Effect of Aqueous Neem Leaf Extracts in Controlling Fusarium Wilt, Soil Physicochemical Properties and Growth Performance of Banana (Musa spp.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials Preparation and Treatment
2.2. Data Collection
2.2.1. Nutrient Contents of Neem Leaves
2.2.2. Soil Physicochemical Properties
Soil pH
Soil Exchangeable Bases, Cation Exchange Capacity (CEC), and Available Phosphorus
2.2.3. Disease Evaluation
External Symptoms Index (ESI) and Internal Symptoms Index (ISI)
External Disease Severity Index (EDSI), Internal Disease Severity Index (IDSI), and Effectiveness of Neem Leaf Extract Treatment (ENLE)
External Infection Percentage (EIP) and Internal Infection Percentage (IIP)
Reduction in Fusarium Diseases (RFW)
2.2.4. Crop Growth and Morphology
Foliar Nutrient Content, Foliar Number, Crop Height, and Stem Diameter
Root to Shoot Ratio, Root Size, and Distribution
2.3. Statistical Analysis
3. Results
3.1. Nutrient Contents of Neem Leaves
3.2. Soil Physicochemical Properties
3.3. Disease Evaluation
3.4. Crop Growth and Morphology
4. Discussion
4.1. Nutrient Contents of Neem Leaves
4.2. Soil Physicochemical Properties
4.3. Disease Evaluation
4.4. Crop Growth and Morphology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ansari, J.; Sohail, H.K.; Ulhaq, A.; Yousaf, M. Effects of the level of Azadirachta indica dried leaf meal as phytogenic feed additive on the growth performance and haemato-biochemical parameters in broiler chicks. J. Appl. Anim. Res. 2012, 40, 336–345. [Google Scholar] [CrossRef]
- Bhowmik, D.; Chiranjib, Y.J.; Tripathi, K.K.; Kumar, K.P.S. Herbal remedies of Azadirachta indica and its medicinal application. J. Chem. Pharm. Res. 2010, 2, 62–72. [Google Scholar]
- Moyin-Jesu, E.I. Effects of water extracts of Neem (Azadirachta indica L.) leaf, wood ash and their mixture on soil chemical composition and growth and yield of plantain (Musa sapientum L.). Am. J. Exp. Agric. 2014, 4, 836–848. [Google Scholar] [CrossRef]
- Ngamsaeng, A.; Wanapat, M.; Khampa, S. Evaluation of local tropical plants by in vitro rumen fermentation and their effects on fermentation end-products. Pak. J. Nutr. 2006, 5, 414–418. [Google Scholar]
- Niranjan, P.S.; Udeybir, S.J.; Verma, D.N. Mineral and antinutritional factors of common tree leaves. Indian Vet. J. 2008, 85, 1067–1069. [Google Scholar]
- Ali, A.S.M.Y.; Solaiman, A.H.M.; Saha, K.C. Influence of organic nutrient sources and neem (Azadirachta) products on growth and yield of carrot. Int. J. Crop. Sci. Technol. 2016, 2, 19–25. [Google Scholar]
- Nahak, G.; Sahu, R.K. Bioefficacy of leaf extract of neem (Azadirachta indica A. Juss) on growth parameters, wilt and leafspot diseases of brinjal. Res. J. Med. Plants 2014, 8, 269–276. [Google Scholar]
- Moyin-Jesu, E.I. Comparative evaluation of modified neem leaf, neem leaf and woodash extracts on soil fertility improvement, growth and yields of maize (Zea mays L.) and watermelon (Citrullus lanatus) (sole and intercrop). Agric. Sci. 2012, 3, 90–97. [Google Scholar]
- Farag Hanaa, R.M.; Abdou, Z.A.; Salama, D.A.; Ibrahim, M.A.R.; Sror, H.A.M. Effect of neem and willow aqueous extracts on Fusarium wilt disease in tomato seedlings: Induction of antioxidant defensive enzymes. Ann. Agric. Sci. 2011, 1, 1–7. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Mukhtar, T.; Ahmad, R. Some studies on the control of citrus nematode (Tylenchulus semipenetrans) by leaf extracts of three plants and their effects on plant growth variables. Asian J. Plant Sci. 2004, 3, 544–548. [Google Scholar]
- Fageria, N.K.; Baligar, V.C.; Clark, R.B. Micronutrients in crop production. Adv. Agron. 2002, 77, 185–268. [Google Scholar]
- Bohra, B.; Vyas, B.N.; Mistry, K.B. Eco-friendly management of damping-off in winter vegetables and tobacco using microbial agents and neem for mulations. J. Mycol. Plant Pathol. 2006, 36, 178–181. [Google Scholar]
- Nahak, G.; Sahu, R.K. Antioxidant activity in bark and roots of neem (Azadirachta indica) and Mahaneem (Melia azedarach). J. Pharm. Sci. 2010, 4, 28–34. [Google Scholar]
- Subapriya, R.; Nagini, S. Medicinal properties of neem leaves: A review. Curr. Med. Chem. Anti-Cancer Agents 2005, 5, 149–156. [Google Scholar] [CrossRef]
- Arumugam, P.A.; Mohamad, I.; Salim, R.; Mohamed, Z. Antifungal effect of Malaysian neem leaf extract on selected fungal species causing otomycosis in in-vitro culture medium. Malays. J. Med. Health Sci. 2015, 11, 69–84. [Google Scholar]
- Samuel, T.A.; Hussaini, A.M.; Titilayo, A.; Ibrahim, K. Effects of Fusarium verticilloides, its metabolites and neem leaf extract on germination and vigour indices of maize (Zea mays L.). Afr. J. Biotechnol. 2008, 7, 2402–2406. [Google Scholar]
- Paul, P.K.; Sharma, P.D. Azadirachta indica leaf extract induces resistance in barley against leaf stripe disease. Physiol. Mol. Plant Pathol. 2002, 61, 3–13. [Google Scholar] [CrossRef]
- Michielse, C.B.; Rep, M. Pathogen profile update: Fusarium oxysporum. Mol. Plant Pathol. 2009, 10, 311–324. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wang, R.C.; Li, C.H.; Zuo, C.W.; Wei, Y.R.; Zhang, L.; Yi, G.J. Control of Fusarium wilt in banana with Chinese leek. Eur. J. Plant Pathol. 2012, 1, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Egunjobi, O.A.; Afolami, S.O. Effects of neem (Azadirachta indica) leaf extracts on populations of Pratylenchus Brachyurus and on the growth ad yield of maize. Nematologica. 1976, 22, 125–132. [Google Scholar] [CrossRef] [Green Version]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis. Part 2—Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph Number 9; Soil Science Society of America: Madison, WI, USA, 1982; Volume 9, pp. 199–223. [Google Scholar]
- Mak, C.; Mohamed, A.A.; Liew, K.W.; Ho, Y.W. Early screening technique for Fusarium wilt resistance in banana micropropagated plants. Banan. Improv. 2004, 18, 219–227. [Google Scholar]
- Epp, M.D. Somaclonal variation in bananas: A case study with Fusarium wilt. Banana and Plantain Strategies. ACIAR Proc. 1987, 21, 140–150. [Google Scholar]
- Cachinero, J.M.; Hervas, A.; Jimenez-Diaz, R.M.; Tena, M. Plant defence reactions against Fusarium wilt in chickpea induced by incompatible race 0 of Fusarium oxysporum f.sp. ciceris and non-host isolates of Fusarium oxysporum. Plant Pathol. 2002, 51, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Yusnita, S. Metode inokulasi dan reaksi ketahanan 30 genotipe kacang tanah terhadap penyakit busuk batang Sclerotium. Hayati 2004, 11, 53–58. [Google Scholar]
- Harris, R.W. Root-shoot ratios. J. Arboric. 1992, 18, 39–42. [Google Scholar]
- Wright, I.J.; Reich, P.B.; Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 2001, 15, 423–434. [Google Scholar] [CrossRef] [Green Version]
- Embayeab, K.; Weiha, M.; Ledinc, S.; Christersson, L. Biomass and nutrient distribution in a highland bamboo forest in southwest Ethiopia: Implications for management. For. Ecol. Manag. 2005, 204, 159–169. [Google Scholar] [CrossRef]
- Mondali, N.K.; Mojumdar, A.; Chatterje, S.K.; Banerjee, A.; Datta, J.K.; Gupta, S. Antifungal activities and chemical characterization of Neem leaf extracts on the growth of some selected fungal species in vitro culture medium. J. Appl. Sci. Environ. Manag. 2009, 13, 49–53. [Google Scholar]
- Kaur, H.; Rishi, P. In vivo evaluation of nematicidal action of neem leaf and seed extracts on Meloidogyne incognita in tomato and soil pH. Indian J. Nematol. 2012, 42, 150–155. [Google Scholar]
- Ghini, R.; Fortes, N.L.P.; Navas-Cortés, J.A.; Silva, C.A.; Bettiol, W. Combined effects of soil biotic and abiotic factors, influenced by sewage sludge incorporation, on the incidence of corn stalk rot. PLoS ONE 2016, 11, e0155536. [Google Scholar] [CrossRef]
- McCauley, A.; Jones, C.; Jacobsen, J. Soil pH and organic matter. Nutr. Manag. Modul. 2009, 8, 1–12. [Google Scholar]
- Orr, R.; Nelson, P.N. Impacts of soil abiotic attributes on Fusarium wilt, focusing on bananas. Appl. Soil Ecol. 2018, 132, 20–33. [Google Scholar] [CrossRef]
- Ploetz, R.C. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 2006, 96, 653–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riaz, T.; Khan, S.N.; Javaid, A. Management of Fusarium corm rot of gladiolus (Gladiolus grandiflorus sect. Blandus cv. Aarti) by using leaves of allelopathic plants. Afr. J. Biotechnol. 2010, 9, 4681–4686. [Google Scholar]
- Ribeiro, L.R.; Amorim, E.P.; Cordeiro, Z.J.M.; de Oliveira e Silva, S.; Dita, M.A. Discrimination of banana genotypes for Fusarium wilt resistance in the greenhouse. Acta Hortic. 2011, 897, 381–386. [Google Scholar] [CrossRef]
- Dita, M.A.; Waalwijk, C.; Paiva, L.V.; Souza, M.T., Jr.; Kema, G.H.J. A greenhouse bioassay for the Fusarium oxysporum f. sp. cubense x ‘Grand Nain’ (Musa, AAA, Cavendish Subgroup) Interaction. Acta Hortic. 2011, 897, 377–380. [Google Scholar] [CrossRef]
- Bishop, C.D.; Cooper, R.M. An ultrastructural study of root invasion of three vascular wilt diseases. Physiol. Mol. Plant Pathol. 1983, 22, 15–27. [Google Scholar] [CrossRef]
- Joseph, B.; Dar, M.A.; Kumar, V. Bioefficacy of plant extracts to control Fusarium solani f. sp. Melongenae incitant of brinjal wilt. Glob. J. Biotechnol. Biochem. 2008, 3, 56–59. [Google Scholar]
- Sana, N.; Shoaib, A.; Javaid, A.; Farooq, N. Effect of neem leaves as soil amendment on southern blight disease, growth and physiology of chili. Pak. J. Phytopathol. 2015, 27, 115–120. [Google Scholar]
- Kapadiya, I.B.; Undhad, S.V.; Talaviya, J.R.; Siddhapara, M.R. Evaluation of phytoextracts against Fusarium solani causing root rot of okra. J. Biopestic. 2014, 7, 7–9. [Google Scholar]
- Kartika, K.; Lakitan, B.; Sanjaya, N.; Wijaya, A.; Kadir, S.; Kurnianingsih, A.; Widuri, L.I.; Siaga, E.; Meihana, M. Internal versus edge row comparison in jajar legowo 4: 1 rice planting pattern at different frequency of fertilizer applications. AGRIVITA J. Agric. Sci. 2018, 40, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Garrigues, E.; Doussan, C.; Pierret, A. Water uptake by plant roots: I–Formation and propagation of a water extraction front in mature root systems as evidenced by 2D light transmission imaging. Plant Soil 2006, 283, 83. [Google Scholar] [CrossRef]
- Wöjcik, D. Convergence in Corporate Governance: Empirical Evidence from Europe 2000–2003; Working Paper; School of Geography, University of Oxford: Oxford, UK, 2004. [Google Scholar]
- Okungbowa, F.I.; Shittu, H. Fusarium Wilts: An Overview. Environ. Res. J. 2013, 6, 83–102. [Google Scholar]
- Gonçalves, A.L.; Kernaghan, J.R. Banana Production Methods. A Comparative Study. 2014, pp. 1–40. Available online: https://www.naturskyddsforeningen.se (accessed on 5 May 2019).
- Mustaffa, M.M.; Kumar, V. Banana production and productivity enhancement through spatial, water and nutrient management. Eur. J. Hortic. Sci. 2012, 7, 1–28. [Google Scholar]
- Kumar, D.; Pandey, V. Relationship of pseudostem cross-sectional area with bunch weight, fruit quality and nutrient status in banana cv. Rasthali (Pathkapoora-AAB). Indian J. Hortic. 2010, 67, 26–29. [Google Scholar]
- Chen, Y.F.; Chen, W.; Huang, X.; Hu, X.; Zhao, J.T.; Gong, Q.; Li, X.J.; Huang, X.L. Fusarium wilt-resistant lines of Brazil banana (Musa spp. AAA) obtained by EMS-induced mutation in a micro-crosssection cultural system. Plant Pathol. 2013, 62, 112–119. [Google Scholar] [CrossRef]
- Cha, S.D.; Jeon, Y.J.; Ahn, G.R.; Han, J.I.; Han, K.H.; Kim, S.H. Characterization of Fusarium oxysporum isolated from Paprika in Korea. Mycobiology 2007, 35, 91–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akila, R.; Rajendran, L.; Harish, S.; Saveetha, K.; Raguchander, T.; Samiyappan, R. Combined application of botanical formulations and biocontrol agents for the management of Fusarium oxysporum f. sp. cubense (Foc) causing Fusarium wilt in banana. Biol. Control 2011, 57, 175–183. [Google Scholar] [CrossRef]
- Akhtar, M. Biological control of plant-parasitic nematodes in pigeon pea filed crops using neem-based products and manurial treatments. Appl. Soil Ecol. 1999, 12, 191–195. [Google Scholar] [CrossRef]
Index (%) | EDSI and IDSI Translation | ENLE Translation |
---|---|---|
0 | Immune (Im) | Extremely effective (Ee) |
0 to 5 | Resistance (Rs) | Very effective (Ve) |
5 to 10 | Moderately resistance (Mr) | Effective (E) |
10 to 25 | Moderately susceptible (Ms) | Moderate effective (Me) |
25 to 50 | Susceptible (Sc) | Less effective (Le) |
More than 50 | Highly susceptible (Hs) | Not effective (Ne) |
References | Nutrient Contents Values (%) | ||||
---|---|---|---|---|---|
N | P | K | Ca | Mg | |
Current study | 0.4 | 0.2 | 1.4 | 0.6 | 0.1 |
Ansari et al. (2012) [1] | nd | 0.3 | nd | 0.7 | 0.8 |
Bhowmik et al. (2010) [2] | nd | 0.1 | nd | 1.5 | 1.3 |
Moyin-Jesu (2014) [3] | 3.6 | 0.8 | 1.7 | 0.8 | 0.8 |
Ngamsaeng et al. (2006) [4] | nd | 0.1 | nd | 1.5 | nd |
Niranjan et al. (2008) [5] | nd | 0.3 | nd | 1.5 | 0.4 |
Treatment (ml NLE) | After NLE Treatment | During Harvesting | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | CEC | N (%) | P (%) | K (%) | Ca (%) | Mg (%) | pH | CEC | N (%) | P (%) | K (%) | Ca (%) | Mg (%) | |
Control +ve | ||||||||||||||
0 | 7.0 ± 0.2a | 8.2 ± 1.9b | 0.2 ± 0.0b | 1.0 ± 0.1b | 1.0 ± 0.2b | 2.0 ± 0.5b | 0.3 ± 0.0b | 7.0 ± 0.1a | 4.3 ± 0.4b | 0.1 ± 0.2b | 0.6 ± 0.2b | 0.6 ± 0.2b | 1.7 ± 0.3b | 0.2 ± 0.0b |
800 | 7.0 ± 0.1a | 9.8 ± 2.3a | 0.3 ± 0.1a | 1.2 ± 0.3a | 1.7 ± 0.1a | 2.4 ± 0.3a | 0.4 ± 0.1a | 7.0 ± 0.2a | 4.4 ± 0.2a | 0.4 ± 0.1a | 0.9 ± 0.7a | 0.8 ± 0.2a | 2.4 ± 0.2a | 0.4 ± 0.0a |
Means | 7.0 ± 0.1A | 9.0 ± 0.9A | 0.2 ± 0.1A | 1.1 ± 0.1A | 1.3 ± 0.1A | 2.2 ± 0.4A | 0.4 ± 0.2A | 7.0 ± 0.1A | 4.4 ± 0.2A | 0.2 ± 0.2A | 0.7 ± 0.4A | 0.7 ± 0.2B | 2.1 ± 0.6A | 0.3 ± 0.0A |
Control −ve | ||||||||||||||
0 | 7.0 ± 0.0a | 8.3 ± 2.3b | 0.2 ± 0.0b | 0.8 ± 0.1b | 0.8 ± 0.1b | 2.1 ± 0.3b | 0.3 ± 0.1b | 6.9 ± 0.0a | 4.4 ± 0.4b | 0.1 ± 0.1b | 0.7 ± 0.4b | 0.7 ± 0.3b | 1.8 ± 0.3b | 0.2 ± 0.1b |
800 | 7.0 ± 0.3a | 9.7 ± 2.3a | 0.3 ± 0.1a | 1.1 ± 0.6a | 1.8 ± 0.1a | 2.5 ± 0.3a | 0.4 ± 0.1a | 6.9 ± 0.1a | 4.4 ± 0.5a | 0.3 ± 0.1a | 0.7 ± 0.5a | 1.7 ± 0.6a | 2.4 ± 0.2a | 0.3 ± 0.1a |
Means | 7.0 ± 0.1A | 9.0 ± 0.8A | 0.2 ± 0.1A | 0.9 ± 0.1B | 1.3 ± 0.1A | 2.3 ± 0.6A | 0.3 ± 0.1A | 6.9 ± 0.0A | 4.4 ± 0.2A | 0.2 ± 0.1A | 0.7 ± 0.4A | 1.2 ± 0.3A | 2.1 ± 0.8A | 0.3 ± 0.1A |
LSD of means at p ≤ 0.05 and levels of significance for a two-factor ANOVA | ||||||||||||||
NLE | ns | *** | *** | *** | *** | *** | *** | ns | ns | *** | ** | *** | *** | *** |
Foc | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | *** | ns | ns |
NLE X Foc | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment (ml NLE) | ESI | EDSI (%) | EDSI Translation | EIP (%) | ISI | IDSI (%) | IDSI Translation | IIP (%) | RFW (%) | ENLE Translation |
---|---|---|---|---|---|---|---|---|---|---|
Control +ve | ||||||||||
0 | 0.3 ± 0.3a | 5.0 ± 2.5a | Mr | 25.0 ± 2.5a | 0.0 ± 0.0a | 0.0 ± 0.0a | Im | 0.0 ± 0.0a | 100.0 ± 0.0a | Ee |
800 | 0.2 ± 0.2a | 2.5 ± 1.7a | Rs | 16.7 ± 1.6a | 0.0 ± 0.0a | 0.0 ± 0.0a | Im | 0.0 ± 0.0a | 100.0 ± 0.0a | Ee |
Means | 0.2 ± 0.1B | 3.8 ± 1.9B | 20.8 ± 1.9B | 0.0 ± 0.0B | 0.0 ± 0.0B | 0.0 ± 0.0B | 100.0 ± 0.0A | |||
Control −ve | ||||||||||
0 | 3.3 ± 0.1a | 65.0 ± 0.0a | Hs | 100.0 ± 0.0a | 3.0 ± 0.2a | 70.0 ± 3.2a | Hs | 100.0 ± 0.0a | 0.0 ± 0.0a | Ne |
800 | 2.1 ± 0.7a | 40.0 ± 2.50a | Sc | 75.0 ± 2.9a | 2.1 ± 0.1a | 47.5 ± 3.6a | Sc | 75.0 ± 2.5a | 25.0 ± 2.5a | Le |
Means | 2.7 ± 0.4A | 52.5 ± 1.2A | 87.5 ± 3.2A | 2.6 ± 0.1A | 58.8 ± 2.5A | 87.5 ± 1.5A | 12.5 ± 1.2B | |||
LSD of means at p ≤ 0.05 and levels of significance for a two-factor ANOVA. | ||||||||||
NLE | ns | ns | ns | ns | ns | ns | ns | |||
Foc | *** | ** | ** | ** | *** | *** | *** | |||
NLE × Foc | ns | ns | ns | ns | ns | ns | ns |
Treatment (ml NLE) | Foliar Nutrient Contents Values (%) | Foliar Number | Crop Height (Cm) | Stem Diameter (cm) | R:S ratio | Root Length (cm) | Root Surface Area (cm2) | Total Root Diameter (mm) | Root Volume (cm3) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | |||||||||
Control +ve | |||||||||||||
0 | 0.6 ± 0.1a | 0.2 ± 0.0a | 2.9 ± 0.5a | 1.0 ± 0.1a | 0.1 ± 0.1a | 10.8 ± 1.6a | 57.8 ± 5.4b | 62.5 ± 7.7b | 0.1 ± 0.2b | 4508.0 ± 707.8a | 3175.3 ± 177.2b | 189.9 ± 31.4b | 14.0 ± 1.6b |
800 | 0.7 ± 0.1a | 0.2 ± 0.0a | 3.2 ± 0.4a | 0.9 ± 0.1a | 0.1 ± 0.1a | 11.2 ± 2.1a | 66.6 ± 6.7a | 71.2 ± 10.2a | 0.2 ± 0.1a | 5174.4 ± 619.3a | 3731.4 ± 440.6a | 223.2 ± 34.8a | 14.6 ± 1.9a |
Means | 0.6 ± 0.1A | 0.2 ± 0.0A | 3.0 ± 0.3A | 0.9 ± 0.1A | 0.1 ± 0.1A | 11.0 ± 1.8A | 62.2 ± 5.9A | 66.9 ± 8.1A | 0.1 ± 0.1A | 4841.2 ± 506.2A | 3453.4 ± 288.2A | 206.5 ± 23.5A | 14.3 ± 1.3A |
Control −ve | |||||||||||||
0 | 0.5 ± 0.0a | 0.2 ± 0.0a | 2.7 ± 0.4a | 1.1 ± 0.1a | 0.1 ± 0.1a | 7.4 ± 0.6a | 52.6 ± 4.9b | 60.1 ± 6.3b | 0.1 ± 0.0b | 3294.6 ± 496.0a | 2213.9 ± 216.6b | 121.5 ± 7.4b | 7.1 ± 0.3b |
800 | 0.5 ± 0.1a | 0.2 ± 0.0a | 2.9 ± 0.3a | 1.1 ± 0.1a | 0.1 ± 0.1a | 8.4 ± 0.9a | 59.2 ± 5.7a | 66.7 ± 7.9a | 0.2 ± 0.0a | 3873.7 ± 471.1a | 2996.0 ± 309.2a | 192.4 ± 32.4a | 11.7 ± 2.3a |
Means | 0.5 ± 0.0A | 0.2 ± 0.0A | 2.8 ± 0.2A | 1.1 ± 0.1A | 0.1 ± 0.1A | 7.9 ± 0.7B | 55.9 ± 5.3A | 63.4 ± 6.6A | 0.1 ± 0.0A | 3583.9 ± 335.0B | 2604.9 ± 228.9B | 157.0 ± 20.4B | 9.4 ± 1.4B |
LSD of means at p ≤ 0.05 and levels of significance for a two-factor ANOVA | |||||||||||||
NLE | ns | ns | ns | ns | ns | ns | * | ** | * | ns | ** | * | * |
Foc | ns | ns | ns | ns | ns | ** | ns | ns | ns | ** | ** | * | ** |
NLE X Foc | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, U.; Zaharah, S.S.; Ismail, S.I.; Musa, M.H. Effect of Aqueous Neem Leaf Extracts in Controlling Fusarium Wilt, Soil Physicochemical Properties and Growth Performance of Banana (Musa spp.). Sustainability 2021, 13, 12335. https://doi.org/10.3390/su132212335
Yi U, Zaharah SS, Ismail SI, Musa MH. Effect of Aqueous Neem Leaf Extracts in Controlling Fusarium Wilt, Soil Physicochemical Properties and Growth Performance of Banana (Musa spp.). Sustainability. 2021; 13(22):12335. https://doi.org/10.3390/su132212335
Chicago/Turabian StyleYi, Ung, Sakimin Siti Zaharah, Siti Izera Ismail, and Mohamed Hanafi Musa. 2021. "Effect of Aqueous Neem Leaf Extracts in Controlling Fusarium Wilt, Soil Physicochemical Properties and Growth Performance of Banana (Musa spp.)" Sustainability 13, no. 22: 12335. https://doi.org/10.3390/su132212335
APA StyleYi, U., Zaharah, S. S., Ismail, S. I., & Musa, M. H. (2021). Effect of Aqueous Neem Leaf Extracts in Controlling Fusarium Wilt, Soil Physicochemical Properties and Growth Performance of Banana (Musa spp.). Sustainability, 13(22), 12335. https://doi.org/10.3390/su132212335