Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management
Abstract
:1. Introduction
2. Methodology
3. Four Phases of Disaster Management
4. Artificial Intelligence and Disaster Management
5. Geographic Information Systems and Disaster Management
6. Geographic Information Systems and Flood Management
7. Application of a Geographic Information System in Managing Diseases in Crisis Areas
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ajzen, I. The theory of planned behavior: Frequently asked questions. Hum. Behav. Emerg. Technol. 2020, 2, 14–324. [Google Scholar] [CrossRef]
- Rehman, S.; Sahana, M.; Hong, H.; Sajjad, H.; Ahmed, B.B. A systematic review on approaches and methods used for flood vulnerability assessment: Frame work for future research. Nat. Hazards 2019, 96, 975–998. [Google Scholar] [CrossRef]
- Abid, S.K.; Sulaiman, N.; Mahmud, N.P.; Nazir, U.; Adnan, N.A. A review on the application of remote sensing and geographic information system in flood crisis management. J. Crit. Rev. 2020, 7, 491–496. [Google Scholar]
- Pielke, R. Tracking progress on the economic costs of disasters under the indicators of the sustainable development goals. Environ. Hazards 2019, 18, 1–6. [Google Scholar] [CrossRef]
- Nunavath, V.; Goodwin, M. The Role of Artificial Intelligence in Social Media Big data Analytics for Disaster Management—Initial Results of a Systematic Literature Review. In Proceedings of the 2018 5th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Sendai, Japan, 4–7 December 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Ogie, R.I.; Rho, J.C.; Clarke, R.J. Artificial Intelligence in Disaster Risk Communication: A Systematic Literature Review. In Proceedings of the 2018 5th International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Sendai, Japan, 4–7 December 2018; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Nunavath, V.; Goodwin, M. The Use of Artificial Intelligence in Disaster Management—A Systematic Literature Review. In Proceedings of the 2019 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Paris, France, 18–20 December 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Abid, M.; Isleem, H.F.; Shahzada, K.; Khan, A.U.; Kamal Shah, M.; Saeed, S.; Aslam, F. Seismic Hazard Assessment of Shigo Kas Hydro-Power Project (Khyber Pakhtunkhwa, Pakistan). Buildings 2021, 11, 349. [Google Scholar] [CrossRef]
- Yang, T.-H.; Liu, W.-C. A General Overview of the Risk-Reduction Strategies for Floods and Droughts. Sustainability 2020, 12, 2687. [Google Scholar] [CrossRef] [Green Version]
- Abid, S.K.; Sulaiman, N.; Wei, C.S. Building Resilient Future: Information Technology and Disaster Management—A Malaysian Perspective. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Jaipur, India, 2021. [Google Scholar] [CrossRef]
- Costache, R.; Bui, D.T. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania. Sci. Total Environ. 2019, 691, 1098–1118. [Google Scholar] [CrossRef] [PubMed]
- Arinta, R.R.; Andi, E.W.R. Natural disaster application on big data and machine learning: A review. In Proceedings of the 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 20–21 November 2019; Volume 6, pp. 249–254. [Google Scholar] [CrossRef]
- Chen, J.; Li, Q.; Wang, H.; Deng, M. A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2020, 17, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, W.; Bocchini, P.; Davison, B.D. Applications of artificial intelligence for disaster management. Nat. Hazards 2020, 103, 2631–2689. [Google Scholar] [CrossRef]
- Kumar, T.V.V.; Sud, K. AI and Robotics in Disaster Studies; Palgrave Macmillan: Singapore, 2020. [Google Scholar] [CrossRef]
- Canon, M.J.; Satuito, A.; Sy, C. Determining Disaster Risk Management Priorities through a Neural Network-Based Text Classifier. In Proceedings of the 2018 International Symposium on Computer, Consumer and Control (IS3C), Taichung, Taiwan, 6–8 December 2018; pp. 237–241. [Google Scholar] [CrossRef]
- Jung, D.; Tuan, V.T.; Tran, D.Q.; Park, M.; Park, S. Conceptual Framework of an Intelligent Decision Support System for Smart City Disaster Management. Appl. Sci. 2020, 10, 666. [Google Scholar] [CrossRef] [Green Version]
- Saravi, S.; Kalawsky, R.; Joannou, D.; Casado, M.R.; Fu, G.; Meng, F. Use of Artificial Intelligence to Improve Resilience and Preparedness against Adverse Flood Events. Water 2019, 11, 973. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Park, S.H.; Park, L.W.; Park, S.; Lee, S.; Lee, T.; Lee, S.H.; Jang, H.; Kim, S.M.; Chang, H.; et al. Design and Implementation of a Smart IoT Based Building and Town Disaster Management System in Smart City Infrastructure. Appl. Sci. 2018, 8, 2239. [Google Scholar] [CrossRef] [Green Version]
- Mosavi, A.; Ozturk, P.; Chau, K. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, B.J.; Karimi, H.A. Deep Learning-Enabled Semantic Inference of Individual Building Damage Magnitude from Satellite Images. Algorithms 2020, 13, 195. [Google Scholar] [CrossRef]
- Antoniou, V.; Potsiou, C. A Deep Learning Method to Accelerate the Disaster Response Process. Remote Sens. 2020, 12, 544. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, M.; Sarkar, S.; Mukherjee, A.; Shamsudduha, M.; Ahmed, K.M.; Bhattacharya, A. A Modeling regional-scale groundwater arsenic hazard in the transboundary Ganges River Delta, India and Bangladesh: Infusing physically-based model with machine learning. Sci. Total Environ. 2020, 748, 141107. [Google Scholar] [CrossRef]
- Park, S.; Oh, Y.; Hong, D. Disaster response and recovery from the perspective of robotics. Int. J. Precis. Eng. Manuf. 2017, 18, 1475–1482. [Google Scholar] [CrossRef]
- Noymanee, J.; Nikitin, N.O.; Kalyuzhnaya, A.V. Urban Pluvial Flood Forecasting using Open Data with Machine Learning Techniques in Pattani Basin. Procedia Comput. Sci. 2017, 119, 288–297. [Google Scholar] [CrossRef]
- Axel, C.; van Aardt, J.; Axel, C.; van Aardt, J. Building damage assessment using airborne lidar. J. Appl. Remote Sens. 2021, 11, 046024. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, N.; Mahmud, N.P.N.; Nazir, U.; Latib, S.K.K.A.; Hafidz, H.F.M.; Abid, S.K. The Role of Autonomous Robots in Fourth Industrial Revolution (4IR) as an Approach of Sustainable Development Goals (SDG9): Industry, Innovation and Infrastructure in Handling the Effect of COVID-19 Outbreak. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Jaipur, India, 2021; Volume 775, p. 12017. [Google Scholar] [CrossRef]
- Lee, M.-F.R.; Chien, T.-W. Artificial Intelligence and Internet of Things for Robotic Disaster Response. In Proceedings of the 2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS), Taipei, Taiwan, 19–21 August 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Erdelj, M.; Natalizio, E.; Chowdhury, K.R.; Akyildiz, I.F. Help from the Sky: Leveraging UAVs for Disaster Management. In IEEE Pervasive Computing; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; Volume 16, pp. 24–32. [Google Scholar] [CrossRef]
- Villodre, J.; Criado, J.I. User roles for emergency management in social media: Understanding actors’ behavior during the 2018 Majorca Island flash floods. Gov. Inf. Q. 2020, 37, 101521. [Google Scholar] [CrossRef]
- Aisha, T.S.; Wok, S.; Manaf, A.M.A.; Ismail, R. Exploring the Use of Social Media during the 2014 Flood in Malaysia. Procedia-Soc. Behav. Sci. 2015, 211, 931–937. [Google Scholar] [CrossRef] [Green Version]
- Shaluf, I.M.; Fakharul-razi, A.; Said, A.M.; Sharif, R.; Mustapha, S. Technological man-made disaster precondition phase model for major accidents. Disaster Prev. Manag. Int. J. 2002, 11, 380–388. [Google Scholar] [CrossRef]
- Ali, M.; Zhang, L.; Zhang, Z.; Zada, M.; Begum, A.; Han, H.; Ariza-Montes, A.; Vega-Muñoz, A. Can Leaders’ Humility Enhance Project Management Effectiveness? Interactive Effect of Top Management Support. Sustainability 2021, 13, 9526. [Google Scholar] [CrossRef]
- Khouj, J.M.M.; López, C.; Sarkaria, S. Disaster management in real time simulation using machine learning. In Proceedings of the 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, ON, Canada, 8–11 May 2011; pp. 1507–1510. [Google Scholar]
- Roslan, A.F.; Fernando, T.; Biscaya, S.; Sulaiman, N. Transformation towards Risk-Sensitive Urban Development: A Systematic Review of the Issues and Challenges. Sustainability 2021, 13, 10631. [Google Scholar] [CrossRef]
- Sakurai, M.; Murayama, Y. Information technologies and disaster management–Benefits and issues. Prog. Disaster Sci. 2019, 2. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Qayyum, S.; Khan, S.I.; Mojtahedi, M. UAVs in Disaster Management: Application of Integrated Aerial Imagery and Convolutional Neural Network for Flood Detection. Sustainability 2021, 13, 7547. [Google Scholar] [CrossRef]
- Oakley, M.; Himmelweit, S.M.; Leinster, P.; Casado, M.R. Protection Motivation Theory: A Proposed Theoretical Extension and Moving beyond Rationality—The Case of Flooding. Water 2020, 12, 1848. [Google Scholar] [CrossRef]
- Kabir, M.Y.; Gruzdev, S.; Madria, S. STIMULATE: A System for Real-time Information Acquisition and Learning for Disaster Management. In Proceedings of the 2020 21st IEEE International Conference on Mobile Data Management (MDM), Versailles, France, 30 June–3 July 2020; pp. 186–193. [Google Scholar] [CrossRef]
- Yang, L.; Cervone, G. Analysis of remote sensing imagery for disaster assessment using deep learning: A case study of flooding event. Soft Comput. 2019, 23, 13393–13408. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Merghadi, A.; Shirzadi, A.; Nguyen, A.; Hussain, Y.; Avtar, R.; Chen, Y.; Pham, B.T.; Yamagishi, H. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci. Total Environ. 2020, 720, 137320. [Google Scholar] [CrossRef]
- Yao, J.; Wang, P.; Wang, G.; Shrestha, S.; Xue, B.; Sun, W. Establishing a time series trend structure model to mine potential hydrological information from hydrometeorological time series data. Sci. Total Environ. 2020, 698, 134227. [Google Scholar] [CrossRef]
- Aswin, S.; Geetha, P.; Vinayakumar, R. Deep Learning Models for the Prediction of Rainfall. In Proceedings of the 2018 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 3–5 April 2018; pp. 657–661. [Google Scholar] [CrossRef]
- Sulistijono, I.A.; Risnumawan, A. From concrete to abstract: Multilayer neural networks for disaster victims detection. In Proceedings of the 2016 International Electronics Symposium (IES), Denpasar, Indonesia, 29–30 September 2016; pp. 93–98. [Google Scholar] [CrossRef]
- Madichetty, S.; Sridevi, M. Detecting Informative Tweets during Disaster using Deep Neural Networks. In Proceedings of the 2019 11th International Conference on Communication Systems & Networks (COMSNETS), Bengaluru, India, 7–11 January 2019; pp. 709–713. [Google Scholar] [CrossRef]
- Ci, T.; Liu, Z.; Wang, Y. Assessment of the Degree of Building Damage Caused by Disaster Using Convolutional Neural Networks in Combination with Ordinal Regression. Remote Sens. 2019, 11, 2858. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Sun, E.; Meng, K.; Li, M.; Zhang, Y. Deep Q-Learning for Routing Schemes in SDN-Based Data Center Networks. IEEE Access 2020, 8, 103491–103499. [Google Scholar] [CrossRef]
- Baldazo, D.; Parras, J.; Zazo, S. Decentralized Multi-Agent Deep Reinforcement Learning in Swarms of Drones for Flood Monitoring. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Polvara, R.; Patacchiola, M.; Hanheide, M.; Neumann, G. Sim-to-Real Quadrotor Landing via Sequential Deep Q-Networks and Domain Randomization. Robotics 2020, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Jena, R.; Pradhan, B.; Beydoun, G.; Alamri, A.M.; Ardiansyah; Nizamuddin; Sofyan, H. Earthquake hazard and risk assessment using machine learning approaches at Palu, Indonesia. Sci. Total Environ. 2020, 749, 141582. [Google Scholar] [CrossRef]
- Deshmukh, K.H.; Bamnote, G.R. Role of Deep Learning in Disaster Prediction BT. In Proceedings of the Integrated Intelligence Enable Networks and Computing; Algorithms for Intelligent Systems; Springer: Singapore, 2021; pp. 697–705. [Google Scholar] [CrossRef]
- Doshi, J.; Basu, S.; Pang, G. From Satellite Imagery to Disaster Insights. no. Nips. 2018. Available online: http://arxiv.org/abs/1812.07033 (accessed on 17 June 2021).
- Chen, W.; Shirzadi, A.; Shahabi, H.; Ahmad, B.B.; Zhang, S.; Hong, H.; Zhang, N. A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomat. Nat. Hazards Risk 2017, 8, 1955–1977. [Google Scholar] [CrossRef] [Green Version]
- Amit, S.N.K.B.; Aoki, Y. Disaster detection from aerial imagery with convolutional neural network. In Proceedings of the 2017 International Electronics Symposium on Knowledge Creation and Intelligent Computing (IES-KCIC), Surabaya, Indonesia, 26–27 September 2017; pp. 239–245. [Google Scholar] [CrossRef]
- Ahmad, K.; Konstantin, P.; Riegler, M.; Conci, N.; Holversen, P. CNN and GAN based satellite and social media data fusion for disaster detection. CEUR Workshop Proc. 2017, 1984, 13–15. [Google Scholar]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Nex, F.; Vosselman, G. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning. ISPRS J. Photogramm. Remote Sens. 2018, 140, 45–59. [Google Scholar] [CrossRef]
- Duarte, D.; Nex, F.; Kerle, N.; Vosselman, G. Satellite Image Classification of Building Damages Using Airborne. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, IV, 4–7. [Google Scholar]
- Nex, F.; Duarte, D.; Steenbeek, A.; Kerle, N. Towards Real-Time Building Damage Mapping with Low-Cost UAV Solutions. Remote Sens. 2019, 11, 287. [Google Scholar] [CrossRef] [Green Version]
- Syifa, M.; Kadavi, P.R.; Lee, C.-W. An Artificial Intelligence Application for Post-Earthquake Damage Mapping in Palu, Central Sulawesi, Indonesia. Sensors 2019, 19, 542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Collaborative Multi-Agency Platform for Building Resilient Communities. 2019. Available online: https://mobilisesarawak.uthm.edu.my/ (accessed on 20 May 2021).
- Albrecht, C.M.; Elmegreen, B.; Gunawan, O.; Hamann, H.F.; Klein, L.J.; Lu, S.; Mariano, F.; Siebenschuh, C.; Schmude, J. Next-generation geospatial-temporal information technologies for disaster management. IBM J. Res. Dev. 2002, 64, 5:1–5:12. [Google Scholar] [CrossRef]
- Termeh, S.V.R.; Kornejady, A.; Pourghasemi, H.R.; Keesstra, S. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Sci. Total Environ. 2018, 615, 438–451. [Google Scholar] [CrossRef]
- Abid, S.K.; Sulaiman, N.; Wei, C.S.; Nazir, U. Flood vulnerability and resilience: Exploring the factors that influence flooding in Sarawak. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Kitakyushu, Japan, 2021. [Google Scholar] [CrossRef]
- Fava, P.R.; Fritz, S.; Castellano, A. The Use of Geographic Information Systems for Disaster Risk Reduction Programmes in Africa. Coop. Internazionale COOPI 2010, 1–93. Available online: https://docplayer.net/7068754-The-use-of-geographic-information-systems-for-disaster-risk-reduction-programmes-in-africa-user-manual.html (accessed on 17 June 2021).
- Lai, J.-S.; Tsai, F. Improving GIS-Based Landslide Susceptibility Assessments with Multi-temporal Remote Sensing and Machine Learning. Sensors 2019, 19, 3717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabri, S.; Yeganeh, N. Flood Vulnerability Assessment in Iskandar Malaysia Using Multi-criteria Evaluation and Fuzzy Logic. Res. J. Appl. Sci. Eng. Technol. 2014, 8, 1794–1806. [Google Scholar]
- Kankanamge, N.; Yigitcanlar, T.; Goonetilleke, A. How engaging are disaster management related social media channels? The case of Australian state emergency organizations. Int. J. Disaster Risk Reduct. 2002, 48, 101571. [Google Scholar] [CrossRef]
- Paul, P.K.; Aithal, P.S.; Bhuimali, A.; Tiwary, K.S.; Saavedra, R.; Aremu, B. Geo Information Systems & Remote Sensing: Applications in Environmental Systems & Management Geo Information Systems & Remote Sensing: Applications in Environmental Systems & Management. Int. J. Manag. Technol. Soc. Sci. 2020, 5, 11–18. [Google Scholar]
- Fariza, A.; Rusydi, I.; Hasim, J.A.N.; Basofi, A. Spatial flood risk mapping in east Java, Indonesia, using analytic hierarchy process—Natural breaks classification. In Proceedings of the 2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 1–2 November 2017; pp. 406–411. [Google Scholar] [CrossRef]
- Thomas, C.F. An Introduction to Geographic Information Systems. Libraries 2020, 183–204. [Google Scholar] [CrossRef]
- der Sarkissian, R.; Zaninetti, J.M.; Abdallah, C. The use of geospatial information as support for Disaster Risk Reduction; contextualization to Baalbek-Hermel Governorate/Lebanon. Appl. Geogr. 2019, 111, 102075. [Google Scholar] [CrossRef]
- Hoque, M.A.A.; Tasfia, S.; Ahmed, N.; Pradhan, B. Assessing spatial flood vulnerability at kalapara upazila in Bangladesh using an analytic hierarchy process. Sensors 2019, 19, 1302. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Misra, S.K.; Singh, J.B. The role of GIS-enabled mobile applications in disaster management: A case analysis of cyclone Gaja in India. Int. J. Inf. Manag. 2020, 51, 102030. [Google Scholar] [CrossRef]
- Acquah, P.C.; Asamoah, J.N.; Konadu, D.D. Introduction of geographical information systems (GIS) in technical university education in Ghana: Challenges and the way. Rev. Int. Geogr. Educ. Online 2017, 7, 207–220. [Google Scholar]
- Fernandez, P.; Mourato, S.; Moreira, M. Social vulnerability assessment of flood risk using GIS-based multicriteria decision analysis. A case study of Vila Nova de Gaia. Geomat. Nat. Hazards Risk 2016, 7, 1367–1389. [Google Scholar] [CrossRef] [Green Version]
- Rumson, A.G.; Hallett, S.H. Innovations in the use of data facilitating insurance as a resilience mechanism for coastal flood risk. Sci. Total Environ. 2019, 661, 598–612. [Google Scholar] [CrossRef] [PubMed]
- Ongdas, N.; Akiyanova, F.; Karakulov, Y.; Muratbayeva, A.; Zinabdin, N. Application of HEC-RAS (2D) for Flood Hazard Maps Generation for Yesil (Ishim) River in Kazakhstan. Water 2020, 12, 2672. [Google Scholar] [CrossRef]
- Vojtek, M.; Vojteková, J. Flood hazard and flood risk assessment at the local spatial scale: A case study. Geomat. Nat. Hazards Risk 2016, 7, 1973–1992. [Google Scholar] [CrossRef]
- Curebal, I.; Efe, R.; Ozdemir, H.; Soykan, A.; Sönmez, S. GIS-based approach for flood analysis: Case study of Keçidere flash flood event (Turkey). Geocarto Int. 2016, 31, 355–366. [Google Scholar] [CrossRef]
- Demir, V.; Kisi, O. Flood Hazard Mapping by Using Geographic Information System and Hydraulic Model: Mert River, Samsun, Turkey. Adv. Meteorol. 2016, 2016, 4891015. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, N.; Abid, S.K.; Chan, S.W.; Nazir, U.; Mahmud, N.P.N.; Latib, S.K.K.; Hafidz, H.F.; Shahlal, S.A.; Sapuan, S.H.; Fernando, T. Geospatial Dashboards for Mapping and Tracking of Novel Coronavirus Pandemic. Proc. Int. Conf. Ind. Eng. Oper. Manag. 2020, 59, 2336–2348. [Google Scholar]
- Puttinaovarat, S.; Horkaew, P. Internetworking flood disaster mitigation system based on remote sensing and mobile GIS. Geomat. Nat. Hazards Risk 2020, 11, 1886–1911. [Google Scholar] [CrossRef]
- Darabi, H.; Rahmati, O.; Naghibi, S.A.; Mohammadi, F.; Ahmadisharaf, E.; Kalantari, Z.; Torabi Haghighi, A.; Soleimanpour, S.M.; Tiefenbacher, J.P.; Tien Bui, D. Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood. Geocarto Int. 2021, 1–27. [Google Scholar] [CrossRef]
- Rahmati, O.; Falah, F.; Dayal, K.S.; Deo, R.C.; Mohammadi, F.; Biggs, T.; Moghaddam, D.D.; Naghibi, S.A.; Bui, D.T. Machine learning approaches for spatial modeling of agricultural droughts in the south-east region of Queensland Australia. Sci. Total Environ. 2020, 699, 134230. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhou, Y.; Wang, H.; Jiang, Z. Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse. Sci. Total Environ. 2020, 716, 137077. [Google Scholar] [CrossRef]
- Sulaiman, N.; Abid, S.K.; Chan, S.W.; Nazir, U.; Mahmud, N.P.N.; Latib, S.K.K.; Hafidz, H.F.; Roslan, A.F.; Rahim, N.A. Need for resilience healthcare facilities management (RHFM) in malaysia’s public hospitals. A critical literature review. Proc. Int. Conf. Ind. Eng. Oper. Manag. 2020, 59, 2336–2348. [Google Scholar]
- Boulos, M.N.K.; Geraghty, E.M. Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbr. Int. J. Health Geogr. 2020, 19, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Source | String |
---|---|
Science Direct Web of Science | (“Disaster Management”, OR “Artificial Intelligence”, OR “Flood”, “GIS”, “Remote Sensing”, “machine learning”, deep learning) |
Scopus | TITLE-ABS-KEY (Disaster Management & Artificial Intelligence) AND (LIMIT-TO (PUBYEAR, 2020, 2019, 2018, 2017, 2016, 2015) AND “Disasters”, “Human”, “Disaster Management”, “Disaster Planning”, “Disaster Prevention”, “Risk Management”, “Natural Disasters”, “Floods”, “Remote Sensing”, “Flooding”, “GIS”, “Flood Control”, “Hazard Assessment”, “Artificial intelligence”, “Geographic Information Systems”, “Natural Hazard”, “Disaster Relief”, “Disaster Response”, “Disaster Preparedness”, “Deep Learning”, “Forecasting”, “Artificial Intelligence”, “Mapping”, “Disaster Risk Reduction”, “Disaster Recovery”, “Machine Learning” |
Studies | Purpose of the Analysis | AI Algorithm | Input Data |
---|---|---|---|
[52] | Flood vulnerability mapping and plotting | Artificial neural network | Rainfall data, slope, elevation data, flow accumulation, soil, land use, and geology data layers from the remote sensing technique |
[53] | Landslide disaster exposure mapping | RFEs and NBT classifiers | Satellite spatial images and field survey data |
[54] | Landslide and flood disaster risk reduction | CNN | Satellite spatial images |
[55] | Disaster risk reduction through social media and flood prediction by satellite images | CNN, SVM, RFS, and GVN networks | Social media application and satellite images |
[52] | Disaster assessment in coordinating relief (flood and fire management) | CNN and semantic segmentation models of satellite images | Satellite images |
[56] | Earthquake prediction detection | CNN networks | 3D point cloud |
[57] | Classification of building damages (earthquake) | CNN networks | Satellite and UAV images |
[58] | Near real-time damage mapping | CNN networks | UAV images |
[59] | Post-earthquake damage mapping | ANN (the backpropagation algorithm) and support vector machines (radial basis function, RBF) | Satellite images |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abid, S.K.; Sulaiman, N.; Chan, S.W.; Nazir, U.; Abid, M.; Han, H.; Ariza-Montes, A.; Vega-Muñoz, A. Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management. Sustainability 2021, 13, 12560. https://doi.org/10.3390/su132212560
Abid SK, Sulaiman N, Chan SW, Nazir U, Abid M, Han H, Ariza-Montes A, Vega-Muñoz A. Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management. Sustainability. 2021; 13(22):12560. https://doi.org/10.3390/su132212560
Chicago/Turabian StyleAbid, Sheikh Kamran, Noralfishah Sulaiman, Shiau Wei Chan, Umber Nazir, Muhammad Abid, Heesup Han, Antonio Ariza-Montes, and Alejandro Vega-Muñoz. 2021. "Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management" Sustainability 13, no. 22: 12560. https://doi.org/10.3390/su132212560
APA StyleAbid, S. K., Sulaiman, N., Chan, S. W., Nazir, U., Abid, M., Han, H., Ariza-Montes, A., & Vega-Muñoz, A. (2021). Toward an Integrated Disaster Management Approach: How Artificial Intelligence Can Boost Disaster Management. Sustainability, 13(22), 12560. https://doi.org/10.3390/su132212560