The Green Hydrogen Puzzle: Towards a German Policy Framework for Industry
Abstract
:1. Introduction
2. Materials and Methods
- Definition of the decision context.
- Identification of policy options facilitating industrial hydrogen use.
- Identification of criteria based on challenges.
- Scoring.
- Comparison of results.
- Conclusion.
- ++ very relevant for overcoming a challenge
- + relevant for overcoming a challenge
- (+) indirectly contributing to overcoming the challenges.
3. Identification of Policy Options and Challenges
3.1. Policy Options Facilitating Industrial Hydrogen Use
- Certifying production methods and their environmental impacts: Guarantees of Origin (GOs) for hydrogenCertificates and GOs will play an important role in ensuring the environmental and social sustainability of a future hydrogen economy. By providing information about how the hydrogen is produced, they will create transparency about its environmental impacts. Where certificates create tradable financial value, they will stimulate ownership of these environmental attributes [6,32].While GO systems for renewable electricity are long established, a universally accepted standard for green hydrogen does not exist. Approaches are being developed at the national and international level, but they differ in requirements regarding the electricity source, system boundaries of carbon accounting, emission thresholds at which hydrogen is classified as green and production technologies included. Different sustainability criteria beyond climate effects may apply, for instance, regarding the sustainable use of water resources or the effects of air pollution [6].
- Increasing the ambition of the European Union Emissions Trading System (EU ETS)Carbon pricing policies are meant to internalise the environmental costs of carbon dioxide emissions and make low-carbon energy more competitive. The existing EU ETS sets a cap on emissions from the European electricity sector, energy-intensive industries and aviation. In addition, at the beginning of 2021, a national ETS came into effect in Germany, covering fuel use in non-EU ETS sectors. A reform of the EU ETS was proposed by the European Commission as part of its ‘Fit for 55’ package. The further development of this instrument will significantly influence conditions for green hydrogen use by industry.
- Supporting green hydrogen production: reform of electricity charges and funding policiesThis instrument includes the reform of charges and financing policies, such as investment support for electrolysers, de-risking instruments and financing contracts for the production of certain quantities of green hydrogen [24]. The state financing of hydrogen production from electrolysis is an obvious option for policy-makers. In Germany, the government initially addressed electricity fees and charges which—if fully charged on electrolysers—would make up a large share of the costs of domestically produced green hydrogen (see Section 3.2.1). Also, there could be direct state support for green hydrogen production. For instance, the government could auction funding for a certain amount of green hydrogen production [32]. The German government has announced that tenders for green hydrogen production will be examined through the NHS.
- Supporting hydrogen use: Carbon Contracts for DifferenceFunding may also be targeted at large users of hydrogen. This could create a stable demand for hydrogen and thus indirectly support the scale-up of green hydrogen production. CCfDs are currently being intensely debated as an instrument, in particular to close the difference in operating expenses (OPEX) for low-carbon breakthrough technologies (LCBT) [17,33]. Both the EUHS and the NHS envisage CCfD pilot programmes, particularly for the steel and chemical industries. Individual projects that implement LCBT could receive such a contract, which would guarantee a certain price for avoided CO2 emissions (the ‘strike price’) for a certain period of time. As long as the strike price is higher than the current CO2 price, the state would pay the difference to the firm.
- Promoting hydrogen by creating demand: quotasQuotas for hydrogen, hydrogen-based synthetic fuels or for materials produced using green hydrogen are options for creating a reliable market for plant manufacturers and thus triggering investment in hydrogen production [34]. Some actors have suggested a quota for green (or possibly blue) hydrogen or generally for renewable gases in the gas system [2,32,35,36].Quotas could also be set for materials produced using green hydrogen, such as carbon-free steel, ammonia, methanol and other chemical products [34]. However, this option needs to be scrutinised very carefully for its effects on competitiveness in the global market for German and other European producers [37]. More realistic in the short term are renewable quotas for sellers of shipping and aviation fuels. The NHS discusses a quota of at least 2% renewable kerosene in the aviation sector by 2030, as this sector will be dependent on liquid fuels for the foreseeable future [9]. This has now been implemented through the national implementation of the Renewable Energy Directive.
- Crediting green hydrogen for renewables targets in the transport sector following the implementation of the EU’s revised Renewable Energy Directive (RED II)RED II came into force in December 2018. Article 25 requires fuel suppliers to supply a minimum of 14% renewables by 2030 (up from 10% in the 2009 version of the Directive). Until now, this requirement has been met primarily by blending biofuels. The revised Directive allows suppliers to take into account ‘gaseous transport fuels of non-biogenic origin also when they are used as an intermediate product for the production of conventional fuels’ (Article 25). It is therefore permitted to count the GHG emissions saved by green hydrogen when using hydrogen to produce synthetic fuels or in the production of conventional fuels in refineries [38].The fact that Member States can go beyond the minimum requirement in transposing the Directive has sparked heated debate in Germany where, at the end of 2020, the government set a target of 25% of the renewables share by 2030 [39].
- Regulating hydrogen grid infrastructureA transport and distribution infrastructure is required to enable the large-scale and widespread use of green hydrogen. Because legal certainty is a prerequisite for network operators and investors, establishing this infrastructure requires an adjustment of the regulatory framework at the national and European levels [40,41]. Currently, there are rules for blending hydrogen for use in natural gas networks, but in Germany, there is no regulation providing for a pure hydrogen grid infrastructure [12,42].Through the European Green Deal, the EU recognises the importance of ‘smart infrastructure’ frameworks, such as hydrogen networks [43]. A revision of the European legal framework for energy infrastructure (for example, the Trans-European Network Energy Regulation) is envisaged in the context of the EUHS [11]. Germany’s NHS is aiming to create a regulatory framework for hydrogen infrastructure quickly, and in November 2020, the Federal Network Agency published the results of a consultation on the subject [42]. The consultation report reflects key grid-regulation concerns, which will influence the set-up of the hydrogen system as a whole.
3.2. Challenges for Policy-Making to Define Criteria
3.2.1. Creating Business Cases Despite High Costs
3.2.2. Ensuring Climate-Friendly Production of Green Hydrogen
3.2.3. Securing Access to Green Hydrogen for Priority Applications
3.2.4. Building a Transport Infrastructure
4. Results
4.1. Analysing and Scoring the Policy Instruments
4.1.1. Certification and GOs for Hydrogen
4.1.2. Carbon Pricing/EU ETS
4.1.3. Reform of Charges and Funding Policies
4.1.4. Carbon Contracts for Difference
4.1.5. Quotas
4.1.6. Crediting Green Hydrogen for Renewables Targets in the Transport Sector in the Context of RED II Implementation
4.1.7. Regulating Grid Infrastructure
4.2. Comparing the Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R.; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [Google Scholar] [CrossRef]
- Agora Energiewende and Wuppertal Institute. Klimaneutrale Industrie: Schlüsseltechnologien und Politikoptionen für Stahl, Chemie und Zement; Agora Energiewende: Berlin, Germany, 2019. [Google Scholar]
- Prognos, Öko-Institut, Wuppertal Institut. Klimaneutrales Deutschland. Studie im Auftrag von Agora Energiewende, Agora Verkehrswende und Stiftung Klimaneutralität; Agora Energiewende: Berlin, Germany, 2020. [Google Scholar]
- Hebling, C.; Ragwitz, M.; Fleiter, T.; Groos, U.; Härle, D.; Held, A.; Jahn, M.; Müller, N.; Pfeifer, T.; Plötz, P.; et al. Eine Wasserstoff-Roadmap Für Deutschland; Fraunhofer-Institut für System- und Innovationsforschung ISI: Karlsruhe, Germany; Fraunhofer Institut für Solare Energiesysteme ISE: Freiburg, Germany, 2019. [Google Scholar]
- Agora Energiewende and Guidehouse Making Renewable Hydrogen Cost-Competitive. Policy Instruments for Supporting Green H2; Agora Energiewende: Berlin, Germany, 2021.
- Abad, A.V.; Dodds, P.E. Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy 2020, 138, 111300. [Google Scholar] [CrossRef]
- Robinius, M.; Markewitz, P.; Lopion, P.; Kullmann, F.; Heuser, P.-M.; Syranidis, K.; Cerniauskas, S.; Schöb, T.; Reuß, M.; Ryberg, S.; et al. Wege für die Energiewende. Kosteneffiziente und Klimagerechte Transformationsstrategien für das Deutsche Energiesystem bis Zum Jahr 2050; Schriften des Forschungszentrums Jülich Reihe Energy & Environment 499, VIII; Forschungszentrum Jülich: Jülich, Germany, 2020. [Google Scholar]
- Dena-Leitstudie Integrierte Energiewende. Impulse für die Gestaltung des Energiesystems bis 2050; Deutsche Energie-Agentur GmbH: Berlin, Germany, 2018. [Google Scholar]
- BMWi. Die Nationale Wasserstoffstrategie; Bundesministerium für Wirtschaft und Energie: Berlin, Germany, 2020. [Google Scholar]
- World Energy Council. International Hydrogen Strategies. A Study Commissioned by and in Cooperatiomn with the World Energy Council Germany; World Energy Council: Berlin, Germany, 2020. [Google Scholar]
- European Commission. A Hydrogen Strategy for a Climate-Neutral Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Held, C.; Nohl, J.; Straßer, T.; Fimpel, A. Eckpunkte der Regulierung deutscher Wasserstoffnetze im Kontext einer Anpassung des europarechtlichen Rahmens und ihre Finanzierung durch Integration in den rechtlichen Rahmen der Gasnetzregulierung; Gutachten im Auftrag der Hydrogen Europe AISBL und der GEODE AISBL: Berlin, Germany, 2020. [Google Scholar]
- Power to X Allianz. Vorschlag der PtX Allianz zur Ausgestaltung und Gewichtung der Kriterien für den Strombezug von Elektrolyseuren zur Produktion erneuerbarer Kraftstoffe nach Art. 27 der Erneuerbaren-Energien-Richtlinie (REDII). Available online: https://www.ptx-allianz.de/vorschlag-der-ptx-allianz-zur-ausgestaltung-und-gewichtung-der-kriterien-fuer-den-strombezug-von-elektrolyseuren-zur-produktion-erneuerbarer-kraftstoffe-nach-art-27-der-erneuerbare-energien-richtlini/ (accessed on 10 November 2020).
- Smolinka, T.; Wiebe, N.; Sterchele, P.; Palzer, A.; Lehner, F.; Jansen, M.; Kiemel, S.; Miehe, R.; Wahren, S.; Zimmermann, F. Studie IndWEDe. Industrialisierung der Wasserelektrolyse in Deutschland: Chancen und Herausforderungen für Nachhaltigen Wasserstoff Für Verkehr, Strom Und Wärme; NOW GmbH: Berlin, Germany, 2018. [Google Scholar]
- IEA. The Future of Hydrogen. Seizing Today’s Opportunities; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Chiappinelli, O.; Neuhoff, K. Time-Consistent Carbon Pricing: The Role of Carbon Contracts for Differences; Discussion Papers 1859; DIW, German Institute for Economic Research: Berlin, Germany, 2020. [Google Scholar]
- Sartor, O.; Bataille, C. Decarbonising Basic Materials in Europe: How Carbon Contracts-for-Difference Could Help Bring Breakthrough Technologies to Market; IDDRI, Sustainable Development & Internatinal Relations: Paris, France, 2019. [Google Scholar]
- Vogl, V.; Åhman, M.; Nilsson, L.J. The making of green steel in the EU: A policy evaluation for the early commercialization phase. Clim. Policy 2021, 21, 78–92. [Google Scholar] [CrossRef]
- Van de Graaf, T.; Overland, I.; Scholten, D.; Westphal, K. The new oil? The geopolitics and international governance of hydrogen. Energy Res. Soc. Sci. 2020, 70, 101667. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, P.; Ragwitz, M.; Steinbilber, S.; Resch, R.; Busch, S.; Klessmann, C.; de Lovinfosse, I.; Nysten, J.V.; Fouquet, D.; Johnston, A. Assessment Criteria for Identifying the Main Alternatives–Advantages and Drawbacks, Synergies and Conflicts; Intelligent Energy Europe: Brussels, Belgium, 2012. [Google Scholar]
- Rogge, K.S.; Reichardt, K. Policy mixes for sustainability transitions: An extended concept and framework for analysis. Res. Policy 2016, 45, 1620–1635. [Google Scholar] [CrossRef]
- Ringel, M.; Knodt, M. The governance of the European Energy Union: Efficiency, effectiveness and acceptance of the Winter Package 2016. Energy Policy 2018, 112, 209–220. [Google Scholar] [CrossRef]
- Klessmann, C. The evolution of flexibility mechanisms for achieving European renewable energy targets 2020—Ex-ante evaluation of the principle mechanisms. Energy Policy 2009, 37, 4966–4979. [Google Scholar] [CrossRef]
- Tholen, L.; Thomas, S. Combining Theoretical and Empirical Evidence: Policy Packages to Make Energy Savings in Appliances Happen. In Proceedings of the EEDAL Conference, Copenhagen, Denmark, 24–26 May 2011. [Google Scholar]
- Mirza, U.K.; Ahmad, N.; Harijan, K.; Majeed, T. Identifying and addressing barriers to renewable energy development in Pakistan. Renew. Sustain. Energy Rev. 2009, 13, 927–931. [Google Scholar] [CrossRef]
- Pahle, M.; Burtraw, D.; Flachsland, C.; Kelsey, N.; Biber, E.; Meckling, J.; Edenhofer, O.; Zysman, J. Sequencing to ratchet up climate policy stringency. Nat. Clim. Chang. 2018, 8, 861–867. [Google Scholar] [CrossRef]
- Monteiro da Silva, S.; Guedes de Almeida, M. Using a Multi-Criteria Analysis to Select Design Alternatives Aiming the Energy Efficiency and IEQ. In Proceedings of the EuroSun 2010 Conference, Graz, Austria, 28 September–1 October 2010. [Google Scholar]
- UNFCCC. Compendium on Methods and Tools to Evaluate Impacts of, and Vulnerability and Adaptation to, Climate Change; Stratus Consulting Inc.: Boulder, CO, USA, 2005. [Google Scholar]
- Department for Communities and Local Government. Multi-Criteria Analysis: A Manual; Department for Communities and Local Government: London, UK, 2009.
- Philipps, L.; Stock, A. Use of Multi-Criteria Analysis in Air Quality Policy; Department for Environment, Food & Rural Affairs: London, UK, 2003.
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Nymoen, H.; Sendler, S.C.; Steffen, R.; Pfeiffer, R. Kurstudie “Quote Erneuerbare und Dekarbonisierte Gase”; Kurzstudie im Auftrag der Vereinigung der Fernleitungsnetzbetreiber Gas e.V.: Berlin, Germany, 2019. [Google Scholar]
- Richstein, J.C. Project-Based Carbon Contracts: A Way to Finance Innovative Low-Carbon Investments; DIW, German Institute for Economic Research: Berlin, Germany, 2017. [Google Scholar]
- Hydrogen Europe. The EU Hydrogen Strategy: Hydrogen Europe’s Top 10 Key Recommendations; Hydrogen Europe: Brussels, Belgium, 2020. [Google Scholar]
- Deutscher Verein des Gas- und Wasserfachs, e.V. Klimaschutz Mit Grünen Gasen. Wie Können Erneuerbare Gase Nachhaltig ins Energiesystem Integriert Werden? DeDVBW: Bonn, Germany, 2018. [Google Scholar]
- E.ON. E.ON Fordert Quote für Grünes Gas. Available online: https://www.eon.com/de/ueber-uns/presse/pressemitteilungen/2020/eon-fordert-quote-fuer-gruenes-gas.html (accessed on 10 November 2021).
- Agora Energiewende. A Clean Industry Package for the EU: Making Sure the European Green Deal Kick-Starts the Transition to Climate-Neutral Industry; Agora Energiewende: Berlin, Germany, 2020. [Google Scholar]
- Crone, K.; Friese, J.; Micheli, M.; Salomon, H. Implementation of the RED II in the Transport Sector. Fostering the Market Ramp-Up of Powerfuels; Global Alliance Powerfuels: Berlin, Germany, 2020. [Google Scholar]
- Hanke, S. Einigung Bei RED-II-Umsetzung im Verkehr; Tagesspiegel Background: Berlin, Germany, 2020. [Google Scholar]
- FNB Gas; BDI; BDEW; VIK; DIHK. Auf dem Weg zu Einem Wettbewerblichen Wasserstoffmarkt. Gemeinsamer Verbändevorschlag zur Anpassung des Rechtsrahmens für Wasserstoffnetze; FNB Gas, BDI, BDEW, VIK, DIHK: Berlin, Germany, 2020. [Google Scholar]
- Rosin, P.; Spiekermann, K. Leitungsgebundene Infrastruktur für Wasserstoff; Energiewirtschaftliche Tagesfragen: Offenbach am Main, Germany, 2020. [Google Scholar]
- Bundesnetzagentur. Regulierung von Wasserstoffnetzen. Ergebnisse der Marktkonsultation; Bundesnetzagentur: Bonn, Germany, 2020. [Google Scholar]
- European Commission. The European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Energy Brainpool. Auf dem Weg in die Wettbewerbsfähigkeit: Elektrolysegase Erneuerbaren Ursprungs; Energy Brainpool: Berlin, Germany, 2018. [Google Scholar]
- Bukold, S. Blauer Wasserstoff. Perspektiven Und Grenzen Eines Neuen Technologiepfades; Greenpeace Energy: Hamburg, Germany, 2020. [Google Scholar]
- International Renewable Energy Agency (IRENA). Hydrogen. A Renewable Energy Perspective; Report prepared for the 2nd Hydrogen Energy Ministerial Meeting in Tokyo, Japan; IRENA: Abu Dhabi, United Arab Emirates, 2019. [Google Scholar]
- Gigler, J.; Weeda, M. Outlines of a Hydrogen Roadmap; TKI NIEUW GAS: Amersfoort, The Netherlands, 2018. [Google Scholar]
- Brändle, G.; Schönfisch, M.; Schulte, S. Estimating long-term global supply costs for low-carbon hydrogen. Appl. Energy 2021, 302, 117481. [Google Scholar] [CrossRef]
- Michalski, J.; Altmann, M.; Bünger, U.; Weindorf, W. Wasserstoffstudie Nordrhein-Westfalen; Ministeriums für Wirtschaft, Innovation, Digitalisierung und Energie NRW: Düsseldorf, Germany, 2019. [Google Scholar]
- Schneider, C.; Samadi, S.; Holtz, G.; Kobiela, G.; Lechtenböhmer, S.; Witecka, W. Klimaneutrale Industrie: Ausführliche Darstellung der Schlüsseltechnologien für die Branchen Stahl, Chemie und Zement; Agora Energiewende: Berlin, Germany, 2019. [Google Scholar]
- Navigant. Gas for Climate. The Optimal Role for Gas in a Net-Zero Emissions Energy System; Navigant: Utrecht, The Netherlands, 2019. [Google Scholar]
- Agora Energiewende; FutureCamp; Ecologic; Wuppertal Institut. Klimaschutzverträge für die Industrietransformation: Analyse zur Stahlbranche; Agora Energiewende: Berlin, Germany, 2021. [Google Scholar]
- Umweltbundesamt. Renewable Energies in Figures. Available online: https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahle (accessed on 10 November 2021).
- Agora Verkehrswende; Agora Energiewende; Frontier Economics. Die Zukünftigen Kosten Strombasierter Synthetischer Brennstoffe; Agora Energiewende, Agora Verkehrswende: Berlin, Germany, 2018. [Google Scholar]
- Kasten, P.; Heinemann, C. Kein Selbstläufer: Klimaschutz und Nachhaltigkeit Durch PtX. Diskussion der Anforderungen und Erste Ansätze für Nachweiskriterien für Eine Klimafreundliche und Nachhaltige Produktion von PtX-Stoffen; Öko-Institut: Freiburg, Germany, 2019. [Google Scholar]
- German National Academy of Sciences Lopoldina. Decarbonisation of Transport: Option and Challenges; European Academies Science Advisory Council, Policy Report 37; European Academies Science Advisory Council: Brusseles, Belgium, 2019. [Google Scholar]
- Jensterle, M.; Narita, J.; Piria, R.; Samadi, S.; Prantner, M.; Crone, K.; Siegemund, S.; Kan, S.; Matsumoto, T.; Shibata, Y.; et al. The Role of Clean Hydrogen in the Future Energy Systems of Japan and Germany; Adelphi: Berlin, Germany, 2019. [Google Scholar]
- Lechtenböhmer, S.; Samadi, S.; Leipprand, A.; Schneider, C. Grüner Wasserstoff, das Dritte Standbein der Energiewende? Energ. Tagesfr. 2019, 69, 10–13. [Google Scholar]
- Adolf, J.; Balzer, C.H.; Jurgen, L.; Schabla, U.; Fischedick, M.; Arnold, K.; Pastowski, A.; Schüwer, D. Energy of the Future? Sustainable Mobility through Fuel Cells and H2? Shell Hydrogen Study; Shell: Hamburg, Germany, 2017. [Google Scholar]
- Singh, S.; Jain, S.; Venkateswaran, P.S.; Tiwari, A.K.; Nouni, M.R.; Pandey, J.K.; Goel, S. Hydrogen: A sustainable fuel for future of the transport sector. Renew. Sustain. Energy Rev. 2015, 51, 623–633. [Google Scholar] [CrossRef]
- Stiller, C.; Weikl, M.C. Industrielle Produktion und Nutzung von konventionellen, CO2-armen und grünem Wasserstoff. In Wasserstoff und Brennstoffzelle; Springer: Berlin/Heidelberg, Germany, 2017; pp. 189–206. [Google Scholar]
- Müller-Syring, G.; Henel, M.; Köppel, W.; Mlaker, H.; Sterner, M.; Höcher, T. Entwicklung von Modularen Konzepten zur Erzeugung, Speicherung und Einspeisung von Wasserstoff und Methan ins Erdgasnetz; DVGW: Bonn, Germany, 2013. [Google Scholar]
- Enagás; Energinet; Fluxys Belgium; Gasunie; GRTgaz; NET4GAS; OGE; ONTRAS; Snam; Swedegas; et al. European Hydrogen Backbone. How a Dedicated Hydrogen Infrastructure Can Be Created; Guidehouse: Utrecht, The Netherlands, 2020. [Google Scholar]
- Schäuble, D.; Jahn, J.; Cremonese, L.; Quitzow, R. Internationale Wasserstoffpolitik. Eine kurze Bestandsaufnahme; IASS Discussion Paper; Institute for Advanced Sustainable Studies: Potsdam, Germany, 2020. [Google Scholar]
- TÜV SÜD. TÜV SÜD Standard CMS 70. Erzeugung von Grünem Wasserstoff (Green Hydrogen); TÜV SÜD Zertifizierungsstelle “Klima und Energie”; TÜV SÜD: Munich, Germany, 2020. [Google Scholar]
- Flachsland, C.; Pahle, M.; Burtraw, D.; Edenhofer, O.; Elkerbout, M.; Fischer, C.; Tietjen, O.; Zetterberg, L. How to avoid history repeating itself: The case for an EU Emissions Trading System (EU ETS) price floor revisited. Clim. Policy 2020, 20, 133–142. [Google Scholar] [CrossRef]
- Leipprand, A.; Flachsland, C.; Pahle, M. Starting low, reaching high? Sequencing in EU climate and energy policies. Environ. Innov. Soc. Transit. 2020, 37, 140–155. [Google Scholar] [CrossRef]
- Deutsche Emissionshandelsstelle im Umweltbundesamt (DEHSt). Leitfaden Zuteilung 2021–2030. Teil 1. Grundlegende Informationen zu den Zuteilungsregeln und zum Zuteilungsverfahren; DEHSt: Berlin, Germany, 2019. [Google Scholar]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council Establishing a Carbon Border Adjustment Mechanism; COM(2021)564 Final; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Mercator Research Institute on Global Commons and Climate Change (MCC). Safeguarding Europe’s Climate Protection; Policy Brief. MCC: Berlin, Germany, 2020. [Google Scholar]
- Harks, E. BP Outlook Global, GH2 & Efuels; British Petrol: London, UK, 2019. [Google Scholar]
- Verbraucherzentrale Bundesverband (VZBV). Wasserstoffnetze nicht zu Lasten der Verbraucher Finanzieren und Regulieren. Positionspapier des Verbraucherzentrale Bundesverbands zur Regulierung von Wasserstoffnetzen; Verbraucherzentrale Bundesverband: Berlin, Germany, 2020. [Google Scholar]
Challenge #1 | Criterion #1 |
---|---|
The investment and operational costs (CAPEX and OPEX) of the production and usage of green hydrogen are still high and green hydrogen is not yet competitive. Electricity prices and the electrolyser CAPEX drive up domestic green hydrogen-production costs. | The policy mix supports the creation of business cases and the reduction in the cost of green hydrogen production and industrial applications and allows for fast market development. It accounts for the difference in cost between green hydrogen and fossil-based hydrogen and between green hydrogen and fossil alternatives in specific applications. |
Challenge #2 | Criterion #2 |
---|---|
Ensuring the climate-friendly production of green hydrogen. Green hydrogen will only contribute to emission reductions if renewable energy generation capacity is expanded correspondingly or if surplus electricity is used. | The policy mix ensures that the expansion of hydrogen brings about emission reductions—which means that the production of renewable energy needs to increase correspondingly. Either excess or additional renewable energy should be used for the production of hydrogen. It also sets incentives for electrolysers to be built at locations and operated in a way that is compatible with the needs of the electricity system. |
Challenge #3 | Criterion #3 |
---|---|
Due to the limited supply of green hydrogen, there is a competitive situation between different users that may prevent planning security and delay investments or lead to non-optimal use of the limited hydrogen available. | The policy mix sets clear priorities and promotes investment security. Support should focus on users who have no viable alternative to the use of hydrogen for achieving climate neutrality, and on applications that can achieve large emission reductions in the long term but require investment decisions today. |
Challenge #4 | Criterion #4 |
---|---|
Building up transport infrastructure. The current infrastructure is not sufficient to connect prospective producers and consumers. | The policy mix sets clear priorities and promotes security for investments. Support should focus on users who have no viable alternatives to the use of hydrogen for achieving climate neutrality and on applications that will achieve large emission reductions in the long term. |
Challenge/Criterion | #1 Creating Business Cases | #2 Ensuring the Climate-Friendly Production of Green Hydrogen | #3 Securing Access to Green Hydrogen for Priority Applications | #4 Building Transport Infrastructure |
---|---|---|---|---|
Certification and Guarantees of Origin | ++ (defines requirements) | |||
Carbon pricing/EU ETS | + (reduces the cost gap, effect depends on the price) | |||
Reform of charges and funding policies | ++ (reduces the cost gap) | (+) (via certification/definition) | ||
Carbon Contracts for Difference | ++ (guarantees the closure of the cost gap) | ++ (industry) | (+) (possibly indirectly) | |
Quotas | + (reduces the cost gap) | (+) (via certification/definition) | + (if focused on specific markets) | (+) (possibly indirectly) |
Crediting green hydrogen for renewables target in transport (RED II) | ++ (secures demand) | (+) (via certification/definition) | (+) (possibly indirectly) | |
Regulating grid infrastructure | (+) (affects transport costs) | (+) (if pure hydrogen transport is supported) | ++ (enables infrastructure development) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tholen, L.; Leipprand, A.; Kiyar, D.; Maier, S.; Küper, M.; Adisorn, T.; Fischer, A. The Green Hydrogen Puzzle: Towards a German Policy Framework for Industry. Sustainability 2021, 13, 12626. https://doi.org/10.3390/su132212626
Tholen L, Leipprand A, Kiyar D, Maier S, Küper M, Adisorn T, Fischer A. The Green Hydrogen Puzzle: Towards a German Policy Framework for Industry. Sustainability. 2021; 13(22):12626. https://doi.org/10.3390/su132212626
Chicago/Turabian StyleTholen, Lena, Anna Leipprand, Dagmar Kiyar, Sarah Maier, Malte Küper, Thomas Adisorn, and Andreas Fischer. 2021. "The Green Hydrogen Puzzle: Towards a German Policy Framework for Industry" Sustainability 13, no. 22: 12626. https://doi.org/10.3390/su132212626
APA StyleTholen, L., Leipprand, A., Kiyar, D., Maier, S., Küper, M., Adisorn, T., & Fischer, A. (2021). The Green Hydrogen Puzzle: Towards a German Policy Framework for Industry. Sustainability, 13(22), 12626. https://doi.org/10.3390/su132212626