Effect of Polypropylene Fibers on the Shear Strength–Dilation Behavior of Compacted Lateritic Soils
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Influence of PP Fibers on Compaction Properties
3.2. Influence of PP Fibers on Drained Shear Strength
3.3. Influence of PP Fibers on the Stress–Dilatancy of Soil Mixtures
4. Conclusions
- The inclusion of PP fibers improved the shear strength behavior of the composites in both soils, while the soils’ initial stiffness was practically not affected;
- The contribution of the fibers to the increase in the soil strength was superior in the clayey soil and for the highest content (0.25%), observed by a substantial increase in the friction angle. The resistance of fibers was mobilized, and soil hardening was observed. Fibers’ orientation at the sheared interface could be observed;
- The volumetric change in the clayey soil was altered by the presence of fibers under drained shear mainly at higher stress levels. The results indicate that the presence of fibers considerably limited the tendency for contraction. A trend of a decrease in the volume variation was observed for higher normal stresses in the sandy soil; and
- The Szypcio [38] model demonstrated the influence on the stress ratio–dilatancy relationship during shear, which was superior for the higher fiber content in the sandy soil. In the clayey soil, the pre-peak and post-peak phases of shearing showed different behaviors when comparing natural and fiber-reinforced samples. Overall, the results indicate that the stress–dilatancy relationship is affected by inclusions in the soil mix.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoon, Y.W.; Heo, S.B.; Kim, K.S. Geotechnical performance of waste tires for soil reinforcement from chamber tests. Geotext. Geomembr. 2008, 26, 100–107. [Google Scholar] [CrossRef]
- Luwalaga, J.G. Analysing the Behaviour of Soil Reinforced with Polyethylene. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2016; p. 138. [Google Scholar]
- Soltani, A.; Deng, A.; Taheri, A.; Mirzababaei, M.; Nikraz, H. Interfacial shear strength of rubber-reinforced clays: A dimensional analysis perspective. Geosynth. Int. 2019, 26, 164–183. [Google Scholar] [CrossRef]
- Marçal, R.; Lodi, P.C.; de Souza Correia, N.; Giacheti, H.L.; Rodrigues, R.A.; McCartney, J.S. Reinforcing Effect of Polypropylene Waste Strips on Compacted Lateritic Soils. Sustainability 2020, 12, 9572. [Google Scholar] [CrossRef]
- Silveira, M.R.; Lodi, P.C.; de Souza Correia, N.; Rodrigues, R.A.; Giacheti, H.L. Effect of recycled polyethylene terephthalate strips on the mechanical properties of cement-treated lateritic sandy soil. Sustainability 2020, 12, 9801. [Google Scholar] [CrossRef]
- Tang, C.; Shi, B.; Gao, W.; Chen, F.; Cai, Y. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotext. Geomembr. 2007, 25, 194–202. [Google Scholar] [CrossRef]
- Shukla, S.K.; Sivakugan, N.; Das, B.M. Fundamental concepts of soil reinforcement—An overview. Int. J. Geotech. Eng. 2009, 3, 329–342. [Google Scholar] [CrossRef]
- Shukla, S.K. Fundamentals of Fibre-Reinforced Soil Engineering; Springer Nature: Singapore, 2017; ISBN 978-981-10-3061-1. [Google Scholar]
- Ehrlich, M.; Almeida, S.; Curcio, D. Hydro-mechanical behavior of a lateritic fiber-soil composite as a waste containment liner. Geotext. Geomembr. 2019, 47, 42–47. [Google Scholar] [CrossRef]
- Consoli, N.C.; Montardo, J.P.; Marques Prietto, P.D.; Pasa, G.S. Engineering behavior of a sand reinforced with plastic waste. J. Geotech. Geoenviron. Eng. 2002, 128, 462–472. [Google Scholar] [CrossRef]
- Heineck, K.S.; Coop, M.R.; Consoli, N.C. Effect of Microreinforcement of Soils from Very Small to Large Shear Strains. J. Geotech. Geoenviron. Eng. 2005, 131, 1024–1033. [Google Scholar] [CrossRef]
- Sotomayor, J.M.G.; Casagrande, M.D.T. The performance of a sand reinforced with coconut fibers through plate load tests on a true scale physical model. Soils Rocks 2018, 41, 361–368. [Google Scholar] [CrossRef]
- dos Santos Lopes Louzada, N.; Malko, J.A.C.; Casagrande, M.D.T. Behavior of Clayey Soil Reinforced with Polyethylene Terephthalate. J. Mater. Civ. Eng. 2019, 31, 04019218. [Google Scholar] [CrossRef]
- Eldesouky, H.M.; Morsy, M.M.; Mansour, M.F. Fiber-reinforced sand strength and dilation characteristics. Ain Shams Eng. J. 2016, 7, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Anagnostopoulos, C.A.; Tzetzis, D.; Berketis, K. Shear strength behaviour of polypropylene fibre reinforced cohesive soils. Geomech. Geoengin. 2014, 9, 241–251. [Google Scholar] [CrossRef]
- Mirzababaei, M.; Arulrajah, A.; Horpibulsuk, S.; Aldava, M. Shear strength of a fibre-reinforced clay at large shear displacement when subjected to different stress histories. Geotext. Geomembr. 2017, 45, 422–429. [Google Scholar] [CrossRef]
- Mirzababaei, M.; Mohamed, M.; Arulrajah, A.; Horpibulsuk, S.; Anggraini, V. Practical approach to predict the shear strength of fibre-reinforced clay. Geosynth. Int. 2018, 25, 50–66. [Google Scholar] [CrossRef]
- Murray, J.J.; Frost, J.D.; Wang, Y. Behavior of a sandy silt reinforced with discontinuous recycled fiber inclusions. Transp. Res. Rec. 2000, 1714, 9–17. [Google Scholar] [CrossRef]
- Özkul, Z.H.; Baykal, G. Shear behavior of compacted rubber fiber-clay composite in drained and undrained loading. J. Geotech. Geoenviron. Eng. 2007, 133, 767–781. [Google Scholar] [CrossRef]
- Suffri, N.; Jeludin, M.; Rahim, S. Behaviour of the Undrained Shear Strength of Soft Clay Reinforced with Natural Fibre. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Seoul, Korea, 2019; Volume 690, p. 012005. [Google Scholar] [CrossRef]
- Botero, E.; Ossa, A.; Sherwell, G.; Ovando-Shelley, E. Stress–strain behavior of a silty soil reinforced with polyethylene terephthalate (PET). Geotext. Geomembr. 2015, 43, 363–369. [Google Scholar] [CrossRef]
- Fathi, H.; Jamshidi Chenari, R.; Vafaeian, M. Shaking Table Study on PET Strips-Sand Mixtures Using Laminar Box Modelling. Geotech. Geol. Eng. 2019, 38, 683–694. [Google Scholar] [CrossRef]
- Festugato, L.; Menger, E.; Benezra, F.; Kipper, E.A.; Consoli, N.C. Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotext. Geomembr. 2017, 45, 77–82. [Google Scholar] [CrossRef]
- Onyelowe, K.C.; Bui Van, D.; Ubachukwu, O.; Ezugwu, C.; Salahudeen, B.; Nguyen Van, M.; Ikeagwuani, C.; Amhadi, T.; Sosa, F.; Wu, W.; et al. Recycling and reuse of solid wastes; a hub for ecofriendly, ecoefficient and sustainable soil, concrete, wastewater and pavement reengineering. Int. J. Low-Carbon Technol. 2019, 14, 440–451. [Google Scholar] [CrossRef]
- Peddaiah, S.; Burman, A.; Sreedeep, S. Experimental Study on Effect of Waste Plastic Bottle Strips in Soil Improvement. Geotech. Geol. Eng. 2018, 36, 2907–2920. [Google Scholar] [CrossRef]
- Santoni, B.R.L.; Tingle, J.S.; Members, A.; Webster, S.L. Engineering properties of sand-fiber mixtures for road construction. J. Geotech. Geoenviron. Eng. 2001, 127, 258–268. [Google Scholar] [CrossRef]
- Dos Santos, A.P.S.; Consoli, N.C.; Baudet, B.A. The mechanics of fibre-reinforced sand. Geotechnique 2010, 60, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Sivakumar Babu, G.L.; Chouksey, S.K. Stress-strain response of plastic waste mixed soil. Waste Manag. 2011, 31, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.J.; Lee, M.L.; Lim, S.K.; Tanaka, Y. Unconfined compressive strength of PET waste-mixed residual soils. Geomech. Eng. 2015, 8, 53–66. [Google Scholar] [CrossRef]
- Anagnostopoulos, C.A.; Papaliangas, T.T.; Konstantinidis, D.; Patronis, C. Shear Strength of Sands Reinforced with Polypropylene Fibers. Geotech. Geol. Eng. 2013, 31, 401–423. [Google Scholar] [CrossRef]
- Freilich, B.J.; Li, C.; Zornberg, J.G. Effective shear strength of fiber-reinforced clays. In Proceedings of the 9th International Conference on Geosynthetics—Geosynthetics: Advanced Solutions for a Challenging World, ICG 2010, Guarujá, Brazil, 23 May 2010; pp. 1997–2000. [Google Scholar]
- Li, C.; Zornberg, J.G. Shear Strength Behavior of Soils Reinforced with Weak Fibers. J. Geotech. Geoenviron. Eng. 2019, 145, 2–8. [Google Scholar] [CrossRef]
- Muir Wood, D.; Diambra, A.; Ibraim, E. Fibres and soils: A route towards modelling of root-soil systems. Soils Found. 2016, 56, 765–778. [Google Scholar] [CrossRef]
- Kong, Y.; Zhou, A.; Shen, F.; Yao, Y. Stress–dilatancy relationship for fiber-reinforced sand and its modeling. Acta Geotech. 2019, 14, 1871–1881. [Google Scholar] [CrossRef]
- Kong, Y. Stress-Dilatancy Relationship for Fiber-Reinforced Soil. In Proceedings of the China-Europe Conference on Geotechnical Engineering, Vienna, Austria, 13–16 August 2018. [Google Scholar]
- Rowe, P.W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1962, 269, 500–527. [Google Scholar] [CrossRef]
- Dołżyk-Szypcio, K. Direct Shear Test for Coarse Granular Soil. Int. J. Civ. Eng. 2019, 17, 1871–1878. [Google Scholar] [CrossRef] [Green Version]
- Szypcio, Z. Stress-Dilatancy for Soils. Part IV: Experimental Validation for Simple Shear Conditions. Stud. Geotech. Mech. 2017, 39, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Yousefpour, V.; Hamidi, A.; Ghanbari, A. Shear Strength-Dilation Characteristics of Silty and Clayey Sands. J. Eng. Geol. 2020, 13, 177–205. [Google Scholar]
- Townsend, F.C. Geotechnical Characteristics of Residual Soils. J. Geotech. Eng. 1985, 111, 77–94. [Google Scholar] [CrossRef]
- Giacheti, H.L.; Bezerra, R.C.; Rocha, B.P.; Rodrigues, R.A. Seasonal influence on cone penetration test: An unsaturated soil site example. J. Rock Mech. Geotech. Eng. 2019, 11, 361–368. [Google Scholar] [CrossRef]
- ASTM D2487-17 Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System); ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–10.
- ASTM D4452-14 Standard Practice for X-ray Radiography of Soil Samples 2014; ASTM International: West Conshohocken, PA, USA, 2014; pp. 1–14.
- ASTM D7928-17 Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis; ASTM International: West Conshohocken, PA, USA, 2017; pp. 1–25.
- ASTM D854-14 Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer; ASTM International: West Conshohocken, PA, USA, 2014; pp. 1–7.
- ASTM D698: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)); ASTM International: West Conshohocken, PA, USA, 2012; Volume 3, pp. 1–13.
- ASTM D4318-17e1 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils; ASTM International: West Conshohocken, PA, USA, 2017; Volume 4, pp. 1–14.
- Diambra, A.; Ibraim, E. Modelling of fibre–cohesive soil mixtures. Acta Geotech. 2014, 9, 1029–1043. [Google Scholar] [CrossRef]
- Li, C.; Zornberg, J.G. Interface shear strength in fiber-reinforced soil. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Osaka, Japan, 12–16 September 2005; Volume 3, pp. 1373–1376. [Google Scholar] [CrossRef]
- Rowland Otoko, G. Stress–Strain Behaviour of an Oil Palm Fibre Reinforced Lateritic Soil. Int. J. Eng. Trends Technol. 2014, 14, 295–298. [Google Scholar] [CrossRef]
- Darvishi, A.; Erken, A. Effect of Polypropylene Fiber on Shear Strength Parameters of Sand. In Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering (CSEE’18), Budapest, Hungary, 8–10 April 2018; p. 13. [Google Scholar]
- Falorca, I.; Pinto, M.I.M. Effect of short, randomly distributed polypropylene microfibres on shear strength behaviour of soils. Geosynth. Int. 2011, 18, 2–11. [Google Scholar] [CrossRef]
- ASTM D3080/D3080M-11. Standard Test Method for Direct Shear Test of Soils under Consolidated Drained Conditions; ASTM International: West Conshohocken, PA, USA, 2011; Volume 4, pp. 1–9. [CrossRef]
- Gelder, C.; Fowmes, G.J. Mixing and compaction of fibre- and lime-modified cohesive soil. Proc. Inst. Civ. Eng. Ground Improv. 2016, 169, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Singh, S.P. Fiber-reinforced fly ash subbases in rural roads. J. Transp. Eng. 2008, 134, 171–180. [Google Scholar] [CrossRef]
- Mirzababaei, M.; Miraftab, M.; Mohamed, M.; McMahon, P. Unconfined compression strength of reinforced clays with carpet waste fibers. J. Geotech. Geoenviron. Eng. 2013, 139, 483–493. [Google Scholar] [CrossRef]
- Khatri, V.N.; Dutta, R.K.; Venkataraman, G.; Shrivastava, R. Shear strength behaviour of clay reinforced with treated coir fibres. Period. Polytech. Civ. Eng. 2016, 60, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Sadek, S.; Najjar, S.S.; Freiha, F. Shear strength of fiber-reinforced sands. J. Geotech. Geoenviron. Eng. 2010, 136, 490–499. [Google Scholar] [CrossRef]
- Ibraim, E.; Diambra, A.; Muir Wood, D.; Russell, A.R. Static liquefaction of fibre reinforced sand under monotonic loading. Geotext. Geomembr. 2010, 28, 374–385. [Google Scholar] [CrossRef]
- Mohamad, H.; Maher, M.H.; Gray, D.H. Static response of sands reinforced with randomly distributed fibers. J. Geotech. Eng. 1990, 116, 1661–1677. [Google Scholar]
- Consoli, N.C.; Thomé, A.; Girardello, V.; Ruver, C.A. Uplift behavior of plates embedded in fiber-reinforced cement stabilized backfill. Geotext. Geomembr. 2012, 35, 107–111. [Google Scholar] [CrossRef]
- Bera, A.K.; Chandra, S.N.; Ghosh, A.; Ghosh, A. Unconfined compressive strength of fly ash reinforced with jute geotextiles. Geotext. Geomembr. 2009, 27, 391–398. [Google Scholar] [CrossRef]
- Futai, M.M.; Almeida, M.S.S.; Lacerda, W.A. Yield, Strength, and Critical State Behavior of a Tropical Saturated Soil. J. Geotech. Geoenviron. Eng. 2004, 130, 1169–1179. [Google Scholar] [CrossRef]
- Yetimoglu, T.; Salbas, O. A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotext. Geomembr. 2003, 21, 103–110. [Google Scholar] [CrossRef]
- Shao, W.; Cetin, B.; Li, Y.; Li, J.; Li, L. Experimental Investigation of Mechanical Properties of Sands Reinforced with Discrete Randomly Distributed Fiber. Geotech. Geol. Eng. 2014. [Google Scholar] [CrossRef]
- BS 8002:1994. Code of Practice for Earth Retaining Structures; British Standards Institution: London, UK, 1994; pp. 1–114.
Properties | Values | Specification | |
---|---|---|---|
CH | SC | ||
Clay fraction (%) Silt fraction (%) Sand fraction (%) | 50 14 36 | 14 5.8 80.2 | ASTM D7928 [44] |
Specific gravity of solids | 2.90 | 2.65 | ASTM D854 [45] |
Liquid limit (%) Plasticity limit (%) Plasticity Index (%) | 51 29 22 | 16 2 14 | ASTM D4318 [47] |
Maximum dry unit weight (kN/m3) | 16.7 | 19.50 | ASTM D698 [46] |
Optimum water content (%) | 24.0 | 10.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silveira, M.R.; Rocha, S.A.; Correia, N.d.S.; Rodrigues, R.A.; Giacheti, H.L.; Lodi, P.C. Effect of Polypropylene Fibers on the Shear Strength–Dilation Behavior of Compacted Lateritic Soils. Sustainability 2021, 13, 12603. https://doi.org/10.3390/su132212603
Silveira MR, Rocha SA, Correia NdS, Rodrigues RA, Giacheti HL, Lodi PC. Effect of Polypropylene Fibers on the Shear Strength–Dilation Behavior of Compacted Lateritic Soils. Sustainability. 2021; 13(22):12603. https://doi.org/10.3390/su132212603
Chicago/Turabian StyleSilveira, Maitê Rocha, Sabrina Andrade Rocha, Natália de Souza Correia, Roger Augusto Rodrigues, Heraldo Luiz Giacheti, and Paulo César Lodi. 2021. "Effect of Polypropylene Fibers on the Shear Strength–Dilation Behavior of Compacted Lateritic Soils" Sustainability 13, no. 22: 12603. https://doi.org/10.3390/su132212603
APA StyleSilveira, M. R., Rocha, S. A., Correia, N. d. S., Rodrigues, R. A., Giacheti, H. L., & Lodi, P. C. (2021). Effect of Polypropylene Fibers on the Shear Strength–Dilation Behavior of Compacted Lateritic Soils. Sustainability, 13(22), 12603. https://doi.org/10.3390/su132212603