The Impacts of Transportation Sustainability on Higher Education in China
Abstract
:1. Introduction
2. Literature Review
3. Methods
3.1. Data and Variables
3.2. Method
4. Results and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Román, C.; Martin, J.C. Integration of HSR and air transport: Understanding passengers’ preferences. Transp. Res. Part E Logist. Transp. Rev. 2014, 71, 129–141. [Google Scholar] [CrossRef]
- Dargay, J.M.; Clark, S. The determinants of long distance travel in Great Britain. Transp. Res. Part A Policy Pract. 2012, 46, 576–587. [Google Scholar] [CrossRef]
- Mabit, S.L.; Rich, J.; Burge, P.; Potoglou, D. Valuation of travel time for international long-distance travel—Results from the Fehmarn Belt stated choice experiment. J. Transp. Geogr. 2013, 33, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Ortega, E.; Lopez, E.; Monzón, A. Territorial cohesion impacts of high-speed rail under different zoning systems. J. Transp. Geogr. 2014, 34, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Arbués, P.; Baños, J.F.; Mayor, M.; Suárez, P. Determinants of ground transport modal choice in long-distance trips in Spain. Transp. Res. Part A Policy Pract. 2016, 84, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, M.; Malighetti, P.; Paleari, P.; Redondi, R. The role of the air transport service in interregional long-distance students’ mobility in Italy. Transp. Res. Part A Policy Pract. 2016, 93, 66–82. [Google Scholar] [CrossRef]
- Haapanen, M.; Tervo, H. Migration of the highly educated: Evidence from residence spells of university graduates. J. Reg. Sci. 2012, 52, 587–605. [Google Scholar] [CrossRef] [Green Version]
- Ramani, T.; Potter, J.; Deflorio, J.; Zietsman, J.; Reeder, V.; Transportation Research Board; National Cooperative Highway Research Program. A Guidebook for Sustainability Performance Measurement for Transportation Agencies; National Academies Press: Washingotn, DC, USA, 2011. [Google Scholar]
- Herb, C.; Pitfield, D.E. ELASTIC—A methodological framework for identifying and selecting sustainable transport indicators. Transp. Res. Part D Transp. Environ. 2010, 15, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Mahdinia, I.; Habibian, M.; Hatamzadeh, Y.; Gudmundsson, H. An indicator-based algorithm to measure transportation sustainability: A case study of the U.S. states. Ecol. Indic. 2018, 89, 738–754. [Google Scholar] [CrossRef]
- Zhang, M.; Duan, F.; Mao, Z. Empirical Study on the Sustainability of China’s Grain Quality Improvement: The Role of Transportation, Labour, and Agricultural Machinery. Int. J. Environ. Res. Public Health 2018, 15, 271. [Google Scholar] [CrossRef] [Green Version]
- Choy, L.H.T.; Li, V.J. The role of higher education in China’s inclusive urbanization. Cities 2017, 60, 504–510. [Google Scholar] [CrossRef]
- Shen, Y.; Shen, M.; Chen, Q. Measurement of the new economy in China: Big data approach. China Econ. J. 2016, 9, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Radinger-Peer, V.; Pflitsch, G. The role of higher education institutions in regional transition paths towards sustainability. Rev. Reg. Res. 2017, 37, 161–187. [Google Scholar] [CrossRef]
- Joumard, R.; Gudmundsson, H. (Eds.) Indicators of Environmental Sustainability in Transport; Les Collections de l’INRETS; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- Zhang, Y.; Guindon, B. Using satellite remote sensing to survey transport-related urban sustainability Part 1: Methodologies for indicator quantification. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 149–164. [Google Scholar] [CrossRef]
- Li, F.; Liu, X.; Hu, D.; Wang, R.; Yang, W.; Li, D.; Zhao, D. Measurement indicators and an evaluation approach for assessing urban sustainable development: A case study for China’s Jining City. Landsc. Urban Plan. 2009, 90, 134–142. [Google Scholar] [CrossRef]
- Nourry, M. Measuring sustainable development: Some empirical evidence for France from eight alternative indicators. Ecol. Econ. 2008, 67, 441–456. [Google Scholar] [CrossRef]
- Esteban, L.; Alfonso, T.S.; Cardenas, M.L. Systematic Review of Integrated Sustainable Transportation Models for Electric Passenger Vehicle Diffusion. Sustainability 2019, 11, 2513. [Google Scholar] [CrossRef] [Green Version]
- Kraus, L.; Proff, H. Sustainable Urban Transportation Criteria and Measurement—A Systematic Literature Review. Sustainability 2021, 13, 7113. [Google Scholar] [CrossRef]
- Kawabata, M. Job Access and Work among Autoless Adults in Welfare in Los Angeles. Ann. Assoc. Am. Geogr. 2002, 104, 1156–1182. [Google Scholar]
- Gurley, T.; Bruce, D. The effects of car access on employment outcomes for welfare recipients. J. Urban Econ. 2005, 58, 250–272. [Google Scholar] [CrossRef]
- Cervero, R.; Sandoval, O.; Landis, J. Transportation as a Stimulus of Welfare-to-Work: Private Versus Public Mobility. J. Plan. Educ. Res. 2002, 22, 50–63. [Google Scholar] [CrossRef]
- Li, T.; Burke, M.; Dodson, J. Transport impacts of government employment decentralization in an Australian city—Testing scenarios using transport simulation. Socio-Econ. Plan. Sci. 2017, 58, 63–71. [Google Scholar] [CrossRef]
- Jonas, A.E.G.; Goetz, A.R.; Bhattacharjee, S. City-regionalism as a Politics of Collective Provision: Regional Transport Infrastructure in Denver, USA. Urban Stud. 2014, 51, 2444–2465. [Google Scholar] [CrossRef]
- Bretos, I.; Errasti, A.; Marcuello, C. Multinational Expansion of Worker Cooperatives and Their Employment Practices: Markets, Institutions, and Politics in Mondragon. Ind. Labour Relat. Rev. 2019, 72, 580–605. [Google Scholar] [CrossRef]
- McGuinness, S. Overeducation in the Labour Market. J. Econ. Surv. 2006, 20, 387–418. [Google Scholar] [CrossRef]
- Leuven, E.; Oosterbeek, H. Overeducation and Mismatch in the Labour Market. In Handbook of the Economics of Education; Hanushek, E., Welch, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar] [CrossRef] [Green Version]
- Di Paolo, A.; Matas, A.; Raymond, J.L. Job accessibility and job-education mismatch in the metropolitan area of Barcelona. Pap. Reg. Sci. 2017, 96, S91–S112. [Google Scholar] [CrossRef] [Green Version]
- Büchel, F.; Van Ham, M. Overeducation, regional labour markets and spatial flexibility. J. Urban Econ. 2003, 53, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Hensen, M.M.; De Vries, M.R.; Cörvers, F. The role of geographic mobility in reducing education-job mismatches in the Netherlands. Pap. Reg. Sci. 2009, 88, 667–682. [Google Scholar] [CrossRef] [Green Version]
- Jauhiainen, S. Overeducation in the Finnish regional labour markets. Pap. Reg. Sci. 2011, 90, 573–588. [Google Scholar] [CrossRef]
- Ramos, R.; Sanromá, E. Overeducation and Local Labour Markets in Spain. Tijdschr. Econ. Soc. Geogr. 2013, 104, 278–291. [Google Scholar] [CrossRef] [Green Version]
- Croce, G.; Ghignoni, E. Educational mismatch and spatial flexibility in Italian local labour markets. Educ. Econ. 2015, 23, 25–46. [Google Scholar] [CrossRef]
- Devillanova, C. Over-education and spatial flexibility: New evidence from Italian survey data. Pap. Reg. Sci. 2013, 92, 445–464. [Google Scholar] [CrossRef]
- Moreno-Monroy, A.I.; Lovelace, R.; Ramos, F.R. Public transport and school location impacts on educational inequalities: Insights from São Paulo. J. Transp. Geogr. 2018, 67, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Geurs, K.T.; Van Wee, B. Accessibility evaluation of land-use and transport strategies: Review and research directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- Asahi, K. The Impact of Better School Accessibility on Student Outcomes; Political Science, SERC Discussion Paper; The London School of Economics: London, UK, 2014. [Google Scholar]
- Falch, T.; Lujala, P.; Strøm, B. Geographical constraints and educational attainment. Reg. Sci. Urban Econ. 2013, 43, 164–176. [Google Scholar] [CrossRef]
- Harland, K.; Stillwell, J. Using PLASC Data to Identify Patterns of Commuting to School, Residential Migration and Movement between Schools in Leeds; Working Paper No. 07/03; University of Leeds: Leeds, UK, 2007. [Google Scholar]
- Wang, H.; Han, J.; Su, M.; Wan, S.; Zhang, Z. The relationship between freight transport and economic development: A case study of China. Res. Transp. Econ. 2021, 85, 100885. [Google Scholar] [CrossRef]
- Zhu, J.; Li, B.; He, B.-J. Is linked migration overlooked in peri-urban Shanghai? Uncovering the domino effect of driving away interregional migrants. Habitat Int. 2019, 94, 102046. [Google Scholar] [CrossRef]
- Lane, B.W. Revisiting ‘An unpopular essay on transportation:’ The outcomes of old myths and the implications of new technologies for the sustainability of transport. J. Transp. Geogr. 2019, 81, 102535. [Google Scholar] [CrossRef]
- Klarl, T. Urban growth, transportation and the spatial dimension of the work market: A note: Urban growth, transportation and the work market. Pap. Reg. Sci. 2015, 94, 597–605. [Google Scholar] [CrossRef]
- Fasihi, H.; Parizadi, T.; Agah, F. Analyzing Spatial Structure of Residence and Economic Activity in Relation with Transportation Infrastructures in Iran. Transp. Dev. Econ. 2021, 7, 1–7. [Google Scholar] [CrossRef]
- Nezu, Y.; Fujii, S. Construction of simulation model masrac for impact analysis of the macro economy by transportation infrastructure investment. Stud. Sci. Technol. 2016, 5, 185–195. [Google Scholar] [CrossRef]
- Thakuriah, P. Variations in employment transportation outcomes: Role of site-level factors. Pap. Reg. Sci. 2011, 90, 755–772. [Google Scholar] [CrossRef]
- Kasu, B.B.; Chi, G. The Evolving and Complementary Impacts of Transportation Infrastructures on Population and Employment Change in the United States, 1970–2010. Popul. Res. Policy Rev. 2018, 37, 1003–1029. [Google Scholar] [CrossRef]
- Pulipati, S.B.; Mattingly, S.P.; Casey, C. Evaluating state level transportation revenue alternatives. Case Stud. Transp. Policy 2017, 5, 467–482. [Google Scholar] [CrossRef]
- Cai, Q.; Abdel-Aty, M.; Sun, Y.; Lee, J.; Yuan, J. Applying a deep learning approach for transportation safety planning by using high-resolution transportation and land use data. Transp. Res. Part A Policy Pract. 2019, 127, 71–85. [Google Scholar] [CrossRef]
- Stanton, N.A.; Salmon, P.M. Planes, trains and automobiles: Contemporary ergonomics research in transportation safety. Appl. Ergon. 2011, 42, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Cervero, R.; Rood, T.; Appleyard, B. Tracking Accessibility: Employment and Housing Opportunities in the San Francisco Bay Area. Environ. Plan. A 1999, 31, 1259–1278. [Google Scholar] [CrossRef]
- Waqas, M.; Dong, Q.; Ahmad, N.; Zhu, Y.; Nadeem, M. Understanding Acceptability towards Sustainable Transportation Behavior: A Case Study of China. Sustainability 2018, 10, 3686. [Google Scholar] [CrossRef] [Green Version]
- Ensslen, A.; Gnann, T.; Jochem, P.; Plötz, P.; Dütschke, E.; Fichtner, W. Can product service systems support electric vehicle adoption? Transp. Res. Part A Policy Pract. 2020, 137, 343–359. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E. The greenness of cities: Carbon dioxide emissions and urban development. J. Urban Econ. 2010, 67, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, A.; Colombo, S.; Hanley, N. Rural versus urban preferences for renewable energy developments. Ecol. Econ. 2008, 65, 616–625. [Google Scholar] [CrossRef]
- Lehr, U.; Lutz, C.; Edler, D. Green jobs? Economic impacts of renewable energy in Germany. Energy Policy 2012, 47, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Rivers, N. Renewable energy and unemployment: A general equilibrium analysis. Resour. Energy Econ. 2013, 35, 467–485. [Google Scholar] [CrossRef]
- Amirapu, A.; Hasan, R.; Jiang, Y.; Klein, A. Geographic Concentration in Indian Manufacturing and Service Industries: Evidence from 1998 to 2013. Asian Econ. Policy Rev. 2019, 14, 148–168. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C. Transnational Histories of Penal Transportation: Punishment, Labour and Governance in the British Imperial World, 1788–1939. Aust. Hist. Stud. 2016, 47, 381–397. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, A.; Veiga, A.; Ribeiro, F.; Amaral, A. Governance and Institutional Autonomy: Governing and Governance in Portuguese Higher Education. High. Educ. Policy 2013, 26, 243–262. [Google Scholar] [CrossRef]
- Toro López, M.; Scheers, J.; Van den Broeck, P. The Socio-politics of the urbanization—Transportation nexus: Infra-structural projects in the department of Antioquia in Colombia through the lens of technological politics and institutional dynamics. Int. Plan. Stud. 2021, 26, 321–347. [Google Scholar] [CrossRef]
- Gao, X.; Cao, M.; Yang, T.; Basiri, A. Transport development, intellectual property rights protection and innovation: The case of the Yangtze River Delta Region, China. Res. Transp. Bus. Manag. 2020, 37, 100563. [Google Scholar] [CrossRef]
- Zhu, J.; Li, B.; Pawson, H. The end of ‘toleration’? Policy ambiguity and converted-housing occupancy in China. Hous. Stud. 2020, 36, 479–499. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, W. Conflict and compromise in planning decision-making: How does a Chinese local government negotiate its construction land quota with higher-level governments? Environ. Urban. 2018, 30, 155–174. [Google Scholar] [CrossRef] [Green Version]
- Collaborators, H. Global, regional, and national disability-adjusted life-years (DALYs) for 315diseases and injuries and healthy life expectancy (HALE), 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet 2016, 388, 1603–1658. [Google Scholar] [CrossRef] [Green Version]
- Pierewan, A.C.; Tampubolon, G. Spatial dependence multilevel model of well-being across regions in Europe. Appl. Geogr. 2014, 47, 168–176. [Google Scholar] [CrossRef]
- Gu, L.; Rosenberg, M.; Yang, L.; Yu, J.; Wei, B. A spatial multilevel analysis of the impacts of housing conditions on county-level life expectancy at birth in China. Appl. Geogr. 2020, 124, 102311. [Google Scholar] [CrossRef]
- Luke, D. Multilevel Modeling; Sage Publications: Thousand Oaks, CA, USA, 2016. [Google Scholar]
- Bivand, R.; Sha, Z.; Osland, L.; Thorsen, I.S. A comparison of estimation methods for multilevel models of spatially structured data. Spat. Stat. 2017, 21, 440–459. [Google Scholar] [CrossRef]
- Taylor, B.; Kim, E.; Gahbauer, J. The Thin Red Line: A Case Study of Political Influence on Transportation Planning Practice. J. Plan. Educ. Res. 2009, 29, 173–193. [Google Scholar] [CrossRef]
- Lauby, F. Transportation and immigrant political incorporation. J. Ethn. Migr. Stud. 2019, 206–222, 1–18. [Google Scholar] [CrossRef]
- Cartier, C. What’s territorial about China? From geopolitical narratives to the ’administrative area economy’. Euras. Geogr. Econ. 2013, 54, 57–77. [Google Scholar] [CrossRef]
- Ma, L.J. Urban administrative restructuring, changing scale relations and local economic development in China. Political Geogr. 2005, 24, 477–497. [Google Scholar] [CrossRef]
- Lin, X.; MacLachlan, I.; Ren, T.; Sun, F. Quantifying economic effects of transportation investment considering spati-otemporal heterogeneity in China: A spatial panel data model perspective. Ann. Reg. Sci. 2019, 63, 437–459. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, L.; Xiong, C.; Wang, R. Transportation and Regional Economic Development: Analysis of Spatial Spillovers in China Provincial Regions. Netw. Spat. Econ. 2016, 16, 769–790. [Google Scholar] [CrossRef]
- Bonatti, L.; Campiglio, E. How can transportation policies affect growth? A theoretical analysis of the long-term effects of alternative mobility systems. Econ. Model. 2013, 31, 528–540. [Google Scholar] [CrossRef]
- Nasreen, S.; Saidi, S.; Ozturk, I.; Johansson, N.; Robertson, L.; Weber, R. Assessing links between energy consumption, freight transport, and economic growth: Evidence from dynamic simultaneous equation models. Environ. Sci. Pollut. Res. Int. 2018, 25, 16825–16841. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Guthrie, A.E.; Levinson, D.M. Impact of light rail implementation on labour market accessibility: A transportation equity perspective. J. Transp. Land Use 2012, 5, 28–39. [Google Scholar] [CrossRef] [Green Version]
- López, F.A.; Paez, A. Spatial clustering of high-tech manufacturing and knowledge-intensive service firms in the Greater Toronto Area. Can. Geogr. 2017, 61, 240–252. [Google Scholar] [CrossRef]
- De Vries, S.; Verheij, R.A.; Groenewegen, P.P.; Spreeuwenberg, P. Natural Environments—Healthy Environments? An Exploratory Analysis of the Relationship between Greenspace and Health. Environ. Plan. A 2003, 35, 1717–1731. [Google Scholar] [CrossRef] [Green Version]
- Ewing, R.; Tian, G.; Goates, J.P.; Zhang, M.; Greenwald, M.J.; Joyce, A.; Kircher, J.C.; Greene, W.H. Varying influences of the built environment on household travel in 15 diverse regions of the United States. Urban Stud. 2015, 52, 2330–2348. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, H.; Ou, X. Vehicle Ownership Analysis Based on GDP per Capita in China: 1963–2050. Sustainability 2014, 6, 4877–4899. [Google Scholar] [CrossRef] [Green Version]
- Domonkos, S. Promoting a higher retirement age: A prospect-theoretical approach. Int. J. Soc. Welf. 2015, 24, 133–144. [Google Scholar] [CrossRef]
- Zhai, K.; Gao, X. Higher education institutions and urban attraction: An empirical study based on 13 cities in Jiangsu Province. J. Xuzhou Inst. Technol. (Soc. Sci. Ed.) 2020, 35, 86–93. (In Chinese) [Google Scholar]
Variables | Definition | |
---|---|---|
Economy | EI | Transportation expenditures in infrastructures per GDP per capita |
PE | Public transportation expenditures per capita | |
NE | Number of public transportation employments per capita | |
FR | Freight shipment by rail per capita | |
Society | TA | Transportation accidents per capita |
TD | Transportation accident deaths per capita | |
NV | Total number of vehicles per capita | |
VR | Total length of motor vehicle routes per capita | |
TM | Number of available transportation modes | |
Environment | GE | Greenhouse gas emissions by transportation per capita |
TN | Transport noise per capita | |
RE | Renewable energy consumption per total transportation energy consumption | |
RL | Total urban roads length per capita | |
Politics | PT | Proportion of the number of public policies in transportation to the total number of public policies |
TL | Closure rate of transportation law cases |
Variables | HEA | EI | PE | NE | FR | TA | TD | NV | VR | TM | GE | TN | RE | RL | PT | TL | log(GDP) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EI | 0.21 ** | ||||||||||||||||
PE | 0.32 * | 0.16 * | |||||||||||||||
NE | 0.14 | 0.15 * | 0.29 * | ||||||||||||||
FR | 0.27 * | 0.20 * | 0.34 * | 0.46 * | |||||||||||||
TA | 0.97 * | 0.17 ** | 0.88 * | 0.13 * | 0.41 * | ||||||||||||
TD | 0.23 ** | −0.05 | 0.11 * | 0.48 * | 0.29 * | 0.28 * | |||||||||||
NV | 0.55 * | 0.40 * | 0.78 * | 0.15 * | 0.23 * | 0.31 * | 0.15 | ||||||||||
VR | 0.85 ** | 0.18 * | 0.05 | 0.12 | 0.72 * | 0.13 | 0.06 * | 0.06 * | |||||||||
TM | −0.03 | 0.11 | 0.26 * | 0.33 * | 0.67 * | 0.72 * | 0.22 * | 0.16 | 0.17 * | ||||||||
GE | 0.22 ** | 0.07 | 0.28 * | 0.49 * | 0.25 * | 0.36 * | 0.73 * | 0.27 * | −0.1 | 0.14 * | |||||||
TN | 0.64 * | 0.22 * | 0.70 * | 0.09 | 0.40 * | 0.55 * | 0.14 * | 0.32 * | 0.13 * | 0.09 * | 0.16 * | ||||||
RE | 0.07 | 0.64 * | 0.66 * | 0.27 * | 0.33 | 0.1 | 0.22 * | 0.13 * | 0.73 | 0.28 ** | 0.24 * | 0.26 * | |||||
RL | 0.11 * | 0.21 * | 0.15 ** | 0.40 * | 0.46 * | 0.12 | 0.09 | 0.21 * | 0.28 * | 0.03 | 0.1 | 0.62 * | 0 | ||||
PT | 0.89 * | 0.15 | 0.19 * | 0.43 * | 0.17 * | 0.47 * | 0.33 * | 0.37 * | 0.24 * | 0.81 * | 0.17 * | 0.41 * | 0.24 * | 0.41 * | |||
TL | 0.38 * | 0.13 | 0.81 ** | 0.24 * | 0.60 * | 0.20 ** | 0.15 * | 0.25 ** | 0.51 * | 0.23 * | 0.28 * | 0.64 * | 0.13 | 0.34 * | 0.42 * | ||
log(GDP) | 0.70 * | 0.25 * | 0.69 * | 0.27 ** | 0.25 ** | 0.23 * | 0.66 * | 0.45 * | 0.11 | 0.17 * | 0.16 * | 0.17 | 0.12 * | 0.13 ** | 0.25 * | 0.37 * | |
Urbanization | 0.36 * | 0.09 | 0.21 ** | 0.34 * | 0.27 * | 0.14 | 0.18 * | 0.12 | 0.3 | 0.49 ** | 0.04 ** | 0.19 ** | 0.02 | 0.17 * | 0.31 * | 0.31 * | 0.54 ** |
Variables | Models 2–6 | Model 7 | Model 8 | Model 9 |
---|---|---|---|---|
Spatial error (AIC = 6352.4) | ||||
0.512 ** | 0.194 ** | 1.323 ** | 0.648 * | |
Economy (AIC = 6517.3) | ||||
PE | 0.225 ** | 0.151 ** | 0.031 | 0.181 * |
FR | −0.104 | 0.332 ** | 0.511 * | 0.657 ** |
Society (AIC = 6652.1) | ||||
TA | −0.166 * | −0.743 * | −0.227 * | −0.513 ** |
NV | 0.087 ** | 0.124 ** | 0.131 ** | 0.073 ** |
TM | 0.748 ** | 0.076 * | 0.095 | 0.161 * |
Environment (AIC = 6719.9) | ||||
GE | −0.115 * | −0.227 ** | −0.345 ** | −0.357 ** |
RE | 0.113 * | 0.156 ** | 0.654 ** | 0.247 ** |
RL | 0.436 ** | 0.162 * | 0.265 | 0.208 ** |
Politics (AIC = 6428.3) | ||||
PT | 0.315 ** | 0.393 ** | 0.327 ** | |
Socioeconomic indicators (AIC = 6557.6) | ||||
log(GDP) | 0.283 | 0.145 ** | 0.362 ** | |
Provincial level (AIC = 6798.8) | ||||
SDI 1 | −0.804 ** | −0.568 ** | ||
SDI 2 | −1.001 ** | −0.174 | ||
SDI 4 | 0.191 | 0.146 ** | ||
SDI 5 | 0.804 ** | 0.173 * | ||
AIC | 5231.4 | 5587.1 | 5726.3 |
Variables | Model 10 | Model 11 | Model 12 | Model 13 | Model 14 | Model 15 | Model 16 | Model 17 | Model 18 |
---|---|---|---|---|---|---|---|---|---|
0.551 *** | 0.361 *** | 0.354 *** | 0.565 *** | 0.237 * | 0.451 *** | 0.256 ** | 0.397 *** | 0.429 ** | |
PE | 0.447 *** | 0.142 ** | 0.118 | 1.14 * | 0.579 ** | 0.495 ** | 0.616 *** | 1.203 *** | 0.554 *** |
FR | 0.051 | 0.231 *** | 0.501 *** | 0.79 ** | 0.510 *** | 0.325 *** | 0.132 *** | 0.259 ** | 0.451 *** |
TA | −0.331 *** | 0.000 | −0.268 | −0.721 ** | −0.107 ** | −0.121 | −1.432 | −0.156 * | −0.123 ** |
NV | 0.159 * | 0.161 * | 0.419 ** | 0.461 ** | 0.151 *** | 0.203 ** | 0.101 *** | 0.045 ** | 0.074 ** |
TM | 0.457 *** | 0.082 ** | 0.249 ** | 0.303 * | 0.021 *** | 0.023 * | 0.091 ** | 0.019 *** | 0.261 *** |
GE | −0.742 *** | −0.018 * | −0.546 * | −0.167 ** | −0.457 * | −0.106 ** | −0.194 * | −0.189 ** | −0.114 |
RE | 0.059 ** | 0.036 * | 0.319 ** | 0.088 | 0.108 *** | 0.214 *** | 0.141 *** | 0.161 *** | 0.451 ** |
RL | 0.092 * | 0.193 ** | 0.029 ** | 0.103 ** | 0.100 ** | 0.181 *** | 0.061 *** | 0.069 *** | 0.079 *** |
PT | 0.444 *** | 0.499 *** | 0.402 * | 0.563 ** | 0.293 *** | 0.575 *** | 0.169 *** | 0.114 *** | 0.166 ** |
log(GDP) | 0.119 * | 0.665 ** | 0.261 ** | 0.171 *** | 0.081 *** | 0.035 *** | 0.262 *** | 0.231 *** | 0.203 *** |
SDI 1 | −1.792 * | −0.021 * | −0.385 ** | −0.165 * | −0.093 ** | −1.065 | −0.097 | −0.284 ** | −0.140 * |
SDI 2 | −0.011 * | −0.222 ** | −0.588 * | −0.071 *** | −0.121 ** | −0.106 | −0.072 *** | −0.231 | −0.144 ** |
SDI 4 | 0.001 *** | 0.591 | 0.002 * | 0.110 ** | 0.145 *** | 0.058 ** | 0.228 *** | 0.170 *** | 0.129 ** |
SDI 5 | 0.039 ** | 1.003 * | 0.038 | 0.022 ** | 0.043 * | 0.071 | 0.037 ** | 0.030 *** | 0.084 *** |
PE*SDI 1 | 0.149 ** | ||||||||
PE*SDI 2 | 0.874 | ||||||||
PE*SDI 4 | 0.361 | ||||||||
PE*SDI 5 | −0.027 | ||||||||
FR*SDI 1 | 0.196 ** | ||||||||
FR*SDI 2 | 0.532 * | ||||||||
FR*SDI 4 | −1.591 | ||||||||
FR*SDI 5 | 0.532 | ||||||||
TA*SDI 1 | −0.389 ** | ||||||||
TA*SDI 2 | −0.001 | ||||||||
TA*SDI 4 | 1.902 | ||||||||
TA*SDI 5 | 0.185 | ||||||||
NV*SDI 1 | 0.104 *** | ||||||||
NV*SDI 2 | 0.562 | ||||||||
NV*SDI 4 | 0.146 ** | ||||||||
NV*SDI 5 | −0.167 | ||||||||
TM*SDI 1 | 1.008 *** | ||||||||
TM*SDI 2 | 0.081 * | ||||||||
TM*SDI 4 | 0.537 | ||||||||
TM*SDI 5 | 0.535 | ||||||||
GE*SDI 1 | −0.305 *** | ||||||||
GE*SDI 2 | 0.093 | ||||||||
GE*SDI 4 | 0.832 | ||||||||
GE*SDI 5 | 0.344 | ||||||||
RE*SDI 1 | 0.239 | ||||||||
RE*SDI 2 | −0.052 | ||||||||
RE*SDI 4 | 0.050 * | ||||||||
RE*SDI 5 | 0.021 *** | ||||||||
RL*SDI 1 | −0.121 * | ||||||||
RL*SDI 2 | 0.146 | ||||||||
RL*SDI 4 | 0.082 | ||||||||
RL*SDI 5 | 1.304 ** | ||||||||
PT*SDI 1 | 0.254 *** | ||||||||
PT*SDI 2 | 0.182 | ||||||||
PT*SDI 4 | 1.074 | ||||||||
PT*SDI 5 | −0.061 | ||||||||
AIC | 7423.8 | 7489.4 | 7653.2 | 7238.9 | 7781.5 | 7543.3 | 7886.4 | 7795.3 | 7854.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zu, D.; Cao, K.; Xu, J. The Impacts of Transportation Sustainability on Higher Education in China. Sustainability 2021, 13, 12579. https://doi.org/10.3390/su132212579
Zu D, Cao K, Xu J. The Impacts of Transportation Sustainability on Higher Education in China. Sustainability. 2021; 13(22):12579. https://doi.org/10.3390/su132212579
Chicago/Turabian StyleZu, Daqing, Kang Cao, and Jian Xu. 2021. "The Impacts of Transportation Sustainability on Higher Education in China" Sustainability 13, no. 22: 12579. https://doi.org/10.3390/su132212579
APA StyleZu, D., Cao, K., & Xu, J. (2021). The Impacts of Transportation Sustainability on Higher Education in China. Sustainability, 13(22), 12579. https://doi.org/10.3390/su132212579