Integrated Surface-Groundwater Modelling of Nitrate Concentration in Mediterranean Rivers, the Júcar River Basin District, Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Water Quality Models
2.3. Calibration
2.4. Nitrate Status Classification Performance
3. Results and Discussion
3.1. Calibration
3.2. Nitrate Status Classification Performance
3.3. Nitrate Transfer from GW into Rivers
3.4. Point and Diffuse Pollution Sources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- PATRICAL
- (1)
- Share of liquid water and snow on the land;
- (2)
- Water and nitrogen balance in the soil and excesses (water and nitrates);
- (3)
- Excesses are decomposed into surface runoff and infiltration into aquifers.
- (4)
- GW module;
- (5)
- Groundwater runoff is added to surface runoff forming total runoff, allowing to know the water volume and nitrate load in each section of the drainage network.
- RREA
References
- Food and Agriculture Organization of the United Nations. More People, More Food, Worse Water? A Global Review of Water Pollution from Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2018; ISBN 978-92-5-130729-8. [Google Scholar]
- Huang, H.; Ouyang, W.; Guo, B.; Shi, Y.; Hao, F. Vertical and horizontal distribution of soil parameters in intensive agricultural zone and effect on diffuse nitrogen pollution. Soil Tillage Res. 2014, 144, 32–40. [Google Scholar] [CrossRef]
- Graversgaard, M.; Hedelin, B.; Smith, L.; Gertz, F.; Højberg, A.L.; Langford, J.; Martinez, G.; Mostert, E.; Ptak, E.; Peterson, H.; et al. Opportunities and barriers for water co-governance—A critical analysis of seven cases of diffuse water pollution from agriculture in Europe, Australia and North America. Sustainability 2018, 10, 1634. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Anil, A.G.; Kumar, V.; Kapoor, D.; Subramanian, S.; Singh, J.; Ramamurthy, P.C. Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation. Chemosphere 2022, 287, 131996. [Google Scholar] [CrossRef] [PubMed]
- Bouraoui, F.; Grizzetti, B. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci. Total Environ. 2014, 468–469, 1267–1277. [Google Scholar] [CrossRef]
- Harrison, S.; McAree, C.; Mulville, W.; Sullivan, T. The problem of agricultural ‘diffuse’ pollution: Getting to the point. Sci. Total Environ. 2019, 677, 700–717. [Google Scholar] [CrossRef] [PubMed]
- Wuijts, S.; Claessens, J.; Farrow, L.; Doody, D.G.; Klages, S.; Christophoridis, C.; Cvejić, R.; Glavan, M.; Nesheim, I.; Platjouw, F.; et al. Protection of drinking water resources from agricultural pressures: Effectiveness of EU regulations in the context of local realities. J. Environ. Manag. 2021, 287. [Google Scholar] [CrossRef]
- Evans, A.E.; Mateo-Sagasta, J.; Qadir, M.; Boelee, E.; Ippolito, A. Agricultural water pollution: Key knowledge gaps and research needs. Curr. Opin. Environ. Sustain. 2019, 36, 20–27. [Google Scholar] [CrossRef]
- Liu, J.; Peng, Y.; Li, C.; Gao, Z.; Chen, S. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health. Environ. Pollut. 2021, 268, 115947. [Google Scholar] [CrossRef]
- Cruz, S.; Cordovil, C.M.d.S.; Pinto, R.; Brito, A.G.; Cameira, M.R.; Gonçalves, G.; Poulsen, J.R.; Thodsen, H.; Kronvang, B.; May, L. Nitrogen in water-Portugal and Denmark: Two contrasting realities. Water 2019, 11, 1114. [Google Scholar] [CrossRef] [Green Version]
- Cresswell, H. Agriculture, Hydrology and Water Quality; CABI: Egham, UK, 2004; Volume 3, ISBN 0851995454. [Google Scholar]
- Harvey, J.W.; Gooseff, M. River corridor science: Hydrologic exchange and ecological consequences from bedforms to basins. Water Resour. Res. 2015, 51, 6893–6922. [Google Scholar] [CrossRef] [Green Version]
- McLachlan, P.J.; Chambers, J.E.; Uhlemann, S.S.; Binley, A. Geophysical characterisation of the groundwater–surface water interface. Adv. Water Resour. 2017, 109, 302–319. [Google Scholar] [CrossRef] [Green Version]
- Conant, B.; Robinson, C.E.; Hinton, M.J.; Russell, H.A.J. A framework for conceptualizing groundwater-surface water interactions and identifying potential impacts on water quality, water quantity, and ecosystems. J. Hydrol. 2019, 574, 609–627. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, S.; Williams, J. Large area hydrologic modeling and assessment Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 70. [Google Scholar] [CrossRef]
- Niswonger, R.G.; Panday, S.; Ibaraki, M. MODFLOW-NWT, A Newton Formulation for MODFLOW-2005. US Geol. Surv. Tech. Methods 2005, 6, 44. [Google Scholar]
- Ewen, J.; Geoff, P.; O’Connell, E. SHETRAN: Distributed river basin flow and transport modeling system. J. Hydrol. Eng. 2000, 5, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Park, S.S.; Lee, Y.S. A water quality modeling study of the Nakdong River, Korea. Ecol. Modell. 2002, 152, 65–75. [Google Scholar] [CrossRef]
- Ledoux, E.; Gomez, E.; Monget, J.M.; Viavattene, C.; Viennot, P.; Ducharne, A.; Benoit, M.; Mignolet, C.; Schott, C.; Mary, B. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain. Sci. Total Environ. 2007, 375, 33–47. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). EPA Guidance for Using PRZM-GW in Drinking Water Exposure Assessments; Environmental Protection Agency: Washington, DC, USA, 2012.
- Krause, S.; Boano, F.; Cuthbert, M.; Fleckenstein, J.H.; Lewandowski, J. Understanding process dynamics at aquifer-surface water interfaces: An introduction to the special section on new modeling approaches and novel experimental technologies. Eos Trans. Am. Geophys. Union 2014, 66, 17. [Google Scholar] [CrossRef]
- Madlala, T.; Kanyerere, T.; Oberholster, P.; Xu, Y. Application of multi-method approach to assess groundwater–surface water interactions, for catchment management. Int. J. Environ. Sci. Technol. 2019, 16, 2215–2230. [Google Scholar] [CrossRef] [Green Version]
- Guggenmos, M.R.; Daughney, C.J.; Jackson, B.M.; Morgenstern, U. Regional-scale identification of groundwater-surface water interaction using hydrochemistry and multivariate statistical methods, Wairarapa Valley, New Zealand. Hydrol. Earth Syst. Sci. 2011, 15, 3383–3398. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Hamm, S.Y.; Cheong, J.Y.; Kim, K.; Yoon, H.; Kim, M.S.; Kim, J. Contribution of nitrate-nitrogen concentration in groundwater to stream water in an agricultural head watershed. Environ. Res. 2020, 184, 109313. [Google Scholar] [CrossRef]
- Xiao, J.; Jin, Z.; Wang, J. Assessment of the hydrogeochemistry and groundwater quality of the tarim river basin in an extreme arid region, NW China. Environ. Manag. 2014, 53, 135–146. [Google Scholar] [CrossRef]
- Teng, Y.; Hu, B.; Zheng, J.; Wang, J.; Zhai, Y.; Zhu, C. Water quality responses to the interaction between surface water and groundwater along the Songhua River, NE China. Hydrogeol. J. 2018, 26, 1591–1607. [Google Scholar] [CrossRef]
- Gómez-Martínez, G.; Pérez-Martín, M.A.; Estrela-Monreal, T.; del-Amo, P. North Atlantic Oscillation as a Cause of the Hydrological Changes in the Mediterranean (Júcar River, Spain). Water Resour. Manag. 2018, 32, 2717–2734. [Google Scholar] [CrossRef]
- Pérez-Martín, M.A.; Estrela, T.; del-Amo, P. Measures required to reach the nitrate objectives in groundwater based on a long-term nitrate model for large river basins (Júcar, Spain). Sci. Total Environ. 2016, 566–567, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Confederación Hidrográfica del Júcar. Anejo 2 Inventario de Recursos hídricos. In Plan Hidrológico de La Demarcación Hidrográfica del Júcar Memoria; Confederación Hidrográfica del Júcar: Valencia, Spain, 2015; p. 896. Available online: https://www.chj.es/Descargas/ProyectosOPH/Consulta%20publica/PHC-2015-2021/PHJ1521_Anejo02_RRHH_151126.pdf (accessed on 13 June 2020).
- Pérez-Martín, M.A.; Estrela, T.; Andreu, J.; Ferrer, J. Modeling water resources and river-aquifer interaction in the Júcar River Basin, Spain. Water Resour. Manag. 2014, 28, 4337–4358. [Google Scholar] [CrossRef]
- Paredes-Arquiola, J. Manual Técnico del Modelo Respuesta Rápida del Estado Ambiental (R2EA) de Masas de Agua Superficiales Continentales; Technical University of Valencia: Valencia, Spain, 2021; Available online: https://aquatool.webs.upv.es/files/manuales/rrea/ManualT%C3%A9cnicoModeloRREA_V3.pdf (accessed on 13 January 2021).
- Estrela, T.; Pérez-Martin, M.A.; Vargas, E. Impacts of climate change on water resources in Spain. Hydrol. Sci. J. 2012, 57, 1154–1167. [Google Scholar] [CrossRef]
- Ortega-Gómez, T.; Pérez-Martín, M.A.; Estrela, T. Improvement of the drought indicators system in the Júcar River. Sci. Total. Environ. 2018, 611, 276–290. [Google Scholar] [CrossRef]
- Bolinches, A.; De Stefano, L.; Paredes-Arquiola, J. Designing river water quality policy interventions with scarce data: The case of the Middle Tagus Basin, Spain. Hydrol. Sci. J. 2020, 65, 749–762. [Google Scholar] [CrossRef]
- Wilks, D. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2007; Volume 14, ISBN 9780127519661. [Google Scholar]
- Ferreira, D.; De Almeida, J.A.; Simões, M.; Pérez-Martín, M. Agricultural practices and geostatistical evaluation of nitrate pollution of groundwater in the Júcar River Basin District, Spain. Emirates J. Food Agric. 2016, 28, 415–424. [Google Scholar] [CrossRef] [Green Version]
- General Directory of Water; Geological and Mining Institute of Spain (IGME DGA). Trabajos de la Actividad 4 Identificación y Caracterización de la Interrelación que se Presenta entre Aguas Subterráneas, Cursos Fluviales, Descargas por Manantiales, Zonas Húmedas y Otros Ecosistemas Naturales de Especial Interés Hídrico; Geological and Mining Institute of Spain: Madrid, Spain, 2012; Available online: https://www.chj.es/Descargas/ProyectosOPH/Consulta%20publica/PHC-2015-2021/ReferenciasBibliograficas/AguasSubterraneas/IGME-DGA,2009.Act04_RelacSuperf_SubtMEMORIA%20RESUMEN.pdf (accessed on 20 May 2020).
- Ministerio de Fomento Gobierno de España. Corine Land Cover (CLC). Available online: https://www.idee.es/csw-codsi-idee/srv/api/records/spaignCLC2018 (accessed on 7 January 2020).
- Confederación Hidrográfica del Júcar. Memoria. In Plan Hidrológico de la Demarcación Hidrográfica del Júcar 2015–2021; Confederación Hidrográfica del Júcar: Valencia, Spain, 2015; p. 852. Available online: https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Paginas/PHC-2015-2021-Plan-Hidrologico-cuenca.aspx (accessed on 20 January 2020).
- Confederación Hidrográfica del Júcar. Anejo 7 Inventario de Presiones. In Plan Hidrológico de la Demarcación Hidrográfica del Júcar Memoria. 2015–2021; Confederación Hidrográfica del Júcar: Valencia, Spain, 2015; Available online: https://www.chj.es/Descargas/ProyectosOPH/Consulta%20publica/PHC-2015-2021/PHJ1521_Anejo07_Presiones_151126.pdf (accessed on 20 January 2020).
- Confederación Hidrográfica del Júcar. Anejo 12. Evaluación del estado de las masas de agua superficial y subterránea. Ciclo de planificación hidrológica 2015–2021. In Plan Hidrológico de la Demarcación Hidrográfica del Júcar. 2015–2021; Confederación Hidrográfica del Júcar: Valencia, Spain, 2015; Available online: https://www.chj.es/Descargas/ProyectosOPH/Consulta%20publica/PHC-2015-2021/PHJ1521_Anejo12_Estado_151126.pdf (accessed on 20 January 2020).
- Ministry of Agriculture (Spain). Balance del Nitrogeno en la Agricultura Española. Año 2016; Ministry of Agriculture: Madrid, Spain, 2018; p. 110. Available online: https://www.mapa.gob.es/es/agricultura/temas/medios-de-produccion/bn2016_metodologia-resultados_tcm30-507806.pdf (accessed on 7 January 2020).
- Van Rossum, G. Python/C API Reference Manual; Python Software Foundation: Wilmington, DE, USA, 1999; Available online: https://docs.python.org/3/c-api/index.html (accessed on 20 December 2019).
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation. Am. Soc. Agric. Biol. Eng. 2007, 39, 227–234. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- MMA Instrucción de Planificación Hidrológica (ARM/2656/2008). 2008; 75–85.
- Madrigal, J.; Solera, A.; Suárez-Almiñana, S.; Paredes-Arquiola, J.; Andreu, J.; Sánchez-Quispe, S.T. Skill assessment of a seasonal forecast model to predict drought events for water resource systems. J. Hydrol. 2018, 564, 574–587. [Google Scholar] [CrossRef]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Zufiaurre, R.; Martín-Ramos, P.; Cuchí, J.A. Nitrates in groundwater of small shallow aquifers in the western side of Hoya de Huesca (NE Spain). Agronomy 2019, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Lasagna, M.; De Luca, D.A.; Franchino, E. Nitrate contamination of groundwater in the western Po Plain (Italy): The effects of groundwater and surface water interactions. Environ. Earth Sci. 2016, 75, 1–16. [Google Scholar] [CrossRef]
- Córdoba, E.B.; Martínez, A.C.; Ferrer, E.V. Water quality indicators: Comparison of a probabilistic index and a general quality index. The case of the Confederación Hidrográfica del Júcar (Spain). Ecol. Indic. 2010, 10, 1049–1054. [Google Scholar] [CrossRef]
- Ferrer, J.; Pérez-Martín, M.A.; Jiménez, S.; Estrela, T.; Andreu, J. GIS-based models for water quantity and quality assessment in the Júcar River Basin, Spain, including climate change effects. Sci. Total Environ. 2012, 440, 42–59. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, J.; Evaristo, J.; Li, Z. Spatiotemporal variations in the hydrochemical characteristics and controlling factors of streamflow and groundwater in the Wei River of China. Environ. Pollut. 2019, 254, 113006. [Google Scholar] [CrossRef]
- Ramos, C.; Agut, A.; Lidón, A.L. Nitrate leaching in important crops of the Valencian Community region (Spain). Environ. Pollut. 2002, 118, 215–223. [Google Scholar] [CrossRef]
- De Paz, J.M.; Ramos, C. Simulation of nitrate leaching for different nitrogen fertilization rates in a region of Valencia (Spain) using a GIS-GLEAMS system. Agric. Ecosyst. Environ. 2004, 103, 59–73. [Google Scholar] [CrossRef]
- Paz, J.M.D.; Delgado, J.A.; Ramos, C.; Shaffer, M.J.; Barbarick, K.K. Use of a new GIS nitrogen index assessment tool for evaluation of nitrate leaching across a Mediterranean region. J. Hydrol. 2009, 365, 183–194. [Google Scholar] [CrossRef]
- Lidón, A.; Ramos, C.; Ginestar, D.; Contreras, W. Assessment of LEACHN and a simple compartmental model to simulate nitrogen dynamics in citrus orchards. Agric. Water Manag. 2013, 121, 42–53. [Google Scholar] [CrossRef]
- Contreras, W.A.; Lidón, A.L.; Ginestar, D.; Bru, R. Compartmental model for nitrogen dynamics in citrus orchards. Math. Comput. Model. 2009, 50, 794–805. [Google Scholar] [CrossRef]
- Baram, S.; Couvreur, V.; Harter, T.; Read, M.; Brown, P.H.; Hopmans, J.W.; Smart, D.R. Assessment of orchard N losses to groundwater with a vadose zone monitoring network. Agric. Water Manag. 2016, 172, 83–95. [Google Scholar] [CrossRef]
- Cui, M.; Zeng, L.; Qin, W.; Feng, J. Measures for reducing nitrate leaching in orchards: A review. Environ. Pollut. 2020, 263, 114553. [Google Scholar] [CrossRef]
- Fernandes, A.C.P.; Fernandes, L.F.S.; Terêncio, D.P.S.; Cortes, R.M.V.; Pacheco, F.A.L. Seasonal and scale effects of anthropogenic pressures on water quality and ecological integrity: A study in the Sabor River basin (NE Portugal) using partial least squares-path modeling. Water 2019, 11, 1941. [Google Scholar] [CrossRef] [Green Version]
- Malagó, A.; Bouraoui, F.; Vigiak, O.; Grizzetti, B.; Pastori, M. Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 603–604, 196–218. [Google Scholar] [CrossRef]
- Ludwig, W.; Dumont, E.; Meybeck, M.; Heussner, S. River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades? Prog. Oceanogr. 2009, 80, 199–217. [Google Scholar] [CrossRef]
- Romero, E.; Garnier, J.; Billen, G.; Peters, F.; Lassaletta, L. Water management practices exacerbate nitrogen retention in Mediterranean catchments. Sci. Total Environ. 2016, 573, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Mitsch, W.J.; Day, J.W.; Gilliam, J.W.; Groffman, P.M.; Hey, D.L.; Randall, G.W.; Wang, N. Reducing nitrogen loading to the gulf of Mexico from the Mississippi River Basin: Strategies to counter a persistent ecological problem. Bioscience 2001, 51, 373–388. [Google Scholar] [CrossRef]
- Malagó, A.; Bouraoui, F.; Grizzetti, B.; De Roo, A. Modelling nutrient fluxes into the Mediterranean Sea. J. Hydrol. Reg. Stud. 2019, 22, 100592. [Google Scholar] [CrossRef] [PubMed]
- Grande, E.; Visser, A.; Beitz, P.; Moran, J. Examination of nutrient sources and transport in a catchment with an audubon certified golf course. Water 2019, 11, 1923. [Google Scholar] [CrossRef] [Green Version]
- Romero, I.; Moragues, M.; González del Río, J.; Hermosilla, Z.; Sánchez-Arcilla, A.; Sierra, J.P.; Mösso, C. Nutrient Behavior in the Júcar Estuary and Plume. J. Coast. Res. 2007, 10047, 48–55. [Google Scholar] [CrossRef]
- Temino-Boes, R.; García-Bartual, R.; Romero, I.; Romero-Lopez, R. Future trends of dissolved inorganic nitrogen concentrations in Northwestern Mediterranean coastal waters under climate change. J. Environ. Manag. 2021, 282, 111739. [Google Scholar] [CrossRef]
- Tavakoly, A.A.; Habets, F.; Saleh, F.; Yang, Z.L.; Bourgeois, C.; Maidment, D.R. An integrated framework to model nitrate contaminants with interactions of agriculture, groundwater, and surface water at regional scales: The STICS—EauDyssée coupled models applied over the Seine River Basin. J. Hydrol. 2019, 568, 943–958. [Google Scholar] [CrossRef]
- Paredes, I.; Otero, N.; Soler, A.; Green, A.J.; Soto, D.X. Agricultural and urban delivered nitrate pollution input to Mediterranean temporary freshwaters. Agric. Ecosyst. Environ. 2020, 294, 106859. [Google Scholar] [CrossRef]
- Meyer, A.M.; Fuenfrocken, E.; Kautenburger, R.; Cairault, A.; Beck, H.P. Detecting pollutant sources and pathways: High-frequency automated online monitoring in a small rural French/German transborder catchment. J. Environ. Manag. 2021, 290, 112619. [Google Scholar] [CrossRef] [PubMed]
- Romero, E.; Garnier, J.; Lassaletta, L.; Billen, G.; Le Gendre, R.; Riou, P.; Cugier, P. Large-scale patterns of river inputs in southwestern Europe: Seasonal and interannual variations and potential eutrophication effects at the coastal zone. Biogeochemistry 2013, 113, 481–505. [Google Scholar] [CrossRef] [Green Version]
- Uclés, J. Evaluación de la Calidad del Agua en la Cuenca del Río Ebro Mediante Técnicas de Modelación a Gran Escala y Propuesta de Medidas de Corrección. Master’s Thesis, Technical University of Valencia, Valencia, Spain, 2016. Available online: https://riunet.upv.es/handle/10251/74500 (accessed on 15 May 2020).
Data Provider | Data Type | Time Step | Monitoring Points | Period Extent |
---|---|---|---|---|
Water Information System for the Júcar RBD (“SIA Júcar” in Spanish, Available online: aps.chj.es/siajucar/, accessed on 23 March 2021) | NO3−-SW NO3−-GW Q | Monthly Monthly Monthly | 514 1874 121 | 2000–2018 2000–2018 2000–2018 |
SAIH Precipitation stations (saih.chj.es, accessed on March 26 2021) and Temperature stations from and National Meteorological Agency (Aemet, Available online: www.aemet.es, accessed on 26 March 2021) | PT | Monthly Monthly | 976 456 | 1980–2018 1980–2018 |
Spanish Ministry for Agriculture, Fisheries and Food (“MAPA” in Spanish; (MAPA, 2018 [42]) | N-soil | Annually | - | 2000–2015 |
National census of discharges (MITECO, Available online: www.miteco.gob.es, accessed on 26 March 2021) | V discharge PE | Annually Annually | 884 | 2016–2018 2016–2018 |
Simulated Data | Observed Data | ||
---|---|---|---|
Good Status (NO3− ≤ 25 mg/L) | Poor Status (NO3− > 25 mg/L) | ||
PATRICAL/RREA | Good status | True Positive (TP) | False Positive (FP) |
Poor status | False Negative (FN) | True Negative (TN) |
Water Resource Systems | ACC | BIAS | SR | SP |
---|---|---|---|---|
Mijares-Plana Castellón | 0.97 | 1.00 | 1.00 | 0.22 |
Palancia-Los Valles | 0.97 | 1.01 | 1.00 | 0.00 |
Turia | 0.94 | 1.03 | 0.98 | 0.23 |
Júcar | 0.81 | 1.04 | 0.90 | 0.32 |
Serpis | 0.84 | 0.90 | 0.91 | 0.46 |
Vinalopó-Alacantí | 0.78 | 1.28 | 0.78 | 0.00 |
Global Júcar RBD | 0.86 | 1.06 | 0.90 | 0.26 |
Optimal Value | 1.00 | 1.00 | 1.00 | 1.00 |
Components | Description | Volume | Load | Concentration | |
---|---|---|---|---|---|
(hm3/year) | tN/year | kgN/km2/year | mgNO3−/L | ||
Inputs | Natural flow | 2247.3 | 10101.7 | 236.4 | 19.9 |
Urban discharges | 171.6 | 100.0 | 2.3 | 2.6 | |
Total Inputs | 2418.9 | 10201.7 | 238.7 | 18.7 | |
Outputs | Urban and industrial | 278.5 | 1124.9 | ||
Irrigation | 1410.9 | 5698.8 | |||
Total Gross Demand | 1689.4 | 6823.7 | 17.9 | ||
Net outputs | Net plant uptake: Gross demands—agricultural returns | 672.5 | |||
Discharge to the sea | 1746.5 | 3378.0 | 79.1 | 8.6 | |
Total Outputs | 2418.9 | 10201.7 | 18.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorado-Guerra, D.Y.; Paredes-Arquiola, J.; Pérez-Martín, M.Á.; Tafur Hermann, H. Integrated Surface-Groundwater Modelling of Nitrate Concentration in Mediterranean Rivers, the Júcar River Basin District, Spain. Sustainability 2021, 13, 12835. https://doi.org/10.3390/su132212835
Dorado-Guerra DY, Paredes-Arquiola J, Pérez-Martín MÁ, Tafur Hermann H. Integrated Surface-Groundwater Modelling of Nitrate Concentration in Mediterranean Rivers, the Júcar River Basin District, Spain. Sustainability. 2021; 13(22):12835. https://doi.org/10.3390/su132212835
Chicago/Turabian StyleDorado-Guerra, Diana Yaritza, Javier Paredes-Arquiola, Miguel Ángel Pérez-Martín, and Harold Tafur Hermann. 2021. "Integrated Surface-Groundwater Modelling of Nitrate Concentration in Mediterranean Rivers, the Júcar River Basin District, Spain" Sustainability 13, no. 22: 12835. https://doi.org/10.3390/su132212835
APA StyleDorado-Guerra, D. Y., Paredes-Arquiola, J., Pérez-Martín, M. Á., & Tafur Hermann, H. (2021). Integrated Surface-Groundwater Modelling of Nitrate Concentration in Mediterranean Rivers, the Júcar River Basin District, Spain. Sustainability, 13(22), 12835. https://doi.org/10.3390/su132212835