The Various Effects of Technology Trade on the Sustainable Market Value of Firms in OECD Countries
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Perspectives
2.2. Empirical Studies: Technology Assets and Market Value
3. Econometric Strategy and Data Issue
3.1. Econometric Strategy
3.2. Data Issue
3.2.1. Stock Return Data
3.2.2. Main Exogenous Explanatory Variables
3.2.3. Control Variables
3.2.4. Dummy Variables
A. The U.S. Subprime Crisis
B. The GIIPS Banking Crisis
4. Empirical Findings
4.1. Baseline Results of Panel Regressions
4.2. Diagnostic Test
Panel Estimation Accounting for the CSD across Panel Data Unit
4.3. Robustness Tests
4.3.1. Endogeneity Bias test of Explanatory Variables
4.3.2. Dynamic Panel Estimations
4.4. Additional Analyses
4.4.1. Nonlinearities of Technology Trade
4.4.2. Heterogeneity across Levels of Stock Returns of the Dependent Variable
4.4.3. Effects of Technology Trade Depending Technology Trade Balance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, R.E.; Jones, C. Why do some countries produce so much more output per worker than others. Q. J. Econ. 1999, 114, 83–116. [Google Scholar] [CrossRef]
- Groizard, J.L. Technology trade. J. Dev. Stud. 2008, 45, 1526–1544. [Google Scholar] [CrossRef]
- Evenson, R.E.; Westphal, L.E. Technological change and technology strategy. Handb. Dev. Econ. 1995, 3, 2209–2299. [Google Scholar]
- Gerschenkron, A. Economic Backwardness in Historical Perspective; Belknap Press of Harvard University: Cambridge, MA, USA, 1962. [Google Scholar]
- Coe, D.T.; Helpman, E. International R&D spillovers. Eur. Econ. Rev. 1995, 39, 859–887. [Google Scholar]
- Coe, D.T.; Hoffmaister, A.W.; Helpman, E. North-south R&D spillovers. Econ. J. 1997, 107, 134–149. [Google Scholar]
- Keller, W. International technology diffusion. J. Econ. Lit. 2004, 42, 752–782. [Google Scholar] [CrossRef] [Green Version]
- Maskus, K.E.; Penubarti, M. How trade-related are intellectual property rights? J. Int. Econ. 1995, 39, 227–248. [Google Scholar] [CrossRef]
- Falvey, R.; Foster, N.; Greenaway, D. Trade, imitative ability and intellectual property rights. Rev. World Econ. 2009, 145, 373–404. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, J.; Salancik, G.R. The External Control of Organizations: A Resource Dependence Perspective; Harper & Row Publishers: New York, NY, USA, 1978. [Google Scholar]
- Corrado, C.; Haltiwanger, J.; Sichel, D. Measuring capital and technology: An expanded framework. In Measuring Capital in the New Economy; Corrado, C., Hulten, C., Sichel, D., Eds.; The University of Chicago Press: Chicago, IL, USA, 2005; pp. 11–46. Available online: https://www.degruyter.com/document/doi/10.7208/9780226116174-003/html (accessed on 1 November 2021).
- Organization for Economic Cooperation and Development (OECD). Supporting Investment in Knowledge Capital, Growth and Innovation; OECD Publishing: Paris, France, 2013; Available online: https://www.researchgate.net/publication/287253470_Supporting_Investment_in_Knowledge_Capital_Growth_and_Innovation (accessed on 1 November 2021).
- World Intellectual Property Organization (WIPO). World Intellectual Property Report 2017: Intangible Capital in Global Value Chains; WIPO: Geneva, Switzerland, 2017; Available online: https://www.wipo.int/publications/en/details.jsp?id=4225 (accessed on 1 November 2021).
- Dosso, M.; Vezzani, A. Firm market valuation and intellectual property assets. Ind. Innov. 2019, 27, 705–729. [Google Scholar] [CrossRef] [Green Version]
- Dal Borgo, M.; Goodridge, P.; Haskel, J.; Pesole, A. Productivity and growth in UK industries: An intangible investment approach. Oxf. Bull. Econ. Stat. 2012, 76, 806–834. [Google Scholar]
- Schautschick, P.; Greenhalgh, C. Empirical studies of trade marks: The existing economic literature. Econ. Innov. New Technol. 2016, 25, 358–390. [Google Scholar] [CrossRef] [Green Version]
- Sandner, P.G.; Block, J. The market value of R&D, patents, and trademarks. Res. Policy 2011, 40, 969–985. [Google Scholar]
- Hottenrott, H.; Hall, B.H.; Czarnitzki, D. Patents as quality signals? The implications for financing constraints on R&D. Econ. Innov. New Technol. 2016, 25, 197–217. [Google Scholar]
- Hall, B.H.; Jaffe, A.; Trajtenberg, M. Market value and patent citations. Rand J. Econ. 2005, 36, 16–38. [Google Scholar]
- Wernerfelt, B. A resource-based view of the firm. Strateg. Manag. J. 1984, 5, 171–180. [Google Scholar] [CrossRef]
- Lee, H.; Cho, E.; Cheong, C.; Kim, J. Do strategic alliances in a developing country create firm value? Evidence from Korean firms. J. Empir. Financ. 2013, 20, 30–41. [Google Scholar] [CrossRef]
- Barney, J. Firm resources and sustained competitive advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Grant, R.M.; Baden-Fuller, C. A knowledge accessing theory of strategic alliances. J. Manag. Stud. 2004, 41, 61–84. [Google Scholar] [CrossRef]
- Hall, B.H. Innovation and Market Value. In Productivity, Innovation and Economic Performance; Barrell, R., Mason, G., O’Mahoney, M., Eds.; Cambridge University Press: New York, NY, USA, 2000; Available online: https://www.nber.org/papers/w6984 (accessed on 1 November 2021).
- Grossman, G.; Helpman, E. The politics of free trade agreements. Am. Econ. Rev. 1995, 85, 667–690. [Google Scholar]
- Irwin, D.A.; Tervio, M. Does trade raise income? Evidence from the twentieth century. J. Int. Econ. 2002, 58, 1–18. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, H.F. Foreign Technology Imports and Economics Growth in Developing Countries. Policy Research Working Paper 1412, The World Bank. 1995. Available online: http://www-wds.worldbank.org/external/default/WDSC...d/PDF/multi0page.pdf (accessed on 15 October 2021).
- Toivanen, O.; Stoneman, P.; Bosworth, D. Innovation and the market value of UK firms, 1989–1995. Oxf. Bull. Econ. Stat. 2002, 64, 39–61. [Google Scholar] [CrossRef]
- Avalos, A.; Savvides, A. The manufacturing wage inequality in Latin America and East Asia: Openness, technology transfer, and labor supply. Rev. Dev. Econ. 2006, 10, 553–576. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.; Kim, J. Open technology innovation activity and firm value: Evidence from Korean firms. Appl. Econ. 2012, 44, 3351–3561. [Google Scholar] [CrossRef]
- Griliches, Z. Market value, R&D and patents. Econ. Lett. 1981, 7, 183–187. [Google Scholar]
- Megna, P.; Klock, M. The impact of intangible capital on Tobin’s q in the semiconductor industry. Am. Econ. Rev. 1993, 83, 265–269. [Google Scholar]
- Connolly, R.; Hirshey, M. Market value and patents: A Bayesian approach. Econ. Lett. 1988, 27, 83–87. [Google Scholar] [CrossRef]
- Bloom, N.; Van Reenen, J. Patents, real options and firm performance. Econ. J. 2002, 112, 97–116. [Google Scholar] [CrossRef]
- Belenzon, S.; Patacconi, A. Innovation and firm value: An investigation of the changing role of patents, 1985–2007. Res. Policy 2013, 42, 1496–1510. [Google Scholar] [CrossRef]
- Ocak, M.; Findik, D. The impact of intangible assets and sub-components of intangible assets on sustainable growth and firm value: Evidence from Turkish listed firms. Sustainability 2019, 11, 5359. [Google Scholar] [CrossRef] [Green Version]
- Choi, I. Unit root tests for panel data. J. Int. Money Financ. 2001, 20, 249–272. [Google Scholar] [CrossRef]
- Driscoll, J.C.; Kraay, A.C. Consistent covariance matrix estimation with spatially dependent panel data. Rev. Econ. Stat. 1998, 80, 549–560. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 5th ed.; South-Western: Mason, OH, USA, 2013. [Google Scholar]
- Lee, H.; Kim, H. Time varying integration of European stock markets and monetary drivers. J. Empir. Financ. 2020, 58, 369–385. [Google Scholar] [CrossRef]
- Mata, J.; Machado, J.A.F. Firm start-up size: A conditional quantile approach. Eur. Econ. Rev. 1996, 40, 1305–1323. [Google Scholar] [CrossRef]
- Fattouh, B.; Scaramozzino, P.; Harris, L. Capital structure in South Korea: A quantile regression approach. J. Dev. Econ. 2005, 76, 231–250. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Cho, S.M. What drives dynamic comovements of stock markets in the Pacific Basin region? A quantile regression approach. Int. Rev. Econ. Financ. 2021, 51, 314–327. [Google Scholar] [CrossRef]
- Machado, J.A.F.; Silva, J.M.C. Quantiles via moments. J. Econ. 2019, 213, 145–173. [Google Scholar] [CrossRef]
- Lee, H.; Lee, K. The effects of technology innovation activity on CSR: Emphasizing the nonlinear and heterogenous effects. Sustainability 2021, 13, 10893. [Google Scholar] [CrossRef]
Variables | Mean | Std. Dev. | Skewness | Kurtosis | Min. | Median | Max. | Obs. |
---|---|---|---|---|---|---|---|---|
StoRet | 0.006 | 0.10 | −2.65 | 35.95 | −1.69 | 0.018 | 0.49 | N = 1996 n = 36, T = 54.69 |
GroIPRIM | 0.01 | 0.21 | −0.53 | 8.83 | −1.43 | 0.02 | 1.11 | N = 1883 n = 36, T = 59 |
GroIPREX | 0.02 | 0.46 | 0.90 | 59.03 | −5.91 | 0.01 | 7.40 | N = 1883 n = 36, T = 59 |
NetGroIPRIM | −0.01 | 0.47 | −1.37 | 52.55 | −7.54 | 0.00 | 4.95 | N = 1883 n = 36, T = 59 |
ln_Inflation | 2.13 | 2.29 | 2.38 | 15.65 | −6.10 | 1.80 | 22.37 | N = 1883 n = 36, T = 59 |
ln_FX | −0.05 | 3.01 | −0.03 | 11.09 | −19.17 | 0.00 | 24.07 | N = 1883 n = 36, T = 59 |
InterestRate | 2.13 | 2.69 | 1.95 | 10.56 | −0.84 | 1.17 | 22.50 | N = 1883 n = 36, T = 59 |
Panel A. Level | ||
---|---|---|
Variables | ||
Test Statistics | Lags | |
IPRIM | 26.945 (1.000) | 0 to 10 |
IPREX | 36.813 (0.999) | 0 to 10 |
NetIPRIM | 85.935 (0.125) | 0 to 10 |
Inflation | 2.713 (1.000) | 0 to 10 |
FX | 60.631 (0.828) | 0 to 10 |
InterestRate | 158.301 *** (0.000) | 1 to 10 |
Panel B. Difference | ||
Variables | : Unit Root | |
Test Statistics | Lags | |
GroIPRIM | 1930.79 *** (0.000) | 0 to 10 |
GroIPREX | 2149.72 *** (0.000) | 0 to 10 |
NetGroIPRIM | 2135.75 *** (0.000) | 0 to 10 |
ln_Inflation | 208.553 *** (0.000) | 0 to 10 |
ln_FX | 1841.08 *** (0.000) | 0 to 8 |
ln_InterestRate | 661.342 *** (0.000) | 0 to 9 |
Variables | GroIPRIM | GroIPREX | NetGroIPRIM | ln_Inflation | ln_FX | Interest Rate |
---|---|---|---|---|---|---|
GroIPRIM | 1 | |||||
GroIPREX | 0.190 | 1 | ||||
NetGroIPRIM | 0.254 | −0.902 | 1 | |||
ln_Inflation | 0.018 | 0.006 | 0.002 | 1 | ||
ln_FX | 0.024 | 0.009 | 0.001 | 0.043 | 1 | |
InterestRate | 0.008 | −0.002 | 0.005 | 0.699 | 0.006 | 1 |
Variables | Reg. 1 | Reg. 2 | Reg. 3 | Reg. 4 |
---|---|---|---|---|
Constant | 0.0427 *** (0.0040) | 0.0411 *** (0.0039) | 0.0408 *** (0.0039) | 0.0411 *** (0.0039) |
GroIPRIM | 0.0263 ** (0.0116) | 0.0273 ** (0.0118) | ||
GroIPREX | −0.0036 (0.0059) | −0.0062 (0.0060) | ||
NetGroIPRIM | 0.0095 * (0.0057) | |||
ln_Inflation | −0.0137 *** (0.0016) | −0.0125 *** (0.0016) | −0.0126 *** (0.0016) | −0.0125 *** (0.0016) |
ln_FX | 0.0037 *** (0.0007) | 0.0029 *** (0.0007) | 0.0029 *** (0.0007) | 0.0029 *** (0.007) |
InterestRate | −0.0035 *** (0.0013) | −0.0050 *** (0.0014) | −0.0050 *** (0.0014) | −0.0049 *** (0.0014) |
DSubpirme | Inclusive | Inclusive | Inclusive | Inclusive |
DGIIPS | Inclusive | Inclusive | Inclusive | Inclusive |
Number of observations | 1796 | 1760 | 1760 | 1760 |
Number of groups | 36 | 36 | 36 | 36 |
0.031 | 0.036 | 0.038 | 0.037 | |
(p-values) | 28.24 *** (0.000) | 26.25 *** (0.000) | 23.33 *** (0.000) | 26.69 *** (0.000) |
−0.6625 | −0.6246 | −0.6182 | −0.6214 | |
statistics (p-value) | 100.93 *** (0.000) | 87.83 *** (0.000) | 87.85 *** (0.000) | 87.63 *** (0.000) |
Variables | Reg. 1 | Reg. 2 | Reg. 3 | Reg. 4 |
---|---|---|---|---|
Constant | 0.0427 *** (0.0042) | 0.0411 *** (0039) | 0.0408 *** (0.0039) | 0.0411 *** (0.0036) |
GroIPRIM | 0.0263 *** (0.0125) | 0.0273 ** (0.0116) | ||
GroIPREX | −0.0036 (0.0056) | −0.0062 (0.0067) | ||
NetGroIPRIM | 0.0095 * (0.0056) | |||
ln_Inflation | −0.0137 *** (0.0028) | −0.0125 *** (0.0028) | −0.0126 *** (0.0028) | −0.0125 *** (0.0030) |
ln_FX | 0.0037 *** (0.0009) | 0.0029 *** (0.0008) | 0.0029 *** (0.0008) | 0.0029 *** (0.0007) |
InterestRate | −0.0035 * (0.0021) | −0.0050 ** (0.0025) | −0.0050 *** (0.0025) | −0.0049 * (0.0028) |
DSubpirme | Inclusive | Inclusive | Inclusive | Inclusive |
DGIIPS | Inclusive | Inclusive | Inclusive | Inclusive |
Number of observation | 1796 | 1760 | 1760 | 1760 |
Number of groups | 36 | 36 | 36 | 36 |
0.088 | 0.080 | 0.086 | 0.085 | |
(p-value) | 15.35 *** (0.000) | 22.89 *** (0.000) | 19.66 *** (0.000) | 30.00 *** (0.000) |
statistics (p-value) | 69.46 *** (0.000) | 22.89 *** (0.000) | 15.55 ** (0.029) | 48.78 *** (0.000) |
Maximum lag | 1 | 3 | 3 | 8 |
Variables | Reg. 1 | Reg. 2 | Reg. 3 | Reg. 4 |
---|---|---|---|---|
Constant | 0.0435 *** (0.0042) | 0.0442 *** (0.0042) | 0.0440 *** (0.0042) | 0.0442 *** (0.0042) |
GroIPRIM | 0.0294 *** (0.0122) | 0.0305 *** (0.0124) | ||
GroIPREX | −0.0037 (0.0063)) | −0.0064 (0.0064) | ||
NetGroIPRIM | 0.0104 * (0.0061) | |||
ln_Inflation | −0.0145 *** (0.0017) | −0.0141 *** (0.0017) | 0.0142 *** (0.0017) | −0.0141 *** (0.0017) |
ln_FX | 0.0038 *** (0.0007) | 0.0033 *** (0.0008) | 0.0032 *** (0.0008) | 0.0032 *** (0.0008) |
InterestRate | −0.0027 ** (0.0013) | −0.0054 *** (0.0015) | −0.0054 *** (0.0015) | −0.0054 *** (0.0015) |
DSubpirme | Inclusive | Inclusive | Inclusive | Inclusive |
DGIIPS | Inclusive | Inclusive | Inclusive | Inclusive |
Number of observations | 1666 | 1607 | 1607 | 1607 |
Number of groups | 36 | 36 | 36 | 36 |
) | −0.6475 | −0.5333 | −0.5286 | −0.5299 |
R2 | 0.037 | 0.052 | 0.055 | 0.087 |
(p-value) | 177.31 *** (0.000) | 176.24 *** (0.000) | 182.80 *** (0.000) | 179.12 *** (0.000) |
Instrumented variable(s) | 1st lag of GroIPIM | 1st lag of GroIPEX | 1st lag of GroIPIM & GroIPEX | 1st lag of NetGroIP |
statistics (p-value) | 91.43 *** (0.000) | 72.63 *** (0.000) | 73.26 *** (0.000) | 72.76 *** (0.000) |
Variables | Reg. 1 | Reg. 2 | Reg. 3 | Reg. 4 |
---|---|---|---|---|
Constant | 0.0372 *** (0.0046) | 0.0390 *** (0.0046) | 0.0387 *** (0.0045) | 0.0392 *** (0.0046) |
StoRett−1 | 0.0036 (0.0211) | −0.0029 (0.0213) | −0.0016 (0.0212) | −0.0013 (0.0213) |
StoRett−2 | −0.0122 (0.0190) | −0.0218 (0.0192) | −0.0209 (0.0192) | −0.0199 (0.0192) |
GroIPRIM | 0.0317 *** (0.0129) | 0.0334 *** (0.0132) | ||
GroIPREX | 0.0030 (0.0064) | 0.0004 (0.0065) | ||
NetGroIPRIM | 0.0046 (0.0061) | |||
ln_Inflation | −0.0115 *** (0.0018) | −0.0110 *** (0.0019) | −0.0110 *** (0.0019) | −0.0110 *** (0.0019) |
ln_FX | 0.0035 *** (0.0008) | 0.0029 *** (0.0008) | 0.0028 *** (0.0008) | 0.0029 *** (0.0008) |
InterestRate | −0.0030 ** (0.0014) | −0.0053 *** (0.0016) | −0.0054 *** (0.0016) | −0.0053 *** (0.0016) |
DSubpirme | Inclusive | Inclusive | Inclusive | Inclusive |
DGIIPS | Inclusive | Inclusive | Inclusive | Inclusive |
Number of observations | 1597 | 1564 | 1564 | 1564 |
Number of groups | 36 | 36 | 36 | 36 |
(p-value) | 115.20 *** (0.000) | 112.57 *** (0.000) | 119.32 *** (0.000) | 112.80 *** (0.000) |
Instrument for difference & level equations | GMM type-difference & lag of StoRet | GMM type-difference & lag of StoRet | GMM type-difference & lag of StoRet | GMM type- difference & lag of StoRet, NetGroIP |
Panel A. Regressions on Technology Imports | ||||
---|---|---|---|---|
Variables | Reg. 1 Benchmark-FE Model | Reg. 2 Endogeneity-FE Model | Reg. 3 DK-FE Model | Reg. 4 Dynamic panel Model |
Constant | 0.0413 *** (0.0041) | 0.0420 *** (0.0043) | 0.0413 *** (0.0047) | 0.0365 *** (0.0047) |
StoRett−1 | −0.0034 (0.0211) | |||
StoRett−2 | −0.0113 (0.0190) | |||
GroIPRIM | 0.0277** (0.0116) | 0.0309 *** (0.0122) | 0.0277** (0.0122) | 0.0330 *** (0.0130) |
GroIPRIM2 | 0.0356 (0.0235) | 0.0356 (0.0240) | 0.0356 (0.0292) | 0.0165 (0.0267) |
ln_Inflation | −0.0136 *** (0.0016) | −0.0145 *** (0.0017) | −0.0136 *** (0.0029) | −0.0114 *** (0.0018) |
ln_FX | 0.0037 *** (0.0007) | 0.0039 *** (0.0007) | 0.0037 *** (0.0009) | 0.0035 *** (0.0008) |
InterestRate | −0.0035 *** (0.0013) | −0.0027** (0.0013) | −0.0035 (0.0024) | −0.0030** (0.0008) |
DSubpirme | Inclusive | Inclusive | Inclusive | Inclusive |
DGIIPS | Inclusive | Inclusive | Inclusive | Inclusive |
Number of observations | 1796 | 1666 | 1796 | 1597 |
Number of groups | 36 | 36 | 36 | 36 |
0.089 | 0.094 | 0.089 | ||
24.55 *** (0.000) | 173.63 *** (0.000) | 16.30 *** (0.000) | 115.47 *** (0.000) | |
statistics(p-value) | 105.10 *** (0.000) | 100.52 *** (0.000) | 14.82 ** (0.038) | |
Instrumented variable(s) | 1st lag of GroIPIM & GroIPIM2 | GMM type-lag of StoRet | ||
Maximum lag | 3 | 2 | ||
Panel B. Regressions on technology exports | ||||
Variables | Reg. 1 Benchmark-FE Model | Reg. 2 Endogeneity-FE Model | Reg. 3 DK-FE Model | Reg. 4 Dynamic panel Model |
Constant | 0.0420 *** (0.0040) | 0.0451 *** (0.0042) | 0.0420 *** (0.0040) | 0.0401 *** (0.0046) |
StoRett−1 | −0.0041 (0.0213) | |||
StoRett−2 | −0.0249 (0.0193) | |||
GroIPREX | 0.0032 (0.0059) | −0.0039 (0.0063) | −0.0032 (0.0066) | 0.0036 (0.0064) |
GroIPREX2 | −0.0070 (0.0046) | −0.0074 (0.0050) | −0.0070 **** (0.0038) | −0.0089 * (0.0048) |
ln_Inflation | −0.0125 *** (0.0016) | −0.0141 *** (0.0017) | −0.0125 *** (0.0028) | −0.0109 ***(0.0019) |
ln_FX | 0.0029 *** (0.0007) | 0.0033 *** (0.0008) | 0.0029 *** (0.0008) | 0.0029 *** (0.0008) |
InterestRate | −0.0049 *** (0.0014) | −0.0053 *** (0.0015) | −0.0049 ** (0.0025) | −0.0053 (0.0016) |
DSubpirme | Inclusive | Inclusive | Inclusive | Inclusive |
DGIIPS | Inclusive | Inclusive | Inclusive | Inclusive |
Number of Obs. | 1796 | 1607 | 1760 | 1564 |
Number of groups | 36 | 36 | 36 | 36 |
0.085 | 0.098 | 0.085 | ||
22.85 *** (0.000) | 178.61 *** (0.000) | 20.90 *** (0.000) | 116.13 *** (0.000) | |
Hausman statistics (p-value) | 89.370 *** (0.000) | 75.91 *** (0.000) | 15.14 ** (0.034) | - |
Instrumented variable(s) | 1st lag of GroIPEX & GroIPEX2 | GMM type-difference & lag of StoRet | ||
Maximum lag | 3 | 2 | ||
Panel C. Regressions on net technology trade | ||||
Variables | Reg. 1 Benchmark-FE Model | Reg. 2 Endogeneity-FE Model | Reg. 3 DK-FE Model | Reg. 4 Dynamic panel Model |
Constant | 0.0421 *** (0.0040) | 0.0452 *** (0.0042) | 0.0421 *** (0.0040) | 0.0402 *** (0.0046) |
StoRett−1 | −0.0023 (0.0213) | |||
StoRett−2 | −0.0220 (0.0192) | |||
NetGroIPRIM/NetGroIPREX | 0.0096 */−0.0096 * (0.0057) | 0.0111 */−0.0111 * (0.0061) | 0.0096/−0.0096 (0.0068) | 0.0047/−0.0047 (0.0061) |
NetGroIPRIM2/NetGroIPREX2 | −0.0066 */0.0066 * (0.0042) | −0.0071 */0.0071 * (0.0045) | −0.0066/0.0066 (0.0042) | −0.0071 */0.0071 * (0.0044) |
ln_Inflation | −0.0125 *** (0.0016) | −0.0141 *** (0.0017) | −0.0125 *** (0.0026) | −0.0110 *** (0.0019) |
ln_FX | 0.0029 *** (0.0007) | 0.0033 *** (0.0008) | 0.0029 *** (0.0009) | 0.0029 *** (0.0008) |
InterestRate | −0.0049 *** (0.0014) | −0.0053 *** (0.0015) | −0.0049 ** (0.0022) | −0.0053 (0.0016) |
DSubpirme | Inclusive | Inclusive | Inclusive | Inclusive |
DGIIPS | Inclusive | Inclusive | Inclusive | Inclusive |
Number of observations | 1760 | 1607 | 1760 | 1564 |
Number of groups | 36 | 36 | 36 | 36 |
0.086 | 0.100 | 0.086 | ||
23.26 *** (0.000) | 181.82 *** (0.000) | 14.40 *** (0.000) | 115.71 *** (0.000) | |
Hausman statistics (p-value) | 89.02 *** (0.000) | 75.67 *** (0.000) | 48.11 *** (0.000) | |
Instrumented variable(s) | 1st lag of NetGroIPIM & NetGroIPIM2 | GMM type-difference & lag of StoRet | ||
Maximum lag | 1 | 2 |
FE-Panel Regression | FE-Panel Quantile Regressions (Method of Moment-Q Regressions) | |||||||
---|---|---|---|---|---|---|---|---|
Variables | ||||||||
Constant | 0.0408 *** (0.0039) | Na | Na | Na | Na | Na | Na | Na |
GroIRPIM | 0.0273 ** (0.0118) | 0.0751 ** (0.0353) | 0.0642 ** (0.0290) | 0.0442 *** (0.0186) | 0.0252 ** (0.0132) | 0.0090 (0.0160) | −0.0048 (0.0223) | −0.0129 (0.0266) |
GroIPREX | −0.0062 (0.0060) | 0.0036 (0.0174) | 0.0013 (0.0143) | −0.0066 (0.065) | −0.0066 (0.0065) | −0.0100 (0.0078) | −0.0128 (0.0110) | −0.0145 (0.0131) |
ln_Inflation | −0.0126 *** (0.0016) | −0.01025 ** (0.0060) | −0.0125 *** (0.0049) | −0.0126 *** (0.0022) | −0.0126 *** (0.0022) | −0.0126 *** (0.0027) | −0.0126 *** (0.0038) | −0.0126 *** (0.0045) |
ln_FX | 0.0029 *** (0.0007) | 0.0057 ** (0.0024) | 0.0051 *** (0.0020) | 0.0027 *** (0.0009) | 0.0027 *** (0.0009) | 0.0018 *** (0.0011) | 0.0009 (0.0015) | 0.0005 (0.0018) |
InterestRate | −0.0050 *** (0.0014) | −0.0251 *** (0.0060) | −0.0206 *** (−0.0049) | −0.0041 * (0.0022) | −0.0041 * (0.0022) | 0.0026 (0.0027) | 0.0086 ** (0.0038) | 0.0120 *** (0.0045) |
DSubpirme | Inclusive | Inclusive | Inclusive | Inclusive | Inclusive | Inclusive | Inclusive | Inclusive |
DGIIPS | Inclusive | Inclusive | Inclusive | Inclusive | Inclusive | Inclusive | Inclusive | Inclusive |
Num. of Obs. | 1760 | 1760 | 1760 | 1760 | 1760 | 1760 | 1760 | 1760 |
Num. of groups | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 |
R2 | 0.038 | Na | Na | Na | Na | Na | Na | Na |
Variables | Panel A. Surplus Countries | Panel B. Deficit Countries | ||
---|---|---|---|---|
Reg. 1 | Reg. 2 | Reg. 1 | Reg. 2 | |
Constant | 0.0581 *** (0.0075) | 0.0583 ** (0.0075) | 0.0340 *** (0.0045) | 0.0343 *** (0.0045) |
GroIPRIM | 0.0352 * (0.0208) | 0.0245 * (0.0141) | ||
GroIPREX | −0.0251 ** (0.0129) | −0.0002 (0.0065) | ||
NetGroIPRIM/NetGroIPREX | 0.0272 **/−0.0272 ** (0.0122) | 0.0032/−0.0032 (0.0062) | ||
ln_Inflation | −0.0176 *** (0.0033) | −0.0176 *** (0.0033) | −0.0102 *** (0.0019) | −0.0102 *** (0.0019) |
ln_FX | 0.0059 *** (0.0014) | 0.0060 *** (0.0014) | 0.0015 * (0.0008) | 0.0015 ** (0.0008) |
InterestRate | −0.0088 *** (0.0030) | 0.0088 *** (0.0030) | −0.0038 ** (0.0016) | −0.0038 ** (0.0016) |
DSubpirme | Inclusive | Inclusive | Inclusive | Inclusive |
DGIIPS | Inclusive | Inclusive | Inclusive | Inclusive |
Number of observations | 658 | 658 | 1102 | 1102 |
Number of groups | 13 | 13 | 23 | 23 |
R2 | 0.085 | 0.085 | 0.027 | 0.025 |
(p-value) | 14.45 *** (0.000) | 16.84 *** (0.000) | 11.69 *** (0.000) | 13.15 *** (0.000) |
) | −0.4091 | −0.4912 | −0.6462 | −0.6509 |
statistics (p-value) | 29.50** (0.000) | 30.90 *** (0.000) | 51.16 *** (0.000) | 50.90 *** (0.000) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Lee, K.; Lee, J.H. The Various Effects of Technology Trade on the Sustainable Market Value of Firms in OECD Countries. Sustainability 2021, 13, 12671. https://doi.org/10.3390/su132212671
Lee H, Lee K, Lee JH. The Various Effects of Technology Trade on the Sustainable Market Value of Firms in OECD Countries. Sustainability. 2021; 13(22):12671. https://doi.org/10.3390/su132212671
Chicago/Turabian StyleLee, Hyunchul, Kyungtag Lee, and Jong Ha Lee. 2021. "The Various Effects of Technology Trade on the Sustainable Market Value of Firms in OECD Countries" Sustainability 13, no. 22: 12671. https://doi.org/10.3390/su132212671