Geochemical Behavior of Different Chemical Elements during Weathering of the Basalts in Changbai Mountain, Northeast China
Abstract
:1. Introduction
2. Study Samples and Methods
2.1. Geological Setting and Location of Samples
2.2. Materials and Methods
3. Results
4. Discussion
4.1. Behavior of the Major Elements
4.2. Behavior of the Trace Elements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babechuk, M.G.; Widdowson, M.; Kamber, B.S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem. Geol. 2014, 363, 56–75. [Google Scholar] [CrossRef]
- Jianwu, L.I.; Zhang, G.; Gong, Z. Mobilization and redistribution of elements in soils developed from extreme weathering basalt on Hainan Island. Chin. J. Geochem. 2014, 33, 262–271. [Google Scholar]
- Cheng, G.; Liu, Y.; Long, H.; Tao, C.; Ning, Y. A preliminary study on ore-forming environments of Xianglushan-type iron deposit and the weathering mineralization of emeishan basalt in Guizhou Province, China. Acta Geochim. 2017, 36, 556–565. [Google Scholar] [CrossRef]
- Ma, J.L.; Wei, G.J.; Xu, Y.G.; Long, W.G. Behavior of major and trace elements in an extreme weathering profile on basalt in Hainan Island, South China. Geochim. Cosmochim. Acta 2006, 70, A379. [Google Scholar] [CrossRef]
- Liu, J.H.; Zhou, L.; Algeo, T.J.; Wang, X.; Chen, M.L. Molybdenum isotopic behavior during intense weathering of basalt on Hainan Island, South China. Geochim. Cosmochim. Acta 2020, 287, 180–204. [Google Scholar] [CrossRef]
- Mendoza-Grimón, V.; Hernández-Moreno, J.; Martín, J.; Fernández-Vera, J.; Palacios-Díaz, M. Trace and major element associations in basaltic ash soils of El Hierro Island. J. Geochem. Explor. 2014, 147, 277–282. [Google Scholar] [CrossRef]
- Kabatapendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2000; Volume 42, p. 297. [Google Scholar]
- Mikkonen, H.G.; Robert, V.D.G.; Clarke, B.O.; Dasika, R.; Wallis, C.J.; Reichman, S.M. Geochemical indices and regression tree models for estimation of ambient background concentrations of copper, chromium, nickel and zinc in soil. Chemosphere 2018, 210, 193–203. [Google Scholar] [CrossRef]
- Bradl, H.B. Chapter 1 Sources and origins of heavy metals. In Heavy Metals in the Environment: Origin, Interaction and Remediation, 1st ed.; Bradl, H.B., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 6, pp. 1–27. [Google Scholar]
- Braun, J.J.; Descloitres, M.; Riotte, J.; Fleury, S.; Barbiéro, L.; Boeglin, J.L.; Violette, A.; Lacarce, E.; Ruiz, L.; Sekhar, M. Regolith mass balance inferred from combined mineralogical, geochemical and geophysical studies: Mule Hole gneissic watershed, South India. Geochim. Cosmochim. Acta 2009, 73, 935–961. [Google Scholar] [CrossRef]
- Das, A.; Krishnaswami, S. Elemental geochemistry of river sediments from the Deccan Traps, India: Implications to sources of elements and their mobility during basalt–water interaction. Chem. Geol. 2007, 242, 232–254. [Google Scholar] [CrossRef]
- Duzgorenaydin, N.; Aydin, A.; Malpas, J. Re-assessment of chemical weathering indices: Case study on pyroclastic rocks of Hong Kong. Eng. Geol. 2002, 63, 99–119. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J.; Wang, C.; Wang, Z.; Zhou, L. Element behaviors due to rock weathering and its implication to geochemical anomaly recognition: A case study on Linglong biotite granite in Jiaodong peninsula, China. J. Geochem. Explor. 2013, 128, 14–24. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J.; Yang, L.; Zhang, J.; Wang, Q.; Zhang, G. Behavior of major and trace elements during weathering of sericite–quartz schist. J. Asian Earth Sci. 2011, 42, 1–13. [Google Scholar] [CrossRef]
- Gu, J.; Huang, Z.L.; Jin, Z.G.; Xiang, X.L. Immobile elements geochemistry and mass balance calculate of bauxite in Wuchuan—Zheng’an—Daozhen Area, Northern Guizhou Province, China. Acta Mineral. Sin. 2011, 31, 94–102. [Google Scholar]
- Markovics, H.W.N. Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochim. Cosmochim. Acta 1997, 61, 1653–1670. [Google Scholar]
- Panahi, A.; Young, G.M.; Rainbird, R.H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim. Cosmochim. Acta 2000, 64, 2199–2220. [Google Scholar] [CrossRef]
- Pedersen, F.; Bjørnestad, E.; Andersen, H.V.; Kjølholt, J.; Poll, C. Characterization of sediments from Copenhagen Harbour by use of biotests. Water Sci. Technol. 1998, 37, 233–240. [Google Scholar] [CrossRef]
- Sayit, K. Immobile trace element systematics of oceanic island basalts: The role of oceanic lithosphere in creating the geochemical diversity. Ofioliti 2013, 38, 101–120. [Google Scholar]
- Yan, T.; Wu, X.; Quan, Y.; Gong, Q.; Li, X.; Wang, P.; Li, R. Heredity, inheritance and similarity of element behaviors among parent rocks and their weathered products: A geochemical lithogene. Geoence 2018, 32, 453–467. [Google Scholar]
- Qian, C.; Cui, T.R.; Tang, Z.; Jinag, B.; Zhang, C.; Lu, L.; Hui, J.; Wang, Y. Characteristic and genesis discussion of Bi-model volcanic activity during Manjiang Stage, Tianchi Volcano. Geol. Rev. 2017, 63, 287–288. [Google Scholar]
- Fan, Q.C.; Sui, J.L.; Wang, T.H.; Li, N.; Sun, Q. Eruption history and magma evolution of the trachybasalt in the Tianchivolcano, Changbaishan. Acta Petrol. Sin. 2006, 6, 3–11. [Google Scholar]
- Fan, Q.C.; Sui, J.L.; Wang, T.H.; Li, N.; Sun, Q. History of volcanic activity, magma evolution and eruptive mechanisms of the changbai volcanic province. Geol. J. China Univ. 2007, 13, 175–190. [Google Scholar]
- Liu, J.Q.; Chen, S.S.; Guo, W.F.; Sun, C.Q.; Zhang, M.L.; Guo, Z.F. Research advances in the Mt. Changbai Volcano. Bull. Mineral. Petrol. Geochem. 2016, 34, 710–723. [Google Scholar]
- Li, J.Y. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. J. Asian Earth Sci. 2006, 26, 207–224. [Google Scholar] [CrossRef]
- Tang, J.; Xu, W.-L.; Wang, F.; Wang, W.; Xu, M.-J.; Zhang, Y.-H. Geochronology and geochemistry of neoproterozoic magmatism in the Erguna Massif, NE China: Petrogenesis and implications for the breakup of the rodinia supercontinent. Precambrian Res. 2013, 224, 597–611. [Google Scholar] [CrossRef]
- Feng, T.; Tang, D. Petrogenesis of the cenozoic volcanic rocks in the changbaishan region. Acta Petrol. Sin. 1989, 2, 156–186. [Google Scholar]
- Cui, Z.; Liu, J.Q. The historical records about the extensive eruptions of the Tianchi Volcano in Changbai Mountains during AD 1014–1019. Geol. Rev. 2006, 5, 624–627. [Google Scholar]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wei, F.; Zheng, C.; Wu, Y.; Adriano, D.C. Background concentrations of elements in soils of China. Water Air Soil Pollut. 1991, 57–58, 699. [Google Scholar] [CrossRef]
- Teng, Y.; Jin, W.; Lu, S.; Wang, Y.; Jiao, X.; Song, L. Soil and soil environmental quality monitoring in China: A review. Environ. Int. 2014, 69, 177–199. [Google Scholar] [CrossRef] [PubMed]
- Aristizábal, E.; Roser, B.; Yokota, S. Tropical chemical weathering of hillslope deposits and bedrock source in the Aburrá Valley, northern Colombian Andes. Eng. Geol. 2005, 81, 389–406. [Google Scholar] [CrossRef]
- Borges, J.; Huh, Y. Petrography and chemistry of the bed sediments of the Red River in China and Vietnam: Provenance and chemical weathering. Sediment. Geol. 2007, 194, 155–168. [Google Scholar] [CrossRef]
- Ohta, T.; Arai, H. Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chem. Geol. 2007, 240, 280–297. [Google Scholar] [CrossRef]
- Riebe, C.S.; Kirchner, J.W.; Finkel, R.C. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance. Geochim. Cosmochim. Acta 2003, 67, 4411–4427. [Google Scholar] [CrossRef]
- Parker, A. An index of weathering for silicate rocks. Geol. Mag. 1970, 107, 501–504. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Harnois, L. The CIW index: A new chemical index of weathering. Sediment. Geol. 1988, 55, 319–322. [Google Scholar] [CrossRef]
- Colman, S.M. Chemical Weathering of Basalts and Andesites: Evidence from Weathering Rinds; U.S. G.P.O.: Washington, DC, USA, 1982.
- Fedo, C.M.; Wayne Nesbitt, H.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Mclennan, S.M. 100th anniversary symposium: Evolution of the Earth’s surface weathering and global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Feng, Z.; Wang, S.; Liu, X.; Luo, W. Impact of acid-insoluble residua of carbonate rocks on developing intensities of their weathering crusts. Acta Geol. Sin. 2009, 83, 885–893. [Google Scholar]
- Babechuk, M.G.; Widdowson, M.; Murphy, M.; Kamber, B.S. A combined Y/Ho, high field strength element (HFSE) and Nd isotope perspective on basalt weathering, Deccan Traps, India. Chem. Geol. 2015, 396, 25–41. [Google Scholar] [CrossRef]
- Kurtz, A.; Derry, L.A.; Chadwick, O.A.; Alfano, M.J. Refractory element mobility in volcanic soils. Geology 2000, 28, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, H.W.; Markovics, G.; Price, R.C. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta 1980, 44, 1659–1666. [Google Scholar] [CrossRef]
- Zhao, P.; Li, A.M.; Li, S.T.; Yang, C.F.; Zhao, F.Y.; Yan, C.J.; Wang, Z.P.; Chen, J.; Yang, G. The REE geochemical characteristics of the basalt weathering crust in the northwestern Guizhou. Acta Mineral. Sin. 2019, 39, 122–131. [Google Scholar]
- Sun, S.S.; Mcdonough, W.F. Chemical and isotopic systematics of ocean basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Geological Society London Special Publications: London, UK, 1989; Volume 423, pp. 13–345. [Google Scholar]
- Guo, W.; Liu, J.; Guo, Z. Temporal variations and petrogenetic implications in Changbai basaltic rocks since the Pliocene. Acta Petrol. Sin. 2014, 30, 3595–3611. [Google Scholar]
Soil Profile | Parent Rocks Lithologies | Locations | Elevations (m above Sea Level) | |
---|---|---|---|---|
Latitude | Longitude | |||
JLP1 | vesiculate basalt | 42°24′07″ | 126°47′03″ | 547 |
JLP2 | vesiculate basalt | 42°30′35″ | 127°49′23″ | 733 |
JLP3 | vesiculate basalt | 42°11′44″ | 128°10′32″ | 1107 |
Sample | SiO2 | Al2O3 | MgO | TFe2O3 | CaO | Na2O | K2O | P2O5 | TiO2 | MnO | L.O.I. | CIA | Parker |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JLP1-A | 68.10 | 13.76 | 1.26 | 5.94 | 1.10 | 1.90 | 2.20 | 0.23 | 1.07 | 0.22 | 1.14 | 66.42 | 42.48 |
JLP1-B | 64.46 | 15.30 | 1.39 | 6.90 | 0.85 | 1.56 | 2.32 | 0.31 | 1.09 | 0.11 | 0.37 | 72.23 | 40.08 |
JLP1-C | 53.19 | 19.33 | 1.38 | 11.84 | 1.17 | 1.24 | 1.78 | 0.71 | 1.65 | 0.08 | 0.26 | 81.47 | 33.33 |
JLP1-R | 54.50 | 19.42 | 3.07 | 9.04 | 6.29 | 3.44 | 2.45 | 0.95 | 1.79 | 0.13 | 1.90 | 52.62 | 77.02 |
JLP2-A | 69.13 | 13.92 | 1.11 | 5.66 | 0.73 | 1.75 | 2.59 | 0.18 | 1.16 | 0.18 | 0.62 | 67.90 | 43.05 |
JLP2-B | 67.39 | 15.60 | 1.22 | 5.84 | 0.61 | 1.52 | 2.60 | 0.17 | 1.08 | 0.10 | 0.40 | 72.16 | 41.01 |
JLP2-C | 56.12 | 21.24 | 1.06 | 9.30 | 0.99 | 1.64 | 2.85 | 0.73 | 1.81 | 0.12 | 0.35 | 78.44 | 44.77 |
JLP2-R | 51.77 | 19.20 | 4.12 | 10.05 | 5.98 | 3.15 | 2.48 | 0.93 | 2.06 | 0.17 | 0.88 | 53.74 | 76.71 |
JLP3-A | 68.83 | 14.20 | 1.27 | 4.69 | 1.06 | 1.69 | 2.45 | 0.17 | 0.77 | 0.09 | 1.58 | 67.13 | 42.59 |
JLP3-B | 67.14 | 15.32 | 1.39 | 5.06 | 0.96 | 1.48 | 2.49 | 0.16 | 0.79 | 0.07 | 0.59 | 70.23 | 41.07 |
JLP3-C | 63.07 | 17.74 | 1.59 | 6.28 | 1.25 | 1.68 | 2.26 | 0.24 | 0.84 | 0.06 | 0.30 | 71.97 | 42.25 |
JLP3-R | 53.23 | 15.96 | 2.31 | 7.62 | 3.38 | 3.44 | 2.41 | 0.38 | 0.96 | 0.10 | 2.04 | 54.16 | 67.16 |
Average (A–C) | 64.16 | 16.27 | 1.30 | 6.83 | 0.97 | 1.61 | 2.39 | 0.32 | 1.14 | 0.11 | 0.62 |
Sample | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JLP1-A | 33.88 | 77.76 | 7.34 | 27.95 | 5.13 | 1.15 | 4.40 | 0.75 | 4.19 | 0.84 | 2.26 | 0.41 | 2.62 | 0.41 |
JLP1-B | 40.74 | 78.32 | 9.13 | 35.18 | 6.79 | 1.52 | 5.52 | 1.02 | 5.46 | 1.06 | 2.98 | 0.51 | 3.31 | 0.50 |
JLP1-C | 55.79 | 102.61 | 11.49 | 44.68 | 8.56 | 2.34 | 7.10 | 1.17 | 5.94 | 1.08 | 2.83 | 0.47 | 2.88 | 0.43 |
JLP1-R | 54.89 | 99.09 | 11.59 | 46.8 | 8.44 | 2.68 | 7.47 | 1.00 | 4.73 | 0.75 | 1.86 | 0.24 | 1.39 | 0.19 |
JLP2-A | 46.35 | 90.87 | 9.94 | 35.24 | 6.22 | 1.08 | 5.35 | 0.86 | 4.94 | 0.98 | 2.84 | 0.48 | 2.96 | 0.46 |
JLP2-B | 58.82 | 113.98 | 14.57 | 56.05 | 9.89 | 2.34 | 7.82 | 1.15 | 5.84 | 1.08 | 2.86 | 0.46 | 2.68 | 0.41 |
JLP2-C | 65.11 | 120.39 | 16.59 | 64.09 | 10.79 | 2.58 | 8.64 | 1.17 | 6.02 | 1.09 | 2.94 | 0.46 | 2.65 | 0.40 |
JLP2-R | 60.32 | 108.43 | 12.27 | 47.48 | 8.16 | 2.78 | 7.74 | 1.08 | 5.70 | 1.01 | 2.74 | 0.38 | 2.35 | 0.35 |
JLP3-A | 52.84 | 105.47 | 12.33 | 48.10 | 8.48 | 2.23 | 6.49 | 1.03 | 5.24 | 0.97 | 2.51 | 0.41 | 2.60 | 0.38 |
JLP3-B | 50.08 | 124.32 | 9.99 | 36.15 | 6.42 | 1.80 | 5.62 | 0.81 | 4.22 | 0.77 | 2.03 | 0.33 | 1.93 | 0.30 |
JLP3-C | 39.37 | 73.12 | 8.73 | 34.17 | 6.34 | 1.81 | 5.30 | 0.82 | 4.28 | 0.80 | 2.09 | 0.33 | 1.99 | 0.31 |
JLP3-R | 52.38 | 110.44 | 13.95 | 58.40 | 10.09 | 2.90 | 8.61 | 1.18 | 5.90 | 1.02 | 2.80 | 0.38 | 2.32 | 0.33 |
Background | 40.00 | 68.00 | 7.20 | 26.00 | 5.20 | 1.00 | 4.60 | 0.63 | 4.10 | 0.87 | 2.50 | 0.37 | 2.40 | 0.36 |
Sample | ΣREE | ΣLREE | ΣHREE | LREE/HREE | δEu | δCe | (La/Sm)N | (La/Yb)N |
---|---|---|---|---|---|---|---|---|
JLP1-A | 169.09 | 153.21 | 15.88 | 9.65 | 0.72 | 1.14 | 4.15 | 8.72 |
JLP1-B | 192.04 | 171.68 | 20.36 | 8.43 | 0.74 | 0.94 | 3.77 | 8.30 |
JLP1-C | 247.37 | 225.47 | 21.90 | 10.30 | 0.89 | 0.93 | 4.10 | 13.06 |
JLP1-R | 241.12 | 223.49 | 17.63 | 12.68 | 1.01 | 0.90 | 4.09 | 26.62 |
JLP2-A | 208.62 | 189.75 | 18.87 | 10.06 | 0.56 | 0.97 | 4.69 | 10.57 |
JLP2-B | 277.93 | 255.63 | 22.30 | 11.46 | 0.79 | 0.91 | 3.74 | 14.79 |
JLP2-C | 302.91 | 279.54 | 23.37 | 11.96 | 0.79 | 0.86 | 3.80 | 16.56 |
JLP2-R | 260.79 | 239.44 | 21.35 | 11.21 | 1.05 | 0.91 | 4.65 | 17.31 |
JLP3-A | 249.08 | 229.45 | 19.63 | 11.69 | 0.89 | 0.96 | 3.92 | 13.70 |
JLP3-B | 244.77 | 228.76 | 16.01 | 14.29 | 0.90 | 1.26 | 4.91 | 17.49 |
JLP3-C | 179.46 | 163.54 | 15.92 | 10.27 | 0.93 | 0.91 | 3.91 | 13.34 |
JLP3-R | 270.70 | 248.16 | 22.54 | 11.01 | 0.93 | 0.96 | 3.27 | 15.22 |
Background | 163.23 | 147.40 | 15.83 | 9.31 |
Sample | Pb | Rb | Sr | Ba | Zr | Nb | Th | Y | U |
---|---|---|---|---|---|---|---|---|---|
JLP1-A | 29.30 | 106.00 | 172.00 | 625.00 | 69.20 | 20.10 | 12.00 | 22.00 | 2.38 |
JLP1-B | 28.60 | 114.00 | 157.00 | 597.00 | 79.00 | 22.00 | 13.70 | 28.60 | 3.03 |
JLP1-C | 21.00 | 26.30 | 117.00 | 759.00 | 132.00 | 44.90 | 11.50 | 36.50 | 2.46 |
JLP1-R | 9.70 | 10.70 | 720.00 | 907.00 | 106.00 | 60.80 | 7.24 | 19.00 | 1.51 |
JLP2-A | 36.80 | 104.00 | 156.00 | 680.00 | 76.40 | 23.60 | 12.70 | 21.40 | 2.51 |
JLP2-B | 27.80 | 115.00 | 134.00 | 680.00 | 83.00 | 22.80 | 13.30 | 22.60 | 2.80 |
JLP2-C | 22.90 | 63.00 | 164.00 | 694.00 | 123.00 | 38.40 | 13.30 | 29.20 | 2.88 |
JLP2-R | 9.30 | 51.20 | 525.00 | 1465.00 | 127.00 | 43.40 | 5.24 | 14.80 | 1.27 |
JLP3-A | 28.50 | 104.00 | 155.00 | 838.00 | 71.50 | 24.20 | 9.85 | 21.70 | 2.00 |
JLP3-B | 29.20 | 115.00 | 153.00 | 837.00 | 75.20 | 29.40 | 9.11 | 19.30 | 1.82 |
JLP3-C | 23.80 | 112.00 | 150.00 | 890.00 | 82.90 | 35.90 | 8.73 | 16.00 | 1.43 |
JLP3-R | 14.10 | 78.70 | 254.00 | 1066.00 | 99.80 | 26.70 | 5.12 | 12.60 | 0.82 |
Background | 26.00 | 111.00 | 166.00 | 469.00 | 258.00 | 34.00 | 14.00 | 23.00 | 3.00 |
Sample | SiO2 | Al2O3 | MgO | TFe2O3 | CaO | Na2O | K2O | P2O5 | TiO2 | MnO |
---|---|---|---|---|---|---|---|---|---|---|
JLP1-A | 0.39 | −0.21 | −0.54 | −0.27 | −0.81 | −0.38 | 0.00 | −0.73 | −0.33 | 0.88 |
JLP1-B | 0.25 | −0.17 | −0.52 | −0.19 | −0.86 | −0.52 | 0.00 | −0.66 | −0.36 | −0.11 |
JLP1-C | 0.34 | 0.37 | −0.38 | 0.80 | −0.74 | −0.50 | 0.00 | 0.03 | 0.27 | −0.15 |
JLP2-A | 0.28 | −0.31 | −0.74 | −0.46 | −0.88 | −0.47 | 0.00 | −0.81 | −0.46 | 0.01 |
JLP2-B | 0.24 | −0.23 | −0.72 | −0.45 | −0.90 | −0.54 | 0.00 | −0.83 | −0.50 | −0.44 |
JLP2-C | −0.06 | −0.04 | −0.78 | −0.19 | −0.86 | −0.55 | 0.00 | −0.32 | −0.24 | −0.39 |
JLP3-A | 0.27 | −0.12 | −0.46 | −0.39 | −0.69 | −0.52 | 0.00 | −0.56 | −0.21 | −0.11 |
JLP2-B | 0.22 | −0.07 | −0.42 | −0.36 | −0.73 | −0.58 | 0.00 | −0.59 | −0.20 | −0.32 |
JLP3-C | 0.26 | 0.19 | −0.27 | −0.12 | −0.61 | −0.48 | 0.00 | −0.33 | −0.07 | −0.36 |
Average-A | 0.31 | −0.21 | −0.58 | −0.37 | −0.79 | −0.46 | 0.00 | −0.70 | −0.34 | 0.26 |
Average-B | 0.24 | −0.15 | −0.55 | −0.33 | −0.83 | −0.55 | 0.00 | −0.69 | −0.35 | −0.29 |
Average-C | 0.18 | 0.17 | −0.47 | 0.16 | −0.74 | −0.51 | 0.00 | −0.20 | −0.01 | −0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, T.; Hao, L.; Lu, J.; Yin, Y.; Chen, X.; Fan, Y.; Zhao, W.; Hou, Y. Geochemical Behavior of Different Chemical Elements during Weathering of the Basalts in Changbai Mountain, Northeast China. Sustainability 2021, 13, 12796. https://doi.org/10.3390/su132212796
Lan T, Hao L, Lu J, Yin Y, Chen X, Fan Y, Zhao W, Hou Y. Geochemical Behavior of Different Chemical Elements during Weathering of the Basalts in Changbai Mountain, Northeast China. Sustainability. 2021; 13(22):12796. https://doi.org/10.3390/su132212796
Chicago/Turabian StyleLan, Tian, Libo Hao, Jilong Lu, Yechang Yin, Xiaoqing Chen, Yuchao Fan, Wei Zhao, and Yaru Hou. 2021. "Geochemical Behavior of Different Chemical Elements during Weathering of the Basalts in Changbai Mountain, Northeast China" Sustainability 13, no. 22: 12796. https://doi.org/10.3390/su132212796
APA StyleLan, T., Hao, L., Lu, J., Yin, Y., Chen, X., Fan, Y., Zhao, W., & Hou, Y. (2021). Geochemical Behavior of Different Chemical Elements during Weathering of the Basalts in Changbai Mountain, Northeast China. Sustainability, 13(22), 12796. https://doi.org/10.3390/su132212796