0037 (0.0025) | −0.0035 (0.0026) | −4.3333 *** (0.8117) | −3.5751 *** (0.8735) | −3.4172 *** (1.0170) |
Fpg | 0.0109 ** (0.0044) | 0.0094 ** (0.0046) | −0.00004 (0.0001) | −0.0001 (0.0001) | −0.6579 ** (0.2681) | −0.6556 *** (0.2327) | |||
Indus | 0.0274 ** (0.0122) | 0.0004 (0.0006) | −0.3341 (0.5734) | ||||||
Fide | −0.0005 (0.0028) | −0.0002 (0.0002) | −0.2660 ** (0.1059) | ||||||
Intercept | 7.1083 *** (0.1721) | 6.9437 *** (0.1329) | 4.7177 *** (0.9455) | 0.2772 *** (0.0262) | 0.2793 *** (0.0269) | 0.2557 *** (0.0532) | 60.3412 *** (8.9290) | 70.2336 *** (8.4588) | 110.4975 ** (48.0268) |
Sample | 252 | 252 | 252 | 252 | 252 | 252 | 252 | 252 | 252 |
adjusted R2 | 0.8540 | 0.8597 | 0.8673 | 0.1906 | 0.1913 | 0.1725 | 0.6412 | 0.6803 | 0.6987 |
F Statistics | 391.73 | 264.86 | 193.37 | 47.15 | 47.72 | 10.26 | 37.06 | 30.59 | 23.97 |
Prob | 0.0000 | 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Variable | Model (15) | Shapley Value Contribution | Shapley Value Contribution Percentage | Sequence |
---|---|---|---|---|
LnIncome | −20.8441 *** (0.8090) | 0.70211 | 92.78% | 1 |
Gini | 9.1025 (8.4671) | 0.05461 | 7.22% | 2 |
intercept | 197.973 *** (8.2260) | - | - | - |
R2 | 0.7567 | - | - | - |
F Statistics | 387.27 | - | - | - |
Prob | 0.0000 | - | - | - |
sample | 252 | 252 | 252 | 252 |
total | - | 0.75673 | 100% | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, L. Evaluation of China’s Targeted Poverty Alleviation Policies: A Decomposition Analysis Based on the Poverty Reduction Effects. Sustainability 2021, 13, 11691. https://doi.org/10.3390/su132111691
Li X, Li L. Evaluation of China’s Targeted Poverty Alleviation Policies: A Decomposition Analysis Based on the Poverty Reduction Effects. Sustainability. 2021; 13(21):11691. https://doi.org/10.3390/su132111691
Chicago/Turabian StyleLi, Xiaoning, and Lingling Li. 2021. "Evaluation of China’s Targeted Poverty Alleviation Policies: A Decomposition Analysis Based on the Poverty Reduction Effects" Sustainability 13, no. 21: 11691. https://doi.org/10.3390/su132111691
APA StyleLi, X., & Li, L. (2021). Evaluation of China’s Targeted Poverty Alleviation Policies: A Decomposition Analysis Based on the Poverty Reduction Effects. Sustainability, 13(21), 11691. https://doi.org/10.3390/su132111691