Stability Assessment and Geomorphological Evolution of Sea Natural Arches by Geophysical Measurement: The Case Study of Wied Il-Mielah Window (Gozo, Malta)
Abstract
:1. Introduction
2. Geological Settings
- Lower Coralline Limestone Formation (upper Oligocene), characterized by a pale grey limestone with abundant fossil corals and marine calcareous algae forming sheer cliffs up to 140 m;
- Blue Clay Formation (Miocene, Langhian–Tortonian), a unit mainly characterized by alternating layer of silty sands, dark-grey marls or clays, 20 m to 75 m thick;
- Upper Coralline Limestone Formation (upper Miocene, Tortonian to early Messinian), a pale grey limestone unit, very similar to the Lower Coralline Limestone, 10–170 m thick.
3. Geomorphology and Coastal Evolution
- Fragmented mesas of the Upper Coralline Limestone;
- Low-lying plains and hills that have developed on the Globigerina Limestone. Between the two, there are sweeping slopes which mark outcrops of the Blue Clay;
- Low-lying flat-topped hills, locally known as Mejda, where complete erosion of the Blue Clay exposed the planar top of the Upper Globigerina Limestone Member;
- Slopes characterized by differential erosion with possible triggers of natural arch formation mechanisms along the northern coast of the island where the Globigerina Limestone outcrops.
4. Materials and Methods
4.1. Geophysical Prospecting: GPR
4.2. Stability Analysis
4.3. Seismic Data Acquisition and Analysis
4.4. 3D Model Reconstruction
5. Results and Discussion
5.1. Ground Penetrating Radar Data Acquisition and Analysis
- -
- Background removal filter: the average trace was subtracted to remove the background contribution;
- -
- Kirchhoff migration, performed (as customarily) to concentrate the diffracted energy into bright spots;
- -
- Merging of the data at 200 and 600 MHz, in order to obtain a good compromise between resolution and depth (Figure 9).
- -
- Extraction of a particular complex signal attribute (trace envelope): the grid data are converted to the reflection strength or amplitude envelope by a Hilbert transformation.
- -
- Thresholding: a threshold value must be entered. Hence all amplitudes greater/equal than this value are considered, whereas the lower ones are put equal to zero.
- -
- Three-dimensional contouring by means of an iso-amplitude surface.
5.2. Seismic Data Results
5.3. Stability Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coratza, P.; Gauci, R.; Schembri, J.; Soldati, M.; Tonelli, C. Bridging natural and cultural values of sites with outstanding scenery: Evidence from Gozo, Maltese Islands. Geoheritage 2016, 8, 91–103. [Google Scholar] [CrossRef]
- Galea, P.; Bozionelos, G.; D’Amico, S.; Drago, A.; Colica, E. Seismic Signature of the Azure Window Collapse, Gozo, Central Mediterranean. Seismol. Res. Lett. 2018, 89, 1108–1117. [Google Scholar] [CrossRef]
- Leucci, G.; De Giorgi, L. Integrated geophysical surveys to assess the structural conditions of a karstic cave of archaeological importance. Nat. Hazards Earth Syst. Sci. 2005, 5, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Budetta, P.; De Luca, C.; Simonelli, M.G.; Guarracino, F. Geological analysis and stability assessment of a sea arch in Palinuro, southern Italy. Eng. Geol. 2019, 250, 142–154. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Pérez-Briceño, P.M. Geomorphology of the Caribbean coast of Costa Rica. J. Maps 2019, 15, 363–371. [Google Scholar] [CrossRef]
- Sánchez, M.A.; Foyo, A.; Tomillo, C.; Iriarte, E. Geological risk assessment of the area surrounding Altamira Cave: A proposed Natural Risk Index and Safety Factor for protection of prehistoric caves. Eng. Geol. 2007, 94, 180–200. [Google Scholar] [CrossRef]
- Veni, G. A geomorphological strategy for conducting environmental impact assessments in karst areas. Geomorphology 1999, 31, 151–180. [Google Scholar] [CrossRef]
- Lin, Z.; Hatherly, P.; Vozoff, K.; Engels, O.G.; Smith, G.H. Joint application of seismic and electromagnetic methods to coal characterisation at west cliff colliery, New South Wales. Explor. Geophys. 1996, 27, 205–215. [Google Scholar] [CrossRef]
- Dobroka, M.; Gyulai, A.; Ormos, T.; Csokas, J.; Dresen, L. Join inversion algorithm of seismic and geoelectric data recorded in an underground coal mine. Geophys. Prospect. 1991, 39, 643–666. [Google Scholar] [CrossRef]
- Heikkinen, E.J.; Saksa, P.J. Integrating geophysical data into bedrock model in site characterization for nuclear waste disposal; Expanded Abstracts. In Proceedings of the 60th EAGE Conference and Exhibition, Leipzig, Germany, 8–12 June 1998; Volume I. Session 4–49. [Google Scholar]
- Santarato, G.; Nasser, A.; Chiara, P. Prospezioni geofisiche in area urbana. Geol. Tec. Ambiente 1998, 4/98, 43–52. [Google Scholar]
- Cardarelli, E.; Marrone, C.; Orlando, L. Evaluation of tunnel stability using integrated geophysical methods. J. Appl. Geophys. 2003, 52, 93–102. [Google Scholar] [CrossRef]
- Marsico, A.; Sabato, L.; Spalluto, L.; Infante, M.; Nitti, A. Integrated Geological and Digital Surveys to Know, Preserve and Promote a Geoheritage: The Sea Cliff of Vignanotica Bay (Gargano Promontory, Southern Italy). Geoheritage 2016, 8, 371–380. [Google Scholar] [CrossRef]
- Mercerat, E.D.; Payeur, J.B.; Bertrand, E.; Malascrabes, M.; Pernoud, M.; Chamberland, Y. Deciphering the dynamics of a heterogeneous sea cliff using ambient vibrations: Case study of the Sutta-Rocca overhang (southern Corsica, France). Geophys. J. Int. 2021, 224, 813–824. [Google Scholar] [CrossRef]
- Spilotro, G.; Pellicani, R.; Miccoli, D.; Canora, F. Analysis of interaction between waves and cliff along the adriatic coast of polignano (Apulia, Italy). In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 5. [Google Scholar] [CrossRef] [Green Version]
- Pellicani, R.; Argentiero, I.; Spilotro, G. A preliminary method for assessing sea cliff instability hazard: Study cases along apulian coastline. In Computational Science and Its Applications—ICCSA 2018; Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10961. [Google Scholar] [CrossRef]
- Leucci, G.; De Giorgi, L. Microgravimetric and ground penetrating radar geophysical methods to map the shallow karstic cavities network in a coastal area (Marina di Capilungo, Lecce—Italy). Explor. Geophys. 2010, 41, 178–188. [Google Scholar] [CrossRef]
- Crampin, S.; McGonigle, R.; Bamford, D. Estimatine crack parameters from observation of P-wave velocity anisotropy. Geophysics 1980, 45, 361–375. [Google Scholar] [CrossRef]
- Boadu, F.K. Fractured rock mass characterization parameters and seismic properties: Analytical studies. J. Appl. Geophys. 1997, 36, 1–19. [Google Scholar] [CrossRef]
- Kahraman, S. The effects of fracture roughness on P-wave velocity. Eng. Geol. 2002, 63, 347–350. [Google Scholar] [CrossRef]
- Pedley, H.M.; House, M.R.; Waugh, B. The geology of Malta and Gozo. Proc. Geol. Assoc. 1976, 87, 325–341. [Google Scholar] [CrossRef]
- Baldassini, N.; Mazzei, R.; Foresi, L.M.; Riforgiato, F.; Salvatorini, G. Calcareous plankton biochronostartigraphy of the Maltese Lower Globigerina Limestone member. Acta Geol. Pol. 2013, 63, 105–135. [Google Scholar]
- Giannelli, L.; Salvatorini, G. I Foraminiferi planctonici dei sedimenti terziari dell’Arcipelago Maltese. Biostratigrafia del ‘Globigerina Limestone’. I. Atti della Società Toscana di Scienze Naturali. Mem. Ser. A 1972, 79, 49–74. [Google Scholar]
- Hunt, C.O.; Schembri, P.J. Quaternary environments and biogeography of the Maltese Islands. In Facets of Maltese Prehistory; Malta: The Prehistoric Society of Malta; Mifsud, A., Ventura, C.S., Eds.; Proprint: Mosta, Malta, 1999; pp. 41–75. [Google Scholar]
- Pedley, H.M. A New Lithostratigraphical and Mineral Resources Palaeoenvironmental Interpretation for the Coralline Limestone Formations (Miocene) of the Maltese Islands; Her Majesty’s Stationery Office: London, UK, 1978. [Google Scholar]
- House, M.R.; Dunham, K.C.; Wigglesworth, J.C. Geology and structure of the Maltese Islands. In Malta: A Background for Development; Jones, H.B., Dewdney, J., Fisher, W.B., Eds.; Durham University Press: Durham, UK, 1961; pp. 25–47. [Google Scholar]
- Oil Exploration Directorate. Geological Map of the Maltese Islands; Office of the Prime Minister: Valletta, Malta, 1993.
- Pedley, M.; Hughes Clarke, M.; Galea, P. Limestone Isles in a Crystal Sea: The Geology of the Maltese Islands; Publishers Enterprises Group: San Gwann, Malta, 2002. [Google Scholar]
- Micallef, A.; Foglini, F.; Le Bas, T.; Angeletti, L.; Maselli, V.; Pasuto, A.; Taviani, M. The submerged paleolandscape of the Maltese Islands: Morphology, evolution and relation to Quaternary environmental change. Mar. Geol. 2013, 335, 129–147. [Google Scholar] [CrossRef]
- Persico, R. Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing; Wiley&Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Conyers, L.B.; Goodman, D. Ground-Penetrating Radar: An Introduction for Archaeologists; AltaMira: Walnut Creek, CA, USA, 1997. [Google Scholar]
- Leucci, G.; Masini, N.; Persico, R.; Soldovieri, F. GPR and Sonic Tomography for Structural Restoration: The Case of the Cathedral of Tricarico. J. Geophys. Eng. 2011, 8, 76–92. [Google Scholar] [CrossRef]
- Leucci, G. Nondestructive Testing for Archaeology and Cultural Heritage: A Practical Guide and New Perspective; Springer: Berlin/Heidelberg, Germany, 2019; p. 217. [Google Scholar]
- Leucci, G. Advances in Geophysical Methods Applied to Forensic Investigations: New Developments in Acquisition and Data Analysis Methodologies; Springer: Berlin/Heidelberg, Germany, 2020; p. 200. [Google Scholar]
- Grandjean, G.; Gourry, J.C. GPR data processing for 3D fracture mapping in a marble quarry (Thassos, Greece). J. Appl. Geophys. 1996, 36, 19–30. [Google Scholar] [CrossRef]
- Mertens, L.; Persico, R.; Matera, L.; Lambot, L. Smart automated detection of reflection hyperbolas in complex GPR images with No a Priori Knowledge on the Medium. IEEE Trans. Geosci. Remote Sens. 2016, 54, 580–596. [Google Scholar] [CrossRef]
- Persico, R.; Leucci, G.; Matera, L.; De Giorgi, L.; Soldovieri, F.; Cataldo, A.; Cannazza, G.; De Benedetto, E. Effect of the height of the observation line on the diffraction curve in GPR prospecting. Near Surf. Geophys. 2015, 13, 243–252. [Google Scholar] [CrossRef]
- Lazzari, M.; De Giorgi, L.; Ceraudo, G.; Persico, R. Geoprospecting survey in the archaeological site of Aquinum (Lazio, central Italy). Surv. Geophys. 2018, 39, 1167–1180. [Google Scholar] [CrossRef]
- De Giorgi, L.; Lazzari, M.; Leucci, G.; Persico, R. Geomorphological and non-destructive GPR survey for the conservation of frescos in the rupestrian churches of Matera (Basilicata, southern Italy). Archaeol. Prospect. 2020, 1–9. [Google Scholar] [CrossRef]
- Leucci, G.; De Giorgi, L. Experimental studies on the effects of fracture on the P and S wave velocity propagation in sedimentary rock (“Calcarenite del Salento”). Eng. Geol. 2006, 84, 130–142. [Google Scholar] [CrossRef]
- Hutchinson, D.J.; Phillips, C.; Cascante, G. Risk considerations for crown pillar stability assessment for mine closure planning. Geotech. Geol. Eng. 2002, 20, 41–64. [Google Scholar] [CrossRef]
- Barton, N. Some new Q-value correlations to assist in site characterisation and tunnel design. Int. J. Rock Mech. Min. Sci. 2002, 39, 185–216. [Google Scholar] [CrossRef]
- Carter, T.G. A new approach to surface crown pillar design. In Proceedings of the 16th Canadian Rock Mechanics Symposium, Sudbury, ON, Canada, 15–19 June 1992; pp. 75–84. [Google Scholar]
- Barton, N.; Lien, R.; Lunde, J. Engineering classification of rockmasses for the design of tunnel support. Rock Mech. 1974, 6, 189–236. [Google Scholar] [CrossRef]
- Gennarelli, G.; Catapano, I.; Soldovieri, F.; Persico, R. On the Achievable Imaging Performance in Full 3-D Linear Inverse Scattering. IEEE Trans. Antennas Propag. 2015, 63, 1150–1155. [Google Scholar] [CrossRef]
- Gabellone, F.; Leucci, G.; Masini, N.; Persico, R.; Quarta, G.; Grasso, F. Nondestructive Prospecting and virtual reconstruction of the chapel of the Holy Spirit in Lecce, Italy. Near Surf. Geophys. 2013, 11, 231–238. [Google Scholar] [CrossRef]
- Farrugia, D.; Paolucci, E.; D’Amico, S.; Galea, P. Inversion of surface-wave data for subsurface shear-wave velocity profiles characterised by a thick buried low-velocity layer. Geophys. J. Int. 2016, 206, 1221–1231. [Google Scholar] [CrossRef] [Green Version]
- Carter, T.G.; Miller, R.I. Crown pillar risk assessment planning aid for cost-effective mine closure remediation. Trans. Inst. Min. Metall. 1995, 104, A41–A57. [Google Scholar]
- El Gamal, A.; Eltoukhy, H. CMOS image sensors. Engineering. IEEE Circuits Devices Mag. 2005, 21, 6–20. [Google Scholar] [CrossRef]
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S.; Galea, P. Engineering geological zonation of a complex landslide system through seismic ambient noise measurements at the Selmun Promontory (Malta). Geophys. J. Int. 2018, 213, 1146–1161. [Google Scholar] [CrossRef]
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S.; Galea, P. Investigation of cliff instability at Għajn Ħadid Tower (Selmun Promontory, Malta) by integrated passive seismic techniques. J. Seismol. 2020, 24, 897–916. [Google Scholar] [CrossRef]
- Acerra, C.; Havenith, H.B.; Zacharopoulos, S. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation; (No. European Commission–EVG1-CT-2000-00026 SESAME); European Commission: Brussels, Belgium, 2004. [Google Scholar]
- Konno, K.; Ohmachi, T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seism. Soc. Am. 1998, 88, 228–241. [Google Scholar] [CrossRef]
- Capon, J. High-Resolution Frequency-Wavenumber Spectrum Analysis. Proc. IEEE 1969, 57, 1408–1418. [Google Scholar] [CrossRef] [Green Version]
- Granados-Bolaños, S.; Quesada-Román, A.; Alvarado, G.E. Low-cost UAV applications in dynamic tropical volcanic landforms. J. Volcanol. Geotherm. Res. 2021, 410, 107143. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Buyer, A.; Aichinger, S.; Schubert, W. Applying photogrammetry and semi-automated joint mapping for rock mass characterization. Eng. Geol. 2020, 264, 105332. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Chen, J.; Zhu, H. Automatic characterization of rock mass discontinuities using 3D point clouds. Eng. Geol. 2019, 259, 105131. [Google Scholar] [CrossRef]
- Sandmeier, K.J. Reflexw 7.0 Manual, Sandmeier Software; Karlsruhe, Germany, 2018; Available online: https://www.sandmeier-geo.de/Download/reflexw_manual_a4.pdf (accessed on 7 June 2021).
- Conyers, L.B.; Goodman, D. Ground Penetrating Radar: An Introduction for Archaeologist; Alta Mira Press: Lanham, MD, USA, 1997. [Google Scholar]
- Panzera, F.; D’Amico, S.; Galea, P.; Lombardo, G.; Gallipoli, R.; Pace, S. Geophysical measurements for site response investigation: Preliminary results on the island of Malta. Boll. Geo. Teo. Appl. 2013, 52, 111–128. [Google Scholar] [CrossRef]
- Leucci, G. I Metodi Elettromagnetico Impulsivo, Elettrico e Sismico Tomografico a Rifrazione per lo Studio di Problematiche Ambientali: Sviluppi Metodologici e Applicazioni. Ph.D. Thesis, University of Messina, Messina, Italy, 2004. [Google Scholar]
- Colica, E.; D’Amico, S.; Iannucci, R.; Martino, S.; Gauci, A.; Galone, L.; Galea, P.; Paciello, A. Using unmanned aerial vehicle photogrammetry for digital geological surveys: Case study of Selmun promontory, northern of Malta. Environ. Earth Sci. 2021, 80, 551. [Google Scholar] [CrossRef]
- Randazzo, G.; Italiano, F.; Micallef, A.; Tomasello, A.; Cassetti, F.P.; Zammit, A.; D’Amico, S.; Saliba, O.; Cascio, M.; Cavallaro, F.; et al. WebGIS Implementation for Dynamic Mapping and Visualization of Coastal Geospatial Data: A Case Study of BESS Project. Appl. Sci. 2021, 11, 8233. [Google Scholar] [CrossRef]
- Lazzari, M.; Lazzari, S. Geological and Geomorphological Hazard in Historical and Archaeological Sites of the Mediterranean Area: Knowledge, Forecasting and Mitigation. Disaster Adv. 2012, 5, 63–71. [Google Scholar]
Class | Prob. of Failure (%) | Minimum Factor of Safety | Serviceable Life | Years |
---|---|---|---|---|
A | 50–100 | <1 | Effectively zero | 0.5 |
B | 20–50 | 1 | Very very short term | 1 |
C | 10–20 | 1.2 | Very short term | 2–5 |
D | 5–10 | 1.5 | Short term | 5–10 |
E | 1.5–5 | 1.8 | Medium term | 15–20 |
F | 0.5–1.5 | 2 | Long term | 50–100 |
G | <0.5 | >>2 | Very long term | >100 |
Rock Thickness (m) | Two-Way Time Windows (ns) | Calculated Velocity Using Equation (1) (m/ns) |
---|---|---|
5.5 | 90 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leucci, G.; Persico, R.; De Giorgi, L.; Lazzari, M.; Colica, E.; Martino, S.; Iannucci, R.; Galone, L.; D’Amico, S. Stability Assessment and Geomorphological Evolution of Sea Natural Arches by Geophysical Measurement: The Case Study of Wied Il-Mielah Window (Gozo, Malta). Sustainability 2021, 13, 12538. https://doi.org/10.3390/su132212538
Leucci G, Persico R, De Giorgi L, Lazzari M, Colica E, Martino S, Iannucci R, Galone L, D’Amico S. Stability Assessment and Geomorphological Evolution of Sea Natural Arches by Geophysical Measurement: The Case Study of Wied Il-Mielah Window (Gozo, Malta). Sustainability. 2021; 13(22):12538. https://doi.org/10.3390/su132212538
Chicago/Turabian StyleLeucci, Giovanni, Raffaele Persico, Lara De Giorgi, Maurizio Lazzari, Emanuele Colica, Salvatore Martino, Roberto Iannucci, Luciano Galone, and Sebastiano D’Amico. 2021. "Stability Assessment and Geomorphological Evolution of Sea Natural Arches by Geophysical Measurement: The Case Study of Wied Il-Mielah Window (Gozo, Malta)" Sustainability 13, no. 22: 12538. https://doi.org/10.3390/su132212538
APA StyleLeucci, G., Persico, R., De Giorgi, L., Lazzari, M., Colica, E., Martino, S., Iannucci, R., Galone, L., & D’Amico, S. (2021). Stability Assessment and Geomorphological Evolution of Sea Natural Arches by Geophysical Measurement: The Case Study of Wied Il-Mielah Window (Gozo, Malta). Sustainability, 13(22), 12538. https://doi.org/10.3390/su132212538