An Assessment of the On-Road Mobile Sources Contribution to Particulate Matter Air Pollution by AERMOD Dispersion Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background
2.2. Study Design and Model Set Up
2.3. Description of the Study Area
2.4. Air Quality Monitoring Stations in Study Area
2.5. Terrain Data
2.6. Meteorological Data
2.7. Input Data
2.7.1. Vehicle Population Statistics
- Category L: 2-, 3- and 4-wheel vehicles such as motorcycles, mopeds, quads, and minicars;
- Category M: vehicles with at least four wheels designed to carry passengers;
- Category N: vehicles carrying goods including Light Commercial Vehicles (LCV) with a gross vehicle weight of <3.5 metric tons and Medium and Heavy Commercial Vehicles (MHCV) with a gross vehicle weight of between >3.5 and <12 tons and >12 tons, respectively.
2.7.2. Traffic Data
2.7.3. Emission Data and AERMOD Performance
- Exhaust emissions,
- Road vehicle tire and brake wear;
- Road surface wear.
- Third bullet.
2.8. Statistical Analysis
3. Results and Discussion
3.1. Model Validation
3.2. Air Quality Monitoring Stations Data Analysis
3.3. On-Road Mobile Sources Contribution to PM2.5 and PM10 Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- How Air Pollution Is Destroying Our Health. Available online: https://www.who.int/news-room/spotlight/how-air-pollution-is-destroying-our-health (accessed on 6 February 2021).
- US EPA Organization. How Mobile Source Pollution Affects Your Health. Available online: https://www.epa.gov/mobile-source-pollution/how-mobile-source-pollution-affects-your-health (accessed on 6 February 2021).
- Hooftman, N.; Oliveira, L.; Messagie, M.; Coosemans, T.; Van Mierlo, J. Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting. Energies 2016, 9, 84. [Google Scholar] [CrossRef]
- Kheirbek, I.; Haney, J.; Douglas, S.; Ito, K.; Matte, T. The Contribution of Motor Vehicle Emissions to Ambient Fine Particulate Matter Public Health Impacts in New York City: A Health Burden Assessment. Environ. Health 2016, 15, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohrabi, S.; Zietsman, J.; Khreis, H. Burden of Disease Assessment of Ambient Air Pollution and Premature Mortality in Urban Areas: The Role of Socioeconomic Status and Transportation. Int. J. Environ. Res. Public Health 2020, 17, 1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khreis, H.; Warsow, K.M.; Verlinghieri, E.; Guzman, A.; Pellecuer, L.; Ferreira, A.; Jones, I.; Heinen, E.; Rojas-Rueda, D.; Mueller, N.; et al. The Health Impacts of Traffic-Related Exposures in Urban Areas: Understanding Real Effects, Underlying Driving Forces and Co-Producing Future Directions. J. Transp. Health 2016, 3, 249–267. [Google Scholar] [CrossRef]
- The Contribution of Transport to Air Quality-TERM 2012: Transport Indicators Tracking Progress towards Environmental Targets in Europe—European Environment Agency. Available online: https://www.eea.europa.eu/publications/transport-and-air-quality-term-2012 (accessed on 6 February 2021).
- Krzyżanowski, M.; Kuna-Dibbert, B.; Schneider, J. Health Effects of Transport-Related Air Pollution; WHO Regional Office for Europe: Copenhagen, Danmark, 2005; ISBN 978-92-890-1373-4. [Google Scholar]
- Publications Office of the European Union. Non-Exhaust Traffic Related Emissions-Brake and Tyre Wear PM: Literature Review. Available online: http://op.europa.eu/en/publication-detail/-/publication/5b788afc-985d-4e7a-82fe-f8b28f283f8d/language-en (accessed on 6 February 2021).
- Koenig, J.Q. Health Effects of Particulate Matter. In Health Effects of Ambient Air Pollution: How Safe is The Air We Breathe? Koenig, J.Q., Ed.; Springer: Boston, MA, USA, 2000; pp. 115–137. ISBN 978-1-4615-4569-9. [Google Scholar]
- Fernández Tena, A.; Casan Clarà, P. Deposition of Inhaled Particles in the Lungs. Arch. Bronconeumol. 2012, 48, 240–246. [Google Scholar] [CrossRef]
- Non-Exhaust Particulate Emissions from Road Transport: An Ignored Environmental Policy Challenge|En|OECD. Available online: http://www.oecd.org/environment/non-exhaust-particulate-emissions-from-road-transport-4a4dc6ca-en.htm (accessed on 6 February 2021).
- ETC/ATNI Report 5/2020: Transport Non-Exhaust PM-Emissions. An Overview of Emission Estimates, Relevance, Trends and Policies. Available online: https://www.eionet.europa.eu/etcs/etc-atni/products/etc-atni-reports/etc-atni-report-5-2020-transport-non-exhaust-pm-emissions-an-overview-of-emission-estimates-relevance-trends-and-policies (accessed on 10 September 2021).
- Franco, V.; Kousoulidou, M.; Muntean, M.; Ntziachristos, L.; Hausberger, S.; Dilara, P. Road Vehicle Emission Factors Development: A Review. Atmos. Environ. 2013, 70, 84–97. [Google Scholar] [CrossRef]
- Askariyeh, M.H.; Kota, S.H.; Vallamsundar, S.; Zietsman, J.; Ying, Q. AERMOD for Near-Road Pollutant Dispersion: Evaluation of Model Performance with Different Emission Source Representations and Low Wind Options. Transp. Res. Part Transp. Environ. 2017, 57, 392–402. [Google Scholar] [CrossRef]
- U.S. EPA. User’s Guide for the AMS/EPA Regulatory Model (AERMOD); U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division, Air Quality Modeling Group: Durham, NC, USA, 2019.
- Cimorelli, A.J.; Perry, S.G.; Venkatram, A.; Weil, J.C.; Paine, R.J.; Wilson, R.B.; Lee, R.F.; Peters, W.D.; Brode, R.W. AERMOD: A Dispersion Model for Industrial Source Applications. Part I: General Model Formulation and Boundary Layer Characterization. J. Appl. Meteorol. Climatol. 2005, 44, 682–693. [Google Scholar] [CrossRef]
- Munir, S.; Mayfield, M.; Coca, D.; Mihaylova, L.S.; Osammor, O. Analysis of Air Pollution in Urban Areas with Airviro Dispersion Model—A Case Study in the City of Sheffield, United Kingdom. Atmosphere 2020, 11, 285. [Google Scholar] [CrossRef] [Green Version]
- Slovak Hydrometeorological Institute. Air Pollution in the Slovak Republic-2019; Slovak Hydrometeorological Institute Air Quality Department: Bratislava, Slovakia, 2020; p. 101.
- Zhao, D.; Chen, H.; Shao, H.; Sun, X. Vehicle Emission Factors for Particulate and Gaseous Pollutants in an Urban Tunnel in Xi’an, China. J. Chem. 2018, 2018, e8964852. [Google Scholar] [CrossRef] [Green Version]
- Hudda, N.; Fruin, S.; Delfino, R.J.; Sioutas, C. Efficient Determination of Vehicle Emission Factors by Fuel Use Category Using On-Road Measurements: Downward Trends on Los Angeles Freight Corridor I-710. Atmos. Chem. Phys. 2013, 13, 347–357. [Google Scholar] [CrossRef] [Green Version]
- EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019—European Environment Agency. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 (accessed on 2 July 2021).
- Perry, S.G.; Cimorelli, A.J.; Paine, R.J.; Brode, R.W.; Weil, J.C.; Venkatram, A.; Wilson, R.B.; Lee, R.F.; Peters, W.D. AERMOD: A Dispersion Model for Industrial Source Applications. Part II: Model Performance against 17 Field Study Databases. J. Appl. Meteorol. Climatol. 2005, 44, 694–708. [Google Scholar] [CrossRef] [Green Version]
- Gibson, M.D.; Kundu, S.; Satish, M. Dispersion Model Evaluation of PM2.5, NOx and SO2 from Point and Major Line Sources in Nova Scotia, Canada Using AERMOD Gaussian Plume Air Dispersion Model. Atmos. Pollut. Res. 2013, 4, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Macêdo, M.F.M.; Ramos, A.L.D. Vehicle Atmospheric Pollution Evaluation Using AERMOD Model at Avenue in a Brazilian Capital City. Air Qual. Atmos. Health 2020, 13, 309–320. [Google Scholar] [CrossRef]
- Dresser, A.L.; Huizer, R.D. CALPUFF and AERMOD Model Validation Study in the Near Field: Martins Creek Revisited. J. Air Waste Manag. Assoc. 2011, 61, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Statistical Office of the Slovak Republic DATAcube Database. Available online: http://datacube.statistics.sk/ (accessed on 9 February 2021).
- Slovak Hydrometeorological Institute. Air Pollution in the Slovak Republic-2020; Slovak Hydrometeorological Institute Air Quality Department: Bratislava, Slovakia, 2021; p. 83.
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- U.S. EPA. User’s Guide for the AERMOD Terrain Preprocessor (AERMAP); U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division, Air Quality Modeling Group: Durham, NC, USA, 2019.
- Warneck, P.S. Pal Arya: Air Pollution Meteorology and Dispersion. J. Atmos. Chem. 2000, 37, 209–211. [Google Scholar] [CrossRef]
- Fox, T. SUBJECT: Use of ASOS Meteorological Data in AERMOD Dispersion Modeling. Available online: https://www.semanticscholar.org/paper/SUBJECT%3A-Use-of-ASOS-meteorological-data-in-AERMOD-Fox/98faae921c97651911e8a74625382b8eee050e7c (accessed on 14 February 2021).
- U.S. EPA. User’s Guide for AERMOD Meteorological Preprocessor (AERMET); U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division, Air Quality Modeling Group: Durham, NC, USA, 2019.
- CORINE Land Cover—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 15 February 2021).
- An Official Website of the European Union Vehicle Categories. Available online: https://ec.europa.eu/growth/sectors/automotive/vehicle-categories_en (accessed on 7 February 2021).
- Webclinic s.r.o. Certificate of Roadworthiness in Slovak Republic-Online Database. Available online: https://www.stkonline.sk/overenie-technickej-kontroly-vozidla (accessed on 28 September 2021).
- Transport Engineering|Slovak Road Administration-Ssc.Sk. Available online: https://www.ssc.sk/en/activities/road-network-development/transport-engineering.ssc (accessed on 2 July 2021).
- Institute for Environment and Sustainability (Joint Research Centre); Ntziachristos, L.; Pastorello, C.; Kioutsioukis, I.; Kouridis, C.; Dilara, P.; Gkatzoflias, D. Uncertainty Estimates and Guidance for Road Transport Emission Calculations; Publications Office of the European Union: Luxembourg, 2010; ISBN 978-92-79-15307-5. [Google Scholar]
- Tiwary, A.; Williams, I. Air Pollution: Measurement, Modelling and Mitigation, 4th ed.; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-0-429-46998-5. [Google Scholar]
- Ursínyová, M.; Hladíková, V. Chapter 4 Lead in the environment of Central Europe. In Trace Metals in the Environment; Markert, B., Friese, K., Eds.; Trace Elements—Their Distribution and Effects in the Environment; Elsevier: Amsterdam, The Netherlands, 2000; Volume 4, pp. 109–134. [Google Scholar]
- Ferm, M.; Sjöberg, K. Concentrations and Emission Factors for PM2.5 and PM10 from Road Traffic in Sweden. Atmos. Environ. 2015, 119, 211–219. [Google Scholar] [CrossRef]
- Nam, E.; Kishan, S.; Baldauf, R.W.; Fulper, C.R.; Sabisch, M.; Warila, J. Temperature Effects on Particulate Matter Emissions from Light-Duty, Gasoline-Powered Motor Vehicles. Environ. Sci. Technol. 2010, 44, 4672–4677. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Guideline on Air Quality Models; U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Air Quality Assessment Division, Air Quality Modeling Group: Durham, NC, USA, 1978.
- Qu, H.; Lu, X.; Liu, L.; Ye, Y. Effects of Traffic and Urban Parks on PM10 and PM2.5 Mass Concentrations. Energy Sources Part Recovery Util. Environ. Eff. 2019, 1–13. [Google Scholar] [CrossRef]
- Ginzburg, H.; Liu, X.; Baker, M.; Shreeve, R.; Jayanty, R.K.M.; Campbell, D.; Zielinska, B. Monitoring Study of the Near-Road PM2.5 Concentrations in Maryland. J. Air Waste Manag. Assoc. 2015, 65, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization Official Website Ambient (Outdoor) Air Pollution. Available online: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 31 August 2021).
- Hopke, P.K.; Harrison, R.M.; de Leeuw, F.; Querol, X. Chapter 1-Current State of Particulate Air Quality. In Non-Exhaust Emissions; Amato, F., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 1–19. ISBN 978-0-12-811770-5. [Google Scholar]
- Standards-Air Quality-Environment-European Commission. Available online: https://ec.europa.eu/environment/air/quality/standards.htm (accessed on 8 September 2021).
- Heydari, S.; Tainio, M.; Woodcock, J.; de Nazelle, A. Estimating Traffic Contribution to Particulate Matter Concentration in Urban Areas Using a Multilevel Bayesian Meta-Regression Approach. Environ. Int. 2020, 141, 105800. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; McCarthy, M.C.; Brown, S.G.; Huang, S.; Landsberg, K.; Eisinger, D.S. Influence of Roadway Emissions on Near-Road PM2.5: Monitoring Data Analysis and Implications. Transp. Res. Part Transp. Environ. 2020, 86, 102442. [Google Scholar] [CrossRef]
- Rahimi, M.; Bortoluzzi, D.; Wahlström, J. Input Parameters for Airborne Brake Wear Emission Simulations: A Comprehensive Review. Atmosphere 2021, 12, 871. [Google Scholar] [CrossRef]
- Amato, F.; Cassee, F.R.; Denier van der Gon, H.A.C.; Gehrig, R.; Gustafsson, M.; Hafner, W.; Harrison, R.M.; Jozwicka, M.; Kelly, F.J.; Moreno, T.; et al. Urban Air Quality: The Challenge of Traffic Non-Exhaust Emissions. J. Hazard. Mater. 2014, 275, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Jörß, W.; Handke, V. Emissionen Und Maßnahmenanalyse Feinstaub 2000–2020; Umweltbundesamt: Dessau-Roßlau, Germany, 2007; ISSN 1862-4804. [Google Scholar]
- Timmers, V.R.J.H.; Achten, P.A.J. Non-Exhaust PM Emissions from Electric Vehicles. Atmos. Environ. 2016, 134, 10–17. [Google Scholar] [CrossRef]
- Rexeis, M.; Hausberger, S. Trend of Vehicle Emission Levels until 2020–Prognosis Based on Current Vehicle Measurements and Future Emission Legislation. Atmos. Environ. 2009, 43, 4689–4698. [Google Scholar] [CrossRef]
- Denier van der Gon, H.A.C.; Gerlofs-Nijland, M.E.; Gehrig, R.; Gustafsson, M.; Janssen, N.; Harrison, R.M.; Hulskotte, J.; Johansson, C.; Jozwicka, M.; Keuken, M.; et al. The Policy Relevance of Wear Emissions from Road Transport, Now and in the Future—An International Workshop Report and Consensus Statement. J. Air Waste Manag. Assoc. 2013, 63, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Denby, B.R.; Kupiainen, K.J.; Gustafsson, M. Chapter 9-Review of Road Dust Emissions. In Non-Exhaust Emissions; Amato, F., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 183–203. ISBN 978-0-12-811770-5. [Google Scholar]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to Cities’ Ambient Particulate Matter (PM): A Systematic Review of Local Source Contributions at Global Level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.; Liu, Y.; Yu, Q.; Ma, W. Back-Calculation of Traffic-Related PM10 Emission Factors Based on Roadside Concentration Measurements. Atmosphere 2017, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Bukowiecki, N.; Lienemann, P.; Hill, M.; Furger, M.; Richard, A.; Amato, F.; Prévôt, A.S.H.; Baltensperger, U.; Buchmann, B.; Gehrig, R. PM10 Emission Factors for Non-Exhaust Particles Generated by Road Traffic in an Urban Street Canyon and along a Freeway in Switzerland. Atmos. Environ. 2010, 44, 2330–2340. [Google Scholar] [CrossRef]
- Weinbruch, S.; Worringen, A.; Ebert, M.; Scheuvens, D.; Kandler, K.; Pfeffer, U.; Bruckmann, P. A Quantitative Estimation of the Exhaust, Abrasion and Resuspension Components of Particulate Traffic Emissions Using Electron Microscopy. Atmos. Environ. 2014, 99, 175–182. [Google Scholar] [CrossRef]
- Craig, K.J.; Baringer, L.M.; Chang, S.-Y.; McCarthy, M.C.; Bai, S.; Seagram, A.F.; Ravi, V.; Landsberg, K.; Eisinger, D.S. Modeled and Measured Near-Road PM2.5 Concentrations: Indianapolis and Providence Cases. Atmos. Environ. 2020, 240, 117775. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the Contribution of Road Traffic Emissions to Particulate Matter Concentrations from Field Measurements: A Review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Jeong, C.-H.; Wang, J.M.; Hilker, N.; Debosz, J.; Sofowote, U.; Su, Y.; Noble, M.; Healy, R.M.; Munoz, T.; Dabek-Zlotorzynska, E.; et al. Temporal and Spatial Variability of Traffic-Related PM2.5 Sources: Comparison of Exhaust and Non-Exhaust Emissions. Atmos. Environ. 2019, 198, 55–69. [Google Scholar] [CrossRef]
- Amato, F.; Favez, O.; Pandolfi, M.; Alastuey, A.; Querol, X.; Moukhtar, S.; Bruge, B.; Verlhac, S.; Orza, J.A.G.; Bonnaire, N.; et al. Traffic Induced Particle Resuspension in Paris: Emission Factors and Source Contributions. Atmos. Environ. 2016, 129, 114–124. [Google Scholar] [CrossRef]
- Padoan, E.; Amato, F. Chapter 2—Vehicle Non-Exhaust Emissions: Impact on Air Quality. In Non-Exhaust Emissions; Amato, F., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 21–65. ISBN 978-0-12-811770-5. [Google Scholar]
- Azhari, A.; Halim, N.D.A.; Mohtar, A.A.A.; Aiyub, K.; Latif, M.T.; Ketzel, M. Evaluation and Prediction of PM10 and PM2.5 from Road Source Emissions in Kuala Lumpur City Centre. Sustainability 2021, 13, 5402. [Google Scholar] [CrossRef]
- Živčák, J.; Kádárová, J.; Puškár, M.; Kočišová, M.; Lachvajderová, L. Expected Impacts of the Massive Increase in Electric Vehicles in Slovakia. Appl. Sci. 2020, 10, 8945. [Google Scholar] [CrossRef]
- Luin, B.; Petelin, S.; Al-Mansour, F. Microsimulation of Electric Vehicle Energy Consumption. Energy 2019, 174, 24–32. [Google Scholar] [CrossRef]
- Berjoza, D.; Jurgena, I. Effects of Change in the Weight of Electric Vehicles on Their Performance Characteristics. Agron. Res. 2017, 15, 952–963. [Google Scholar]
- Pohrt, R. TIRE WEAR PARTICLE HOT SPOTS–REVIEW OF INFLUENCING FACTORS. Facta Univ. Ser. Mech. Eng. 2019, 17, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Beddows, D.C.S.; Harrison, R.M. PM10 and PM2.5 Emission Factors for Non-Exhaust Particles from Road Vehicles: Dependence upon Vehicle Mass and Implications for Battery Electric Vehicles. Atmos. Environ. 2021, 244, 117886. [Google Scholar] [CrossRef]
- Brezin, V.; Antov, P. Engineering Ecology, 1st ed.; Publishing House of the UF: Sofia, Bulgaria, 2015. [Google Scholar]
- Simons, A. Road Transport: New Life Cycle Inventories for Fossil-Fuelled Passenger Cars and Non-Exhaust Emissions in Ecoinvent V3. Int. J. Life Cycle Assess. 2016, 21, 1299–1313. [Google Scholar] [CrossRef]
Domain Axis | Length [m] | Spacing [m] | Boundary Points UTM 34N [m] |
---|---|---|---|
X Axis | 6268.80 | 313.44 | 360,868.07 (XMIN) |
367,136.87 (XMAX) | |||
Y Axis | 6258.40 | 312.92 | 5,396,382.02 (YMIN) |
5,402,640.42 (YMAX) |
Station Name | Station Code | Sampling Method (PM2.5/PM10) | Sampling Instrument | Integration Time (PM2.5/PM10) | Station Type |
---|---|---|---|---|---|
Banská Bystrica, Štefánikovo nábrežie | SK601002 | TEOM-E | TEOM 1405F | 1-h | urban traffic |
Banská Bystrica, Zelená | SK601007 | TEOM-E | TEOM 1405F | 1-h | urban background |
Vehicle Category | Fuel Type | Fuel Type, % | Vehicles in Use |
---|---|---|---|
M | Petrol | 53.63 | 1,320,329 |
Diesel | 44.99 | 1,107,497 | |
CNG | 0.04 | 994 | |
Electric Power | 0.09 | 2194 | |
Ethanol | 0.00 | 2 | |
LNG | 0.00 | 0 | |
LPG | 0.00 | 10 | |
N/A | 1.25 | 30,687 | |
Subtotal | 100.00 | 2,461,713 | |
LCV | Petrol | 15.30 | 41,161 |
Diesel | 83.08 | 223,527 | |
CNG | 0.06 | 154 | |
Electric Power | 0.05 | 135 | |
Ethanol | 0.00 | 0 | |
LNG | 0.00 | 0 | |
LPG | 0.00 | 3 | |
N/A | 1.52 | 4077 | |
Subtotal | 100.00 | 269,057 | |
MHCV | Petrol | 0.16 | 128 |
Diesel | 97.92 | 79,293 | |
CNG | 0.05 | 39 | |
Electric Power | 0.00 | 0 | |
Ethanol | 0.00 | 0 | |
LNG | 0.08 | 64 | |
LPG | 0.00 | 0 | |
N/A | 1.79 | 1452 | |
Subtotal | 100.00 | 80,976 | |
L | Petrol | 97.00 | 163,728 |
Diesel | 0.10 | 166 | |
CNG | 0.00 | 0 | |
Electric Power | 0.58 | 983 | |
Ethanol | 0.00 | 0 | |
LNG | 0.00 | 0 | |
LPG | 0.00 | 0 | |
N/A | 2.32 | 3910 | |
Subtotal | 100.00 | 168,787 | |
Grand Total | 2,980,533 |
Vehicle Category | Fuel Type | EURO-X Emission Standards | |||||
---|---|---|---|---|---|---|---|
EURO 1 | EURO 2 | EURO 3 | EURO 4 | EURO 5 | EURO 6 | ||
M | Petrol | 0.00% | 4.94% | 8.38% | 31.62% | 19.92% | 35.14% |
Diesel | 0.00% | 4.86% | 15.82% | 27.00% | 29.20% | 23.11% | |
LCV | Petrol | 0.00% | 4.12% | 16.27% | 66.92% | 5.55% | 7.15% |
Diesel | 0.00% | 3.34% | 17.77% | 44.22% | 17.77% | 16.89% | |
MHCV | Petrol | 0.00% | 46.67% | 40.00% | 13.33% | 0.00% | 0.00% |
Diesel | 0.00% | 1.95% | 15.36% | 12.12% | 17.49% | 53.07% | |
L | Petrol | 0.03% | 25.64% | 49.22% | 24.69% | 0.42% | 0.00% |
Diesel | 0.00% | 69.41% | 18.82% | 11.76% | 0.00% | 0.00% |
Road Section | Road Type | Number of Lanes | Length | Lane Width | Speed Limit | Vehicle Category ADT | |||
---|---|---|---|---|---|---|---|---|---|
M | LCV | MHCV | L | ||||||
- | - | - | [m] | [m] | [km/h] | [Number of Vehicles per 24 h] | |||
93582 | UR | 4 | 1186.20 | 14.00 | 50 | 5874 | 650 | 196 | 43 |
90871 | UE | 6 | 2669.10 | 21.50 | 90 | 46,781 | 4569 | 1375 | 193 |
93581 | UR | 5 | 1331.80 | 17.50 | 50 | 21,912 | 1347 | 405 | 67 |
90872 | UR | 5 | 772.60 | 19.20 | 50 | 38,697 | 2485 | 748 | 100 |
92831 | UR | 2 | 1481.40 | 7.00 | 50 | 3748 | 355 | 107 | 21 |
90663 | UE | 4 | 1328.40 | 15.00 | 90 | 26,349 | 3724 | 1121 | 61 |
90873 | UR | 4 | 857.10 | 14.20 | 50 | 30,367 | 2228 | 671 | 95 |
92821 | UR | 2 | 1960.90 | 6.00 | 50 | 4576 | 326 | 98 | 16 |
90662 | UE | 4 | 831.00 | 15.00 | 90 | 31,126 | 4670 | 1406 | 40 |
90664 | UE | 4 | 721.20 | 14.00 | 80 | 12,138 | 2507 | 754 | 40 |
90665 | UE | 4 | 1238.70 | 14.00 | 90 | 21,003 | 2374 | 715 | 62 |
90881 | UE | 4 | 1350.80 | 14.00 | 80 | 13,116 | 1837 | 553 | 37 |
90874 | UR | 3 | 1346.40 | 10.05 | 50 | 12,021 | 1155 | 347 | 29 |
90882 | UE | 4 | 456.90 | 14.00 | 80 | 15,413 | 1940 | 584 | 48 |
Vehicle Category | Fuel | Speed Limit | Exhaust Emission Factor (PM2.5) | Non-Exhaust Emission Factor | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Road Surface Wear | Road Vehicle Tire/Brake Wear Combined | ||||||||||
EURO2 | EURO3 | EURO4 | EURO5 | EURO6 | PM10 | PM2.5 | PM10 | PM2.5 | |||
- | - | [km/h] | [mg/km Per Vehicle] | [mg/km Per Vehicle] | |||||||
M | P | 50 | 3.20 | 3.20 | 1.30 | 1.30 | 1.40 | 7.50 4.50–10.10) | 4.10 (2.40–5.50) | 13.80 (8.30–19.50) | 7.40 (4.50–10.70) |
P | 90 | 1.90 | 1.90 | 1.20 | 1.20 | 1.20 | |||||
D | 50 | 42.10 | 27.80 | 26.80 | 2.10 | 1.50 | |||||
D | 90 | 44.70 | 38.10 | 24.70 | 1.60 | 1.00 | |||||
LCV | P | 50 | 3.20 | 1.30 | 1.30 | 1.40 | 1.40 | 7.50 (4.50–10.10) | 4.10 (2.40–5.50) | 21.60 (13.90–28.20) | 11.70 (7.10–14.80) |
P | 90 | 1.90 | 1.20 | 1.20 | 3.00 | 3.00 | |||||
D | 50 | 61.50 | 41.20 | 21.50 | 1.10 | 1.10 | |||||
D | 90 | 118.10 | 79.10 | 41.30 | 0.90 | 0.90 | |||||
MHCV | D | 50 | 139.20 | 145.20 | 33.20 | 41.10 | 4.00 | 38.00 (22.80–51.30) | 20.50 (12.30–27.70) | 59.00 (50.00–95.00) | 31.60 (28.10–54.10) |
D | 90 | 164.30 | 110.70 | 28.00 | 32.10 | 2.90 |
Pollutant | Road Section | Emission Rate [mg/s] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Exhaust Emissions | Road Surface Wear Emissions | Road Vehicle Tire and Brake Wear Emissions | ||||||||
M | LCV | MHCV | M | LCV | MHCV | M | LCV | MHCV | ||
PM2.5 | 93582 | 2.81 | 0.71 | 1.65 | 1.59 | 0.18 | 0.26 | 2.86 | 0.50 | 0.41 |
90871 | 52.64 | 21.21 | 28.17 | 28.44 | 2.78 | 4.18 | 51.33 | 7.93 | 6.44 | |
93581 | 11.79 | 1.65 | 3.83 | 6.65 | 0.41 | 0.61 | 12.00 | 1.17 | 0.95 | |
90872 | 12.07 | 1.77 | 4.10 | 6.81 | 0.44 | 0.66 | 12.29 | 1.25 | 1.01 | |
92831 | 2.24 | 0.48 | 1.12 | 1.26 | 0.12 | 0.18 | 2.28 | 0.34 | 0.28 | |
90663 | 14.76 | 8.61 | 11.43 | 7.97 | 1.13 | 1.70 | 14.39 | 3.22 | 2.61 | |
90873 | 10.51 | 1.76 | 4.08 | 5.93 | 0.44 | 0.65 | 10.70 | 1.24 | 1.01 | |
92821 | 3.62 | 0.59 | 1.37 | 2.04 | 0.15 | 0.22 | 3.69 | 0.42 | 0.34 | |
90662 | 10.90 | 6.75 | 8.97 | 5.89 | 0.88 | 1.33 | 10.63 | 2.52 | 2.05 | |
90664 | 3.69 | 3.14 | 4.18 | 1.99 | 0.41 | 0.62 | 3.60 | 1.18 | 0.96 | |
90665 | 10.97 | 5.12 | 6.79 | 5.93 | 0.67 | 1.01 | 10.70 | 1.91 | 1.55 | |
90881 | 7.47 | 4.32 | 5.73 | 4.04 | 0.57 | 0.85 | 7.28 | 1.61 | 1.31 | |
90874 | 6.54 | 1.43 | 3.32 | 3.69 | 0.35 | 0.53 | 6.65 | 1.01 | 0.82 | |
90882 | 2.97 | 1.54 | 2.05 | 1.60 | 0.20 | 0.30 | 2.90 | 0.58 | 0.47 | |
PM10 | 93582 | - | - | - | 2.90 | 0.32 | 0.49 | 5.34 | 0.93 | 0.76 |
90871 | - | - | - | 52.03 | 5.08 | 7.75 | 95.73 | 14.63 | 12.03 | |
93581 | - | - | - | 12.16 | 0.75 | 1.14 | 22.37 | 2.15 | 1.77 | |
90872 | - | - | - | 12.46 | 0.80 | 1.22 | 22.92 | 2.30 | 1.89 | |
92831 | - | - | - | 2.31 | 0.22 | 0.33 | 4.26 | 0.63 | 0.52 | |
90663 | - | - | - | 14.58 | 2.06 | 3.14 | 26.83 | 5.94 | 4.88 | |
90873 | - | - | - | 10.84 | 0.80 | 1.21 | 19.95 | 2.29 | 1.88 | |
92821 | - | - | - | 3.74 | 0.27 | 0.41 | 6.88 | 0.77 | 0.63 | |
90662 | - | - | - | 10.78 | 1.62 | 2.47 | 19.83 | 4.66 | 3.83 | |
90664 | - | - | - | 3.65 | 0.75 | 1.15 | 6.71 | 2.17 | 1.78 | |
90665 | - | - | - | 10.84 | 1.23 | 1.87 | 19.95 | 3.53 | 2.90 | |
90881 | - | - | - | 7.38 | 1.03 | 1.58 | 13.58 | 2.98 | 2.45 | |
90874 | - | - | - | 6.74 | 0.65 | 0.99 | 12.41 | 1.87 | 1.53 | |
90882 | - | - | - | 2.93 | 0.37 | 0.56 | 5.40 | 1.06 | 0.87 |
Pollutant | Statistical Indicator | Exhaust Emissions [μg/m3] | Non-Exhaust Emissions | Total [μg/m3] | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Road Surface Wear [μg/m3] | Road Vehicle Tire and Brake Wear [μg/m3] | ||||||||||
M | LCV | MHCV | M | LCV | MHCV | M | LCV | MHCV | |||
PM2.5 | Mean ± SD | 0.74 ± 0.54 (26.15%) | 0.27 ± 0.22 (9.54%) | 0.38 ± 0.29 (13.43%) | 0.41 ± 0.30 (14.49%) | 0.04 ± 0.03 (1.41%) | 0.06 ± 0.04 (2.12%) | 0.73 ± 0.53 (25.80%) | 0.11 ± 0.09 (3.89%) | 0.09 ± 0.07 (3.18%) | 2.83 ± 2.09 (100%) |
Median | 0.64 | 0.21 | 0.32 | 0.35 | 0.03 | 0.05 | 0.64 | 0.09 | 0.07 | - | |
Min | 0.07 (25.00%) | 0.03 (10.71%) | 0.04 (14.29%) | 0.04 (14.29%) | 0.00 (0.00%) | 0.01 (3.57%) | 0.07 (25.00%) | 0.01 (3.57%) | 0.01 (3.57%) | 0.28 (100%) | |
Max | 4.41 (26.39%) | 1.74 (10.41%) | 2.16 (12.93%) | 2.39 (14.30%) | 0.23 (1.38%) | 0.32 (1.92%) | 4.31 (25.79%) | 0.66 (3.95%) | 0.49 (2.93%) | 16.71 (100%) | |
PM10 | Mean ± SD | - | - | - | 0.74 ± 0.54 (27.82%) | 0.07 ± 0.06 (2.63%) | 0.11 ± 0.08 (4.14%) | 1.37 ± 1.00 (51.50%) | 0.21 ± 0.16 (7.89%) | 0.16 ± 0.12 (6.02%) | 2.66 ± 1.95 (100%) |
Median | - | - | - | 0.65 | 0.06 | 0.09 | 1.19 | 0.17 | 0.14 | - | |
Min | - | - | - | 0.07 (25.93%) | 0.01 (3.70%) | 0.02 (7.41%) | 0.13 (48.15%) | 0.02 (7.41%) | 0.02 (7.41%) | 0.27 (100%) | |
Max | - | - | - | 4.37 (28.07%) | 0.42 (2.70%) | 0.60 (3.85%) | 8.04 (51.64%) | 1.22 (7.84%) | 0.92 (5.91%) | 15.57 (100%) |
Pollutant | Vehicle Category | Reference Point SK601002 | Reference Point SK601007 | ||||
---|---|---|---|---|---|---|---|
Exhaust Emissions | Road Surface Wear | Road Vehicle Tire and Brake Wear | Exhaust Emissions | Road Surface Wear | Road Vehicle Tire and Brake Wear | ||
PM2.5 | M | 1.34 (6.90%) | 0.75 (3.86%) | 1.36 (7.00%) | 0.55 (2.79%) | 0.31 (1.57%) | 0.55 (2.79%) |
LCV | 0.29 (1.49%) | 0.06 (0.31%) | 0.17 (0.88%) | 0.20 (1.02%) | 0.03 (0.15%) | 0.08 (0.41%) | |
MHCV | 0.57 (2.94%) | 0.09 (0.46%) | 0.14 (0.72%) | 0.27 (1.37%) | 0.04 (0.20%) | 0.06 (0.30%) | |
Subtotal | 2.20 (11.33%) | 0.90 (4.63%) | 1.67 (8.60%) | 1.02 (5.18%) | 0.38 (1.92%) | 0.69 (3.50%) | |
PM10 | M | - | 1.37 (4.88%) | 2.53 (9.02%) | - | 0.60 (3.12%) | 1.03 (5.35%) |
LCV | - | 0.11 (0.39%) | 0.32 (1.14%) | - | 0.05 (0.26%) | 0.15 (0.78%) | |
MHCV | - | 0.17 (0.61%) | 0.26 (0.93%) | - | 0.08 (0.42%) | 0.12 (0.62%) | |
Subtotal | - | 1.65 (5.88%) | 3.11 (11.09%) | - | 0.73 (3.80%) | 1.30 (6.75%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salva, J.; Vanek, M.; Schwarz, M.; Gajtanska, M.; Tonhauzer, P.; Ďuricová, A. An Assessment of the On-Road Mobile Sources Contribution to Particulate Matter Air Pollution by AERMOD Dispersion Model. Sustainability 2021, 13, 12748. https://doi.org/10.3390/su132212748
Salva J, Vanek M, Schwarz M, Gajtanska M, Tonhauzer P, Ďuricová A. An Assessment of the On-Road Mobile Sources Contribution to Particulate Matter Air Pollution by AERMOD Dispersion Model. Sustainability. 2021; 13(22):12748. https://doi.org/10.3390/su132212748
Chicago/Turabian StyleSalva, Jozef, Miroslav Vanek, Marián Schwarz, Milada Gajtanska, Peter Tonhauzer, and Anna Ďuricová. 2021. "An Assessment of the On-Road Mobile Sources Contribution to Particulate Matter Air Pollution by AERMOD Dispersion Model" Sustainability 13, no. 22: 12748. https://doi.org/10.3390/su132212748
APA StyleSalva, J., Vanek, M., Schwarz, M., Gajtanska, M., Tonhauzer, P., & Ďuricová, A. (2021). An Assessment of the On-Road Mobile Sources Contribution to Particulate Matter Air Pollution by AERMOD Dispersion Model. Sustainability, 13(22), 12748. https://doi.org/10.3390/su132212748