Seasonal and Temporal Influence on Polycyclic Aromatic Hydrocarbons in the Red Sea Coastal Water, Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Locations of Sampling
2.2. Chemicals
2.3. Preparation and Extraction of Samples
2.4. Quality Control and Assurance
2.5. Statistical Analysis
3. Results and Discussion
3.1. Total PAHs Seasonal Variations and Patterns of Distribution
PAHs | Range | |||
---|---|---|---|---|
Summer (21 August) | Autumn (21 August) | Winter (21 January) | Spring (21 May) | |
Naph | 0.06–0.14 | 0.04–0.14 | 0.05–0.25 | ND–0.13 |
Acthy | ND | ND–0.03 | ND–0.06 | ND–0.01 |
Ace | ND–0.05 | ND | ND–0.05 | ND–0.20 |
F | ND | ND–0.06 | ND–0.14 | ND–0.09 |
Phe | 0.06–0.46 | ND–0.12 | 0.04–4.72 | ND–0.12 |
Ant | ND–0.06 | ND–0.05 | ND–4.17 | ND–0.05 |
Flu | ND–2.34 | ND–22.72 | 0.15–14.93 | ND–0.64 |
Pyr | 0.08–0.61 | ND–17.82 | ND–11.76 | ND–0.49 |
BaA | 0.14–1.02 | 0.16–2.48 | 0.23–6.68 | ND–0.80 |
Chr | 0.01–1.74 | 0.24–6.72 | 0.75–18.86 | ND–2.88 |
BbF | ND–1.90 | ND–1.75 | ND–5.17 | ND–2.18 |
BkF | ND–0.17 | ND–1.42 | ND–1.90 | ND |
BaP | ND | ND–0.66 | ND–4.33 | ND |
DahA | ND | ND | ND | ND |
BP | ND | ND | ND | ND |
IP | ND–1.70 | ND–2.62 | ND–5.38 | ND |
3.2. Composition of PAHs
3.3. Identification of PAHs Sources
3.4. Risk Quotients (RQs)
PAHs | Summer | Autumn | Winter | Spring | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NCs | MPCs | RQ(NCs) | RQ(MPCs) | Class | RQ(NCs) | RQ(MPCs) | Class | RQ(NCs) | RQ(MPCs) | Class | RQ(NCs) | RQ(MPCs) | Class | |
Naph | 0.012 | 1.2 | 7.23 | 0.07 | Moderate risk | 7.13 | 0.07 | Moderate risk | 10.37 | 0.1 | Moderate risk | 6.42 | 0.06 | Moderate risk |
Acthy | 0.0007 | 0.07 | ND | ND | Risk-free | 3.87 | 0.04 | Moderate risk | 8.39 | 0.08 | Moderate risk | 1.1 | 0.01 | Moderate risk |
Ace | 0.0007 | 0.07 | 5.55 | 0.06 | Moderate risk | ND | ND | Risk-free | 5.12 | 0.05 | Moderate risk | 31.86 | 0.32 | Moderate risk |
F | 0.0007 | 0.07 | ND | ND | Risk-free | 9.81 | 0.1 | Moderate risk | 34.31 | 0.34 | Moderate risk | 9.23 | 0.09 | Moderate risk |
Phe | 0.003 | 0.3 | 44.65 | 0.45 | Moderate risk | 20.45 | 0.2 | Moderate risk | 270.26 | 2.7 | High-risk | 17.69 | 0.18 | Moderate risk |
Ant | 0.0007 | 0.07 | 23.59 | 0.24 | Moderate risk | 5.05 | 0.05 | Moderate risk | 564.25 | 5.64 | High-risk | 4.73 | 0.05 | Moderate risk |
Flu | 0.003 | 0.03 | 128.23 | 12.82 | High-risk | 700.92 | 70.09 | High-risk | 1354.51 | 135.45 | High-risk | 42.72 | 4.27 | High-risk |
Pyr | 0.0007 | 0.07 | 278.53 | 2.79 | High-risk | 2410.11 | 24.1 | High-risk | 3155.36 | 31.55 | High-risk | 285.22 | 2.85 | High-risk |
BaA | 0.0001 | 0.01 | 5051.29 | 50.51 | High-risk | 7088.06 | 70.88 | High-risk | 23235.8 | 232.36 | High-risk | 2325 | 23.25 | High-risk |
Chr | 0.0034 | 0.34 | 293.05 | 2.93 | High-risk | 563.35 | 5.63 | High-risk | 2364.33 | 23.64 | High-risk | 331.32 | 3.31 | High-risk |
BbF | 0.0001 | 0.01 | 4648.68 | 49.77 | High-risk | 2241.85 | 22.42 | High-risk | 9458.46 | 94.58 | High-risk | 1556.7 | 15.57 | High-risk |
BkF | 0.0004 | 0.04 | 57.08 | 0.57 | Moderate risk | 253.53 | 2.54 | High-risk | 395.64 | 3.96 | High-risk | ND | ND | Risk-free |
BaP | 0.0005 | 0.05 | ND | ND | Risk-free | 94.36 | 0.94 | Moderate risk | 618.61 | 6.19 | High-risk | 236.57 | 2.37 | High-risk |
DahA | 0.0005 | 0.05 | ND | ND | Risk-free | ND | ND | Risk-free | ND | ND | Risk-free | ND | ND | Risk-free |
BP | 0.0003 | 0.03 | ND | ND | Risk-free | ND | ND | Risk-free | ND | ND | Risk-free | ND | ND | Risk-free |
IP | 0.0004 | 0.04 | 786.71 | 7.87 | High-risk | 632.94 | 6.33 | High-risk | 3659.42 | 36.59 | High-risk | ND | ND | Risk-free |
∑PAHs | 0.03 | 2.45 | 11324.6 | 128.07 | High-risk | 14031.4 | 203.4 | High-risk | 45134.9 | 573.25 | High-risk | 4848.6 | 52.33 | High-risk |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Younis, A.M. Environmental Impacts on Egyptian Delta Lakes’ Biodiversity: A Case Study on Lake Burullus. In Egyptian Coastal Lakes and Wetlands: Part II: Climate Change and Biodiversity; Negm, A.M., Bek, M.A., Abdel-Fattah, S., Eds.; Springer International Publishing: New York, NY, USA, 2018; pp. 107–128. [Google Scholar]
- Younis, A.M.; Aly-Eldeen, A.M.; Elkady, M.E. Effect of different molecular weights of chitosan on the removal efficiencies of heavy metals from contaminated water. Egypt. J. Aquat. Biol. Fish. 2019, 23, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Mansour, A.M.; Nawar, A.H.; Mohamed, A.W. Geochemistry of coastal marine sediments and their contaminant metals, Red Sea, Egypt: A legacy for the future and a tracer to modern sediment dynamics. Sediment. J. Egypt. 2000, 8, 231–242. [Google Scholar]
- Younis, A.M.; Soliman, Y.A.; Elkady, E.M.; El-Naggar, M.H. Assessment of polycyclic aromatic hydrocarbons in surface sediments and some fish species from the Gulf of Suez, Egypt. Egypt. J. Aquat. Biol. Fish. 2018, 22, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Soliman, N.F.; Elkady, E.M.; Younis, A.M. Chemical fractions and ecological risk of metals in sediments of the Bitter Lakes, Egypt. J. Aquat. Biol. Fish. 2020, 24, 167–196. [Google Scholar] [CrossRef]
- Amin, H.H.; Ahmed, O.O.; Rasmey, A.-H.M.; Younis, A.; Bekhitd, A.E.-D.A. Effect of technological processing on the safety of Indian mackerel (Rastrelliger kangurata) from Suez, Egypt. J. Aquat. Biol. Fish. 2018, 22, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.-C.; Jen, J.-F. Determination of polycyclic aromatic hydrocarbons in aqueous samples by microwave assisted head-space solid-phase microextraction and gas chromatography/flame ionization detection. Talanta 2007, 72, 1269–1274. [Google Scholar] [CrossRef]
- Katsoyiannis, A.; Sweetman, A.J.; Jones, K.C. PAH Molecular Diagnostic Ratios Applied to Atmospheric Sources: A Critical Evaluation Using Two Decades of Source Inventory and Air Concentration Data from the UK. Environ. Sci. Technol. 2011, 45, 8897–8906. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Overall Evaluations of Car-Cinogenicity; An Updating of IARC Monographs; International Agency for Research on Cancer: Lyon, France, 1987; Volume 1–42 (Suppl. 7). [Google Scholar]
- Laflamme, R.; Hites, R.A. The global distribution of polycyclic aromatic hydrocarbons in recent sediments. Geochim. et Cosmochim. Acta 1978, 42, 289–303. [Google Scholar] [CrossRef]
- Mostafa, A.R.; Wade, T.L.; Sweet, S.T.; Al-Alimi, A.K.A.; Barakat, A.O. Distribution and characteristics of polycyclic aro-matic hydrocarbons (PAHs) in sediments of Hadhramout coastal area, Gulf of Aden, Yemen. J. Mar. Syst. 2009, 78, 1–8. [Google Scholar] [CrossRef]
- Yim, U.H.; Hong, S.H.; Ha, S.Y.; Han, G.M.; An, J.G.; Kim, N.S.; Lim, D.-I.; Choi, H.-W.; Shim, W.J. Source- and region-specific distribution of polycyclic aromatic hydrocarbons in sediments from Jinhae Bay, Korea. Sci. Total Environ. 2014, 470–471, 1485–1493. [Google Scholar] [CrossRef]
- Martinez, E.; Gros, M.; Lacorte, S.; Barceló, D. Simplified procedures for the analysis of polycyclic aromatic hydrocarbons in water, sediments and mussels. J. Chromatogr. A 2004, 1047, 181–188. [Google Scholar]
- Neff, J.M. Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. Sources, Fates and Biological Effects; Applied Science Publishers Ltd.: London, UK, 1979. [Google Scholar]
- Tam, N.; Ke, L.; Wang, X.; Wong, Y. Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environ. Pollut. 2001, 114, 255–263. [Google Scholar] [CrossRef]
- Karacık, B.; Okay, O.S.; Henkelmann, B.; Bernhöft, S.; Schramm, K.W. Polycyclic aromatic hydrocarbons and effects on ma-rine organisms in the Istanbul Strait. Environ. Int. 2009, 35, 599–606. [Google Scholar] [CrossRef]
- Shreadah, M.A.; Said, T.O.; Younis, A.M.; Farag, R.S. Speciation of organotin compounds in sediments of semi-closed areas along the Mediterranean coast of Alexandria. Chem. Ecol. 2006, 22, 395–404. [Google Scholar] [CrossRef]
- Soliman, N.F.; Younis, A.M.; El Kady, E.M. An insight into fractionation, toxicity, mobility and source apportionment of metals in sediments from El Temsah Lake, Suez Canal. Chemosphere 2019, 222, 165–174. [Google Scholar] [CrossRef]
- Younis, A.M. Accumulation and rate of degradation of organotin compounds in coastal sediments along the Red Sea, Egypt. J. Aquat. Biol. Fish. 2020, 24, 413–436. [Google Scholar] [CrossRef]
- Parsons, T.R.; Maita, Y.; Lalli, C.M. Determination of Petroleum Hydrocarbons. In A Manual of Chemical & Biological Methods for Seawater Analysis; Elsevier BV: Amsterdam, The Netherlands, 1984; pp. 56–59. [Google Scholar]
- Smith, R.K. Handbook of Environmental Analysis, 4th ed.; Genium Publishing Corporation: New York, NY, USA, 1999. [Google Scholar]
- Halsall, C.J.; Barrie, L.A.; Fellin, P.; Muir, D.C.G.; Billeck, B.N.; Lockhart, L.; Rovinsky, F.Y.; Kononov, A.E.Y.; Pastukhov, B. Spatial and Temporal Variation of Polycyclic Aromatic Hydrocarbons in the Arctic Atmosphere. Environ. Sci. Technol. 1997, 31, 3593–3599. [Google Scholar] [CrossRef]
- Witt, G. Occurrence and transport of polycyclic aromatic hydrocarbons in the water bodies of the Baltic Sea. Mar. Chem. 2002, 79, 49–66. [Google Scholar] [CrossRef]
- Koudryashova, Y.; Chizhova, T.; Tishchenko, P.; Hayakawa, K. Seasonal Variability of Polycyclic Aromatic Hydrocarbons (PAHs) in a Coastal Marine Area in the Northwestern Region of the Sea of Japan/East Sea (Possiet Bay). Ocean Sci. J. 2019, 54, 635–655. [Google Scholar] [CrossRef]
- Emara, M.M.; Farid, N.A.; El-Sabagh, E.A.; Ahmed, O.E.; Kamal, E.M. Origin and Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Surface Water of Suez Gulf. Egypt. J. Chem. 2013, 56, 325–344. [Google Scholar]
- Law, R.; Dawes, V.; Woodhead, R.; Matthiessen, P. Polycyclic aromatic hydrocarbons (PAH) in seawater around England and Wales. Mar. Pollut. Bull. 1997, 34, 306–322. [Google Scholar] [CrossRef]
- Martin, M.H.; Jorgensen, S.E.; Nielsen, S.N.; Jorgensen, L.A. Handbook of Ecological Parameters and Ecotoxicology. J. Appl. Ecol. 1992, 29, 791. [Google Scholar] [CrossRef]
- USEPA. National Recommended Water Quality Criteria; 4304T; United States Environmental Protection Agency: Washington, DC, USA, 2009.
- Werres, F.; Balsaa, P.; Schmidt, T.C. Total concentration analysis of polycylic aromatic hydrocarbons in aqueous samples with high suspended particulate matter content. J. Chromatogr. A 2009, 1216, 2235–2240. [Google Scholar] [CrossRef]
- El Nemr, A.; Abd-Allah, A.M. Contamination of polycyclic aromatic hydrocarbons (PAHs) in microlayer and subsurface waters along Alexandria coast, Egypt. Chemosphere 2003, 52, 1711–1716. [Google Scholar] [CrossRef]
- Manodori, L.; Gambaro, A.; Piazza, R.; Ferrari, S.; Stortini, A.; Moret, I.; Capodaglio, G. PCBs and PAHs in sea-surface microlayer and sub-surface water samples of the Venice Lagoon (Italy). Mar. Pollut. Bull. 2006, 52, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Hong, W.-J.; Jia, H.; Li, Y.-F.; Sun, Y.; Liu, X.; Wang, L. Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in the coastal seawater, surface sediment and oyster from Dalian, Northeast China. Ecotoxicol. Environ. Saf. 2016, 128, 11–20. [Google Scholar] [CrossRef]
- Al-Agroudy, N.; Soliman, Y.A.; Hamed, M.A.; Zaghloul, G.Y. Distribution of PAHs in water, sediments samples of Suez Canal during 2011. J. Aquat. Poll. Toxicol. 2017, 1, 1–10. [Google Scholar]
- Tiwari, M.; Sahu, S.; Pandit, G. Distribution of PAHs in different compartment of creek ecosystem: Ecotoxicological concern and human health risk. Environ. Toxicol. Pharmacol. 2017, 50, 58–66. [Google Scholar] [CrossRef]
- Pan, L.; Xu, R.; Wen, J.; Guo, R. Assessing PAHs pollution in Shandong coastal area (China) by combination of chemical analysis and responses of reproductive toxicity in crab Portunus trituberculatus. Environ. Sci. Pollut. Res. 2017, 24, 14291–14303. [Google Scholar] [CrossRef]
- Ranjbar Jafarabadi, A.; Riyahi Bakhtiari, A.; Shadmehri Toosi, A. Comprehensive and comparative ecotoxicological and human risk assessment of polycyclic aromatic hydrocarbons (PAHs) in reef surface sediments and coastal seawaters of Ira-nian Coral Islands, Persian Gulf. Ecotoxicol. Environ. Saf. 2017, 145, 640–652. [Google Scholar] [CrossRef]
- Niu, L.; Cai, H.; van Gelder, P.; Luo, P.; Liu, F.; Yang, Q. Dynamics of polycyclic aromatic hydrocarbons (PAHs) in water column of Pearl River estuary (China): Seasonal pattern, environmental fate and source implication. Appl. Geochem. 2018, 90, 39–49. [Google Scholar] [CrossRef]
- Penko, L.; Bajt, O. Aliphatic and polycyclic aromatic hydrocarbons in surface seawater of the GULF of Trieste (northern ADRIATIC). Mar. Pollut. Bull. 2019, 142, 103–111. [Google Scholar] [CrossRef]
- Said, T.O.; Hamed, M.A. Mobility of Polycyclic Aromatic Hydrocarbons in Water of the Egyptian Red Sea Coasts. Bull. Environ. Contam. Toxicol. 2006, 77, 126–136. [Google Scholar] [CrossRef]
- Nazik, A.F.; Omayma, E.A.; Abd El-Rahman, M.M. Contamination of water, sediment, tar ball and fishes by poly-aromatic hydrocarbons (PAHs) in Alexandria Sea Coasts. J. Appl. Sci. Res. 2013, 9, 5619–5632. [Google Scholar]
- Nasher, E.; Heng, L.Y.; Zakaria, Z.; Surif, S. Concentrations and sources of polycyclic aromatic hydrocarbons in the sea-water around Langkawi Island, Malaysia. J. Chem. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Farid, N.A.; Mahmoud, S.A.; Ahmed, O.E. Occurrence and Distribution of Aliphatic and Polycyclic Aromatic Hydrocar-bons in Surface Waters along Coastal Area of Suez Gulf. Egypt. J. Chem. 2015, 58, 43–69. [Google Scholar]
- Barrick, R.C.; Prahl, F.G. Hydrocarbon geochemistry of the Puget Sound region—III. Polycyclic aromatic hydrocarbons in sediments. Estuarine, Coast. Shelf Sci. 1987, 25, 175–191. [Google Scholar] [CrossRef]
- McCready, S.; Slee, D.J.; Birch, G.F.; Taylor, S.E. The Distribution of Polycyclic Aromatic Hydrocarbons in Surficial Sedi-ments of Sydney Harbour, Australia. Mar. Pollut. Bull. 2000, 40, 999–1006. [Google Scholar] [CrossRef]
- Omar, N.Y.M.J.; Abas, M.R.B.; Rahman, N.A.; Tahir, N.M.; Rushdi, A.I.; Simoneit, B.R. Levels and distributions of or-ganic source tracers in air and roadside dust particles of Kuala Lumpur, Malaysia. Environ. Geol. 2007, 52, 1485–1500. [Google Scholar] [CrossRef]
- Menzie, C.A.; Potocki, B.B.; Santodonato, J. Exposure to carcinogenic PAHs in the environment. Environ. Sci. Technol. 1992, 26, 1278–1284. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans: Polynuclear Aromatic Compounds; Part 1, Chemical, Environmental and Experimental Datal; International Agency for Research on Cancer: Lyon, France, 1983; Volume 32. [Google Scholar]
- Wang, Z.; Fingas, M.; Sergy, G. Chemical Characterization of Crude Oil Residues from an Arctic Beach by GC/MS and GC/FID. Environ. Sci. Technol. 1995, 29, 2622–2631. [Google Scholar] [CrossRef]
- Sun, K.; Song, Y.; Liu, Z.; Jing, M.; Wan, J.; Tang, J.; Liu, R. Toxicity assessment of Fluoranthene, Benz(a)anthracene and its mixed pollution in soil: Studies at the molecular and animal levels. Ecotoxicol. Environ. Saf. 2020, 202, 110864. [Google Scholar] [CrossRef]
- Soclo, H.; Garrigues, P.; Ewald, M. Origin of Polycyclic Aromatic Hydrocarbons (PAHs) in Coastal Marine Sediments: Case Studies in Cotonou (Benin) and Aquitaine (France) Areas. Mar. Pollut. Bull. 2000, 40, 387–396. [Google Scholar] [CrossRef]
- Sany, S.B.T.; Hashim, R.; Salleh, A.; Rezayi, M.; Mehdinia, A.; Safari, O. Polycyclic aromatic hydrocarbons in coastal sedi-ment of Klang Strait, Malaysia: Distribution pattern, risk assessment and sources. PLoS ONE 2014, 9, e94907. [Google Scholar] [CrossRef]
- De Luca, G.; Furesi, A.; Micera, G.; Panzanelli, A.; Piu, P.C.; Pilo, M.; Spano, N.; Sanna, G. Nature, distribution and origin of polycyclic aromatic hydrocarbons (PAHs) in the sediments of Olbia harbor (Northern Sardinia, Italy). Mar. Pollut. Bull. 2005, 50, 1223–1232. [Google Scholar] [CrossRef]
- Wang, X.-C.; Sun, S.; Ma, H.-Q.; Liu, Y. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Jiaozhou Bay, Qingdao, China. Mar. Pollut. Bull. 2006, 52, 129–138. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Ma, L.; Abuduwaili, J.; Li, Y. Distribution, source analysis, and ecological risk assessment of polycyclic aromatic hydrocarbons in the typical topsoil of the Issyk-Kul Lake Basin. Environ. Monit. Assess. 2017, 189, 1–11. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Budzinski, H.; Jones, I.; Bellocq, J.; Piérard, C.; Garrigues, P. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem. 1997, 58, 85–97. [Google Scholar] [CrossRef]
- Sicre, M.-A.; Marty, J.; Saliot, A.; Aparicio, X.; Grimalt, J.; Albaiges, J. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmos. Environ. 1987, 21, 2247–2259. [Google Scholar] [CrossRef]
- Gereslassie, T.; Workineh, A.; Liu, X.; Yan, X.; Wang, J. Occurrence and ecological and human health risk assessment of pol-ycyclic aromatic hydrocarbons in soils from Wuhan, central China. Int. J. Environ. Res. Public Health 2018, 15, 2751. [Google Scholar] [CrossRef] [Green Version]
- Gschwend, P.M.; Hites, R.A. Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the north-eastern United States. Geochim. Cosmochim. Acta 1981, 45, 2359–2367. [Google Scholar] [CrossRef]
- Baumard, P.; Budzinski, H.; Michon, Q.; Garrigues, P.; Burgeot, T.; Bellocq, J. Origin and Bioavailability of PAHs in the Med-iterranean Sea from Mussel and Sediment Records. Estuar. Coast. Shelf Sci. 1998, 47, 77–90. [Google Scholar] [CrossRef]
- Yang, G.-P. Polycyclic aromatic hydrocarbons in the sediments of the South China Sea. Environ. Pollut. 2000, 108, 163–171. [Google Scholar] [CrossRef]
- Kalf, D.F.; Crommentuijn, T.; van de Plassche, E.J. Environmental Quality Objectives for 10 Polycyclic Aromatic Hydro-carbons (PAHs). Ecotoxicol. Environ. Saf. 1997, 36, 89–97. [Google Scholar] [CrossRef]
- Sun, J.-H.; Wang, G.-L.; Chai, Y.; Zhang, G.; Li, J.; Feng, J. Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China. Ecotoxicol. Environ. Saf. 2009, 72, 1614–1624. [Google Scholar] [CrossRef]
- Wang, Y.; Mu, J.; Wang, Z.; Yao, Z.; Lin, Z. Aquatic predicted no-effect concentration for three polycyclic aromatic hydrocarbons and probabilistic ecological risk assessment in Liaodong Bay of the Bohai Sea, China. Environ. Sci. Pollut. Res. 2014, 21, 148–158. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, J.; Luan, Y.; Li, Y.; Ma, M.; Xu, J.; Han, S. Distribution and ecosystem risk assessment of polycyclic aromatic hy-drocarbons in the Luan River, China. Ecotoxicology 2010, 19, 827–837. [Google Scholar] [CrossRef]
Region | Location | Station | latitude | Longitude |
---|---|---|---|---|
Ras Gharieb | 1 | 28.367697 | 33.079566 | |
Hurghada | Al Gona | 2 | 27.377533 | 33.682500 |
Magawish | 3 | 27.155732 | 33.832323 | |
Marine Sport Club | 4 | 27.177252 | 33.827352 | |
Hurghada shipyard | 5 | 27.229625 | 33.843496 | |
Hurghada Tourist Harbour | 6 | 27.234217 | 33.847896 | |
Safaga | Safaga shipyard | 7 | 26.685864 | 33.935216 |
Pre- abu Tartour harbour | 8 | 26.705540 | 33.937291 | |
fishermen valley | 9 | 26.725473 | 33.938653 | |
El-Hamraween | Pre-Hamraween site 1 | 10 | 26.251890 | 34.201657 |
Post-Hamraween site 2 | 11 | 26.267222 | 34.197569 | |
Marsa Alam | Marsa Egla | 12 | 25.172442 | 34.840708 |
Marina Marsa | 13 | 25.078822 | 34.891744 | |
Marsa Sefeen | 14 | 25.105628 | 34.878447 |
PAHs | No. of Rings | ∑ | % | ∑ | % | ∑ | % | ∑ | % |
---|---|---|---|---|---|---|---|---|---|
Summer | Autumn | Winter | Spring | ||||||
Naph | 2 | 1.21 | 2.75 | 1.20 | 1.17 | 1.74 | 0.60 | 1.08 | 3.63 |
Acthy | 3 | 0.00 | 0.00 | 0.04 | 0.04 | 0.08 | 0.03 | 0.01 | 0.04 |
Ace | 3 | 0.05 | 0.12 | 0.00 | 0.00 | 0.05 | 0.02 | 0.31 | 1.05 |
F | 3 | 0.00 | 0.00 | 0.10 | 0.09 | 0.34 | 0.12 | 0.09 | 0.30 |
Phe | 3 | 1.88 | 4.24 | 0.86 | 0.84 | 11.35 | 3.88 | 0.74 | 2.50 |
Ant | 3 | 0.23 | 0.52 | 0.05 | 0.05 | 5.53 | 1.89 | 0.05 | 0.16 |
Flu | 4 | 5.39 | 12.19 | 29.44 | 28.73 | 56.89 | 19.47 | 1.79 | 6.04 |
Pyr | 4 | 2.73 | 6.18 | 23.62 | 23.05 | 30.92 | 10.58 | 2.80 | 9.40 |
BaA | 4 | 7.07 | 16.00 | 9.92 | 9.69 | 32.53 | 11.13 | 3.26 | 10.95 |
Chr | 4 | 13.95 | 31.56 | 26.82 | 26.17 | 112.54 | 38.51 | 15.77 | 53.05 |
BbF | 5 | 6.97 | 15.76 | 3.14 | 3.06 | 13.24 | 4.53 | 2.18 | 7.33 |
BkF | 5 | 0.32 | 0.72 | 1.42 | 1.39 | 2.22 | 0.76 | 0.00 | 0.00 |
BaP | 5 | 0.00 | 0.00 | 0.66 | 0.64 | 4.33 | 1.48 | 1.66 | 5.57 |
DahA | 5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
BP | 6 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
IP | 6 | 4.41 | 9.97 | 5.21 | 5.08 | 20.49 | 7.01 | 0.00 | 0.00 |
Site | Samples Number | PAHs Compounds Examined Number | Concentration Range (µg/L) | Average (µg/L) | Reference |
---|---|---|---|---|---|
Alexandria coast, Egypt | 12 | - | 0.013–0.12 | 0.047 | [30] |
Red Sea Coasts, Egypt | 39 | 16 | 0.4–96.45 | 20.93 | [39] |
Venice Lagoon; Italy | 10 | 20 | 0.0124–0.267 | 0.057 | [31] |
Alexandria coast, Egypt | 15 | 16 | 52.81–559.10 | - | [40] |
Suez Gulf, Red sea, Egypt | 8 | 16 | Winter 0.731–21.93 Summer 1.64–39.14 | 11.00 16.71 | [25] |
Langkawi Island, Malaysia | 7 | 18 | 6.1–46 | 26 | [41] |
Coastal Area of Suez Gulf, Egypt | 9 | 16 | 0.0133–205.40 | 52.53 | [42] |
Dalian coast, China | 15 | 46 | Winter 0.136–0.621 Summer 0.065–1.13 | 0.357 0.297 | [32] |
Suez Canal, Egypt | 12 | 16 | Winter 0.076–0.35 Spring 0.012–0.50 Summer 0.10–0.26 Autumn 0.081–0.16 | 0.17 0.20 0.14 0.11 | [33] |
Thane creek, India | 10 | 16 | 0.18–0.1.09 | - | [34] |
Shandong coastal area, China | 9 | 16 | 0.03–0.124 | 0.067 | [35] |
Persian Gulf, Iran | 36 | 30 | 0.07–0.884 | 0.464 | [36] |
Pearl River estuary, China | 12 | 16 | 0.0127–0.16 | 0.086 | [37] |
Gulf of Trieste, Northern Adriatica, Slovenia | 8 | 24 | 0.089–0.294 | 0.179 | [38] |
Present Study | 14 | 16 | Summer 1.08–6.10 Autumn 0.79–50.86 Winter 1.37–54 Spring 0.21–7.18 | 3.16 7.32 20.88 2.12 | - |
Seasons | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 + 3 Rings | ||||||||||||||
Summer | 11.77 | 7.61 | 12.39 | 3.57 | 4.33 | 10.19 | 6.04 | 8.32 | 4.89 | 11.64 | 13.90 | 4.95 | 16.46 | 8.89 |
Autumn | 2.84 | 6.25 | 7.95 | 7.52 | 20.19 | 2.83 | 1.16 | 0.28 | 2.00 | 19.01 | 4.92 | 8.70 | 8.85 | 6.38 |
Winter | 1.49 | 2.20 | 2.75 | 23.01 | 32.05 | 5.08 | 17.79 | 3.93 | 1.90 | 4.35 | 2.15 | 1.47 | 2.56 | 6.58 |
Spring | 0.00 | 10.51 | 23.99 | 61.20 | 24.84 | 6.23 | 2.26 | 8.14 | 10.56 | 15.56 | 4.16 | 7.29 | 11.73 | 24.76 |
4 Rings | ||||||||||||||
Summer | 88.23 | 92.39 | 61.62 | 54.93 | 62.48 | 89.81 | 42.02 | 91.68 | 48.26 | 88.36 | 51.61 | 81.29 | 68.31 | 91.11 |
Autumn | 97.16 | 40.13 | 92.05 | 92.48 | 79.81 | 97.17 | 98.84 | 87.04 | 83.05 | 80.99 | 95.08 | 91.30 | 66.57 | 93.62 |
Winter | 74.26 | 86.18 | 90.46 | 76.99 | 67.95 | 94.92 | 57.37 | 87.60 | 76.91 | 69.95 | 92.68 | 87.60 | 88.40 | 93.42 |
Spring | 100.00 | 89.49 | 76.01 | 38.80 | 75.16 | 93.77 | 44.29 | 91.86 | 89.44 | 84.44 | 95.84 | 92.71 | 88.27 | 75.24 |
5 Rings | ||||||||||||||
Summer | - | - | - | 13.63 | 33.19 | - | 31.02 | - | 33.19 | - | 34.50 | 13.76 | 8.23 | - |
Autumn | - | - | - | - | - | - | 0.00 | 7.53 | 12.79 | - | - | - | - | - |
Winter | - | 11.62 | - | - | - | - | 18.44 | 5.44 | 13.30 | - | 4.30 | - | 2.38 | - |
Spring | - | - | - | - | - | - | 53.45 | - | - | - | - | - | - | - |
6 Rings | ||||||||||||||
Summer | - | - | 25.99 | 27.87 | - | - | 20.92 | - | 13.67 | - | - | - | 7.00 | - |
Autumn | - | 53.61 | - | - | - | - | - | 5.16 | 2.15 | - | - | - | 24.58 | - |
Winter | 24.25 | - | 6.79 | - | - | - | 6.40 | 3.03 | 7.89 | 25.69 | 0.87 | 10.93 | 6.67 | - |
Spring | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Seasons | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
∑ COMP | ||||||||||||||
Summer | 1.35 | 1.74 | 1.29 | 5.88 | 4.4 | 3.03 | 5.61 | 1.96 | 5.45 | 1.31 | 0.93 | 3.17 | 3.45 | 1.24 |
Autumn | 3.91 | 2.9 | 1.96 | 1.46 | 0.92 | 5.88 | 14.03 | 50.72 | 10.64 | 0.64 | 2.24 | 1.62 | 2.55 | 0.75 |
Winter | 21.87 | 12.01 | 11.3 | 3.15 | 6.03 | 7.21 | 42.36 | 46.29 | 31.21 | 5.87 | 16.23 | 15.28 | 53.08 | 1.28 |
Spring | 2.16 | 1.29 | 0.66 | 0.08 | 0.41 | 2.1 | 7.01 | 2.12 | 1.41 | 2.03 | 3.3 | 3.7 | 1.01 | 0.2 |
∑ COMP % | ||||||||||||||
Summer | 88.23 | 92.39 | 87.61 | 96.43 | 95.67 | 89.81 | 93.96 | 91.68 | 95.11 | 88.36 | 86.1 | 95.05 | 83.54 | 91.11 |
Autumn | 97.16 | 93.75 | 92.05 | 92.48 | 79.81 | 97.17 | 98.84 | 99.72 | 98 | 80.99 | 95.08 | 91.3 | 91.15 | 93.62 |
Winter | 98.51 | 97.8 | 97.25 | 76.99 | 67.95 | 94.92 | 82.21 | 96.07 | 98.1 | 95.65 | 97.85 | 98.53 | 97.44 | 93.42 |
Spring | 100 | 89.49 | 76.01 | 38.8 | 75.16 | 93.77 | 97.74 | 91.86 | 89.44 | 84.44 | 95.84 | 92.71 | 88.27 | 75.24 |
∑TFPAHs | ||||||||||||||
Summer | 0.18 | 0.14 | 0.18 | 0.22 | 0.2 | 0.34 | 0.36 | 0.18 | 0.28 | 0.17 | 0.15 | 0.17 | 0.68 | 0.12 |
Autumn | 0.11 | 0.19 | 0.17 | 0.12 | 0.23 | 0.17 | 0.16 | 0.14 | 0.22 | 0.15 | 0.12 | 0.15 | 0.25 | 0.05 |
Winter | 0.33 | 0.27 | 0.32 | 0.94 | 2.85 | 0.39 | 9.17 | 1.89 | 0.6 | 0.27 | 0.36 | 0.23 | 1.39 | 0.09 |
Spring | 0 | 0.15 | 0.21 | 0.13 | 0.13 | 0.14 | 0.16 | 0.19 | 0.17 | 0.37 | 0.14 | 0.29 | 0.13 | 0.06 |
∑TFPAHs % | ||||||||||||||
Summer | 11.77 | 7.61 | 12.39 | 3.57 | 4.33 | 10.19 | 6.04 | 8.32 | 4.89 | 11.64 | 13.9 | 4.95 | 16.46 | 8.89 |
Autumn | 2.84 | 6.25 | 7.95 | 7.52 | 20.19 | 2.83 | 1.16 | 0.28 | 2 | 19.01 | 4.92 | 8.7 | 8.85 | 6.38 |
Winter | 1.49 | 2.2 | 2.75 | 23.01 | 32.05 | 5.08 | 17.79 | 3.93 | 1.9 | 4.35 | 2.15 | 1.47 | 2.56 | 6.58 |
Spring | 0 | 10.51 | 23.99 | 61.2 | 24.84 | 6.23 | 2.26 | 8.14 | 10.56 | 15.56 | 4.16 | 7.29 | 11.73 | 24.76 |
∑CARC | ||||||||||||||
Summer | 1.25 | 1.65 | 1.2 | 4.49 | 3.57 | 0.57 | 5.36 | 1.72 | 5.13 | 1.23 | 0.71 | 2.02 | 2.76 | 1.06 |
Autumn | 3.91 | 2.68 | 1.46 | 0.88 | 0.89 | 4.45 | 6.17 | 10.19 | 10.09 | 0.54 | 1.68 | 1.39 | 2.07 | 0.75 |
Winter | 21.54 | 11.23 | 6.27 | 2.14 | 2.52 | 4.6 | 24.29 | 29.62 | 24.76 | 4.3 | 15.35 | 11.38 | 26.39 | 0.98 |
Spring | 1.59 | 1.11 | 0.66 | 0 | 0.11 | 1.5 | 6.89 | 1.72 | 1.18 | 1.03 | 2.69 | 3.43 | 0.76 | 0.2 |
∑CARC % | ||||||||||||||
Summer | 81.73 | 87.61 | 81.03 | 73.54 | 77.59 | 17.01 | 89.78 | 80.26 | 89.54 | 83.21 | 65.25 | 60.42 | 66.87 | 77.63 |
Autumn | 97.16 | 86.57 | 68.46 | 55.85 | 77.81 | 73.54 | 43.45 | 20.03 | 92.97 | 68.99 | 71.44 | 78.69 | 73.73 | 93.62 |
Winter | 97.01 | 91.47 | 53.96 | 52.34 | 28.35 | 60.55 | 47.15 | 61.48 | 77.82 | 69.97 | 92.51 | 73.38 | 48.45 | 71.42 |
Spring | 73.88 | 76.69 | 76.01 | ND | 20.2 | 66.93 | 95.99 | 74.63 | 75.08 | 43.02 | 78.16 | 86.1 | 66.47 | 75.24 |
∑PAHs | ||||||||||||||
Summer | 1.53 | 1.88 | 1.47 | 6.1 | 4.6 | 3.38 | 5.97 | 2.14 | 5.73 | 1.48 | 1.08 | 3.34 | 4.13 | 1.36 |
Autumn | 4.03 | 3.1 | 2.13 | 1.58 | 1.15 | 6.05 | 14.19 | 50.86 | 10.85 | 0.79 | 2.35 | 1.77 | 2.8 | 0.8 |
Winter | 22.2 | 12.28 | 11.62 | 4.09 | 8.88 | 7.59 | 51.52 | 48.18 | 31.82 | 6.14 | 16.59 | 15.5 | 54.47 | 1.37 |
Spring | 2.16 | 1.44 | 0.86 | 0.21 | 0.54 | 2.23 | 7.18 | 2.31 | 1.57 | 2.4 | 3.44 | 3.99 | 1.14 | 0.26 |
PAHs ratio | Value | Source | Reference |
---|---|---|---|
∑LMW/∑HMW | <1 | Pyrogenic | [50,52,53] |
>1 | Petrogenic | ||
∑COMB/∑PAHs | <0.3 | Petrogenic | [54,55] |
0.3–0.7 | mixed sources | ||
>0.7 | high-temperature combustion | ||
Ant/(Ant + Phe) | <0.1 | Petrogenic | [56] |
>0.1 | Pyrogenic | ||
Phe/Ant | >10 | Petrogenic | [57,58] |
<10 | Pyrogenic | ||
Flu/Pyr | <1.0 | Petrogenic | [57,58] |
>1.0 | Pyrogenic | ||
Flu/(Flu + Pyr) | <0.4 | Petrogenic | [56] |
0.4–0.5 | Combustion of fossil fuel | ||
>0.5 | Combustion of coal, grass and wood | ||
BaA/(BaA + Chr) | <0.2 0.2–0.35 | Petrogenic mixed petrogenic and pyrogenic | [56] |
>0.35 | Combustion |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Naggar, M.; Hanafy, S.; Younis, A.M.; Ghandour, M.A.; El-Sayed, A.-A.Y. Seasonal and Temporal Influence on Polycyclic Aromatic Hydrocarbons in the Red Sea Coastal Water, Egypt. Sustainability 2021, 13, 11906. https://doi.org/10.3390/su132111906
El-Naggar M, Hanafy S, Younis AM, Ghandour MA, El-Sayed A-AY. Seasonal and Temporal Influence on Polycyclic Aromatic Hydrocarbons in the Red Sea Coastal Water, Egypt. Sustainability. 2021; 13(21):11906. https://doi.org/10.3390/su132111906
Chicago/Turabian StyleEl-Naggar, Mohamed, Said Hanafy, Alaa M. Younis, Mahmoud A. Ghandour, and Abdel-Aziz Y. El-Sayed. 2021. "Seasonal and Temporal Influence on Polycyclic Aromatic Hydrocarbons in the Red Sea Coastal Water, Egypt" Sustainability 13, no. 21: 11906. https://doi.org/10.3390/su132111906
APA StyleEl-Naggar, M., Hanafy, S., Younis, A. M., Ghandour, M. A., & El-Sayed, A.-A. Y. (2021). Seasonal and Temporal Influence on Polycyclic Aromatic Hydrocarbons in the Red Sea Coastal Water, Egypt. Sustainability, 13(21), 11906. https://doi.org/10.3390/su132111906