Trends in United States Human Footprint Revealed by New Spatial Metrics of Urbanization and Per Capita Land Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Characteristics
2.2. Calculation of Spatial Metrics by Block Group and Housing Density Class
2.3. Multi-Metric Analysis of Megaregion Growth
3. Results
3.1. National-Level Summary
3.2. Changes in Housing Density and Impervious Development
3.3. Changes in Per Capita Consumption
3.4. Efficiency of Megaregion Growth
3.5. Relative Sustainability of Megaregion Growth
4. Discussion
4.1. Trends of Increasing Exurbanization and Suburbanization
4.2. Trends of Increasing Per Capita Consumption
4.3. Low Consumption Is Not Necessarily Efficient Land Change
4.4. Sustainable Development Is All Relative
4.5. Comments on Interpretation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ginkel, H.V. Urban future. Nature 2008, 456, 32–33. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef] [Green Version]
- United Nations 2019 Special Edition: Progress towards the Sustainable Development Goals-Report of the Secretary-General (United Nations, Economic and Social Council). Available online: https://undocs.org/E/2019/68 (accessed on 11 September 2019).
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Guneralp, B.; Seto, K.C. Futures of global urban expansion: Uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 2013, 8, 014025. [Google Scholar] [CrossRef]
- Seto, K.C.; Guneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- McDonald, R.I.; Mansur, A.V.; Ascensão, F.; Colbert, M.; Crossman, K.; Elmqvist, T.; Gonzalez, A.; Guneralp, B.; Haase, D.; Hamann, M.; et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 2020, 3, 16–24. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierwagen, B.G.; Theobald, D.M.; Pyke, C.R.; Choate, A.; Growth, P.; Thomas, J.V.; Morefield, P. National housing and impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. USA 2010, 107, 20887–20892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churkina, G.; Brown, D.G.; Keoleian, G. Carbon stored in human settlements: The conterminous United States. Glob. Chang. Biol. 2010, 16, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Li, X.; Liu, X.; Seto, K.C. Projecting global urban land expansion and heat island intensification through 2050. Environ. Res. Lett. 2019, 14, 114037. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L. Urban growth and climate adaptation. Nat. Clim. Chang. 2018, 8, 1034. [Google Scholar] [CrossRef]
- Irwin, E.G.; Bockstael, N.E. The evolution of urban sprawl: Evidence of spatial heterogeneity and increasing land fragmentation. Proc. Natl. Acad. Sci. USA 2007, 104, 20672–20677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Amour, C.B.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, D.; Haberl, H.; Creutzig, F.; Seto, K.C. Future urban land expansion and implications for global croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [Green Version]
- Barrington-Leigh, C.; Millard-Ball, A. A century of sprawl in the United States. Proc. Natl. Acad. Sci. USA 2015, 112, 8244–8249. [Google Scholar] [CrossRef] [Green Version]
- Moore, M.; Gould, P.; Keary, B.S. Global urbanization and impact on health. Int. J. Hyg. Environ. Health 2003, 206, 269–278. [Google Scholar] [CrossRef]
- Güneralp, B.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Li, X.; Ciasis, P.; Lin, P.; Gong, K.; Ziegler, A.D.; Chen, A.; et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- Theobald, D.M.; Kennedy, C.; Chen, B.; Oakleaf, J.; Baruch-Mordo, S.; Kiesecker, J. Earth transformed: Detailed mapping of global human modification from 1990 to 2017. Earth Syst. Sci. Data 2020, 12, 1953–1972. [Google Scholar] [CrossRef]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahs, A.K. Urban megaregions and the continuum of urbanity—Embracing new frameworks or extending the old? Ecosyst. Health Sustain. 2016, 2, e01201. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, C.M.; Martinuzzi, S.; Plantinga, A.J.; Radeloff, V.C.; Lewis, D.J.; Thogmartin, W.E.; Heglund, P.J.; Pidgeon, A.M. Current and future land use around a nationwide protected area network. PLoS ONE 2013, 8, e55737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.; Gimmi, U.; Pidgeon, A.M.; Flather, C.H.; Hammer, R.B.; Helmers, D.P. Housing growth in and near United States protected areas limits their conservation value. Proc. Natl. Acad. Sci. USA 2010, 107, 940–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukomanovic, J.; Singh, K.; Vogler, J.B.; Meentemeyer, R.K. Protection status and proximity to public-private boundaries influence land use intensification near U.S. parks and protected areas. Conserv. Sci. Pract. 2020, 2, e190. [Google Scholar] [CrossRef]
- Wade, A.A.; Theobald, D. Residential Development Encroachment on US protected areas. Conserv. Biol. 2009, 24, 151–161. [Google Scholar] [CrossRef]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and shared socioeconomic pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef] [PubMed]
- Fragkias, M.; Seto, K.C. The rise and rise of urban expansion. Glob. Chang. 2012, 78, 16–19. [Google Scholar]
- Frenkel, A.; Ashkenazi, M. Measuring urban sprawl: How can we deal with it? Environ. Plan. B Plan. Des. 2008, 35, 56–79. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, S.; Ewing, R.; Preuss, I.; Dodds, A. Measuring sprawl and its impacts: An update. J. Plan. Educ. Res. 2015, 35, 35–50. [Google Scholar] [CrossRef]
- Stokes, E.C.; Seto, K.C. Characterizing and measuring urban landscapes for sustainability. Environ. Res. Lett. 2019, 14, 045002. [Google Scholar] [CrossRef]
- Raiter, K.G.; Prober, S.M.; Hobbs, R.J.; Possingham, H.P. Lines in the sand: Quantifying the cumulative development footprint in the world’s largest remaining temperate woodland. Landsc. Ecol. 2017, 32, 1969–1986. [Google Scholar] [CrossRef] [Green Version]
- Theobald, D.M. A general model to quantify ecological integrity for landscape assessments and US application. Landsc. Ecol. 2013, 28, 1859–1874. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Kuang, W.; Moran, E. Methods to extract impervious surface areas from satellite images. Int. J. Digit. Earth 2013, 7, 93–112. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Arnold, C.L., Jr.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Frazer, L. Paving paradise: The peril of impervious surfaces. Environ. Health Perspect. 2005, 113, A456–A462. [Google Scholar] [CrossRef] [Green Version]
- Shuster, W.D.; Bonta, J.; Thurston, H.; Warnemuende, E.; Smith, D.R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- Theobald, D.M.; Goetz, S.J.; Norman, J.; Jantz, C.A. Watersheds at risk to increased impervious surface in the conterminous US. J. Hydrol. Eng. 2009, 14, 362–368. [Google Scholar] [CrossRef]
- Sutton, P.C.; Anderson, S.J.; Elvidge, C.D.; Tuttle, B.T.; Ghosh, T. Paving the planet: Impervious surface as a proxy measure of the human ecological footprint. Prog. Phys. Geogr. 2009, 33, 510–527. [Google Scholar] [CrossRef]
- United Nations 2021 Sustainable Development Goals Metadata Repository-SDG Indicator Metadata (Format Version 1.0). (United Nations, Department of Economic and Social Affairs, Statistics Division, New York). Available online: https://unstats.un.org/sdgs/metadata/files/Metadata-11-03-01.pdf (accessed on 5 May 2021).
- Leyk, S.; Uhl, J.H.; Connor, D.S.; Braswell, A.E.; Mietkiewicz, N.; Balch, J.K.; Gutmann, M. Two centuries of settlement and urban development in the United States. Sci. Adv. 2020, 6, eaba2937. [Google Scholar] [CrossRef] [PubMed]
- Sleeter, B.M.; Sohl, T.L.; Loveland, T.R.; Auch, R.F.; Acevedo, W.; Drummond, M.A.; Sayler, K.L.; Stehman, S.V. Land-cover change in the conterminous United States from 1973 to 2000. Glob. Environ. Chang. 2013, 23, 733–748. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Tuttle, B.T.; Sutton, P.C.; Baugh, K.E.; Howard, A.T.; Milesi, C.; Bhaduri, B.; Nemani, R. Global distribution and density of constructed impervious surfaces. Sensors 2007, 7, 1962–1979. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.G.; Johnson, K.M.; Loveland, T.R.; Theobald, D.M. Rural land-use trends in the conterminous United States, 1950–2000. Ecol. Appl. 2005, 15, 1851–1863. [Google Scholar] [CrossRef] [Green Version]
- Theobald, D.M. Landscape patterns of exurban growth in the USA from 1980 to 2020. Ecol. Soc. 2005, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Theobald, D.M. Land-use dynamics beyond the American urban fringe. Geogr. Rev. 2001, 91, 544–564. [Google Scholar]
- Hansen, A.J.; Knight, R.L.; Marzluff, J.M.; Powell, S.; Brown, K.; Gude, P.H.; Jones, K. Effects of exurban development on biodiversity: Patterns, mechanisms, and research needs. Ecol. Appl. 2005, 15, 1893–1905. [Google Scholar] [CrossRef]
- Theobald, D.M.; Romme, W.H. Expansion of the US wildland–urban interface. Landsc. Urban Plan. 2007, 83, 340–354. [Google Scholar] [CrossRef]
- Heris, M.P. Evaluating metropolitan spatial development: A method for identifying settlement types and depicting growth patterns. Reg. Stud. Reg. Sci. 2016, 4, 7–25. [Google Scholar] [CrossRef] [Green Version]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bounoua, L.; Nigro, J.; Zhang, P.; Thome, K.; Lachird, A. Mapping urbanization in the United States from 2001 to 2011. Appl. Geogr. 2018, 90, 123–133. [Google Scholar] [CrossRef]
- Gerten, C.; Fina, S.; Rusche, K. The sprawling planet: Simplifying the measurement of global urbanization trends. Front. Environ. Sci. 2019, 7, 140. [Google Scholar] [CrossRef]
- McDonald, R.I.; Forman, R.T.T.; Kareiva, P. Open space loss and land inequality in United States’ cities, 1990–2000. PLoS ONE 2010, 5, e9509. [Google Scholar] [CrossRef] [Green Version]
- Pickard, B.R.; Daniel, J.; Mehaffey, M.; Jackson, L.E.; Neale, A. EnviroAtlas: A new geospatial tool to foster ecosystem services science and resource management. Ecosyst. Serv. 2015, 14, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Grekousis, G.; Mountrakis, G. Sustainable development under population pressure: Lessons from developed land consumption in the conterminous U.S. PLoS ONE 2015, 10, e0119675. [Google Scholar] [CrossRef]
- Homer, C.G.; Dewitz, J.A.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.D.; Wickham, J.D.; Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337–341. [Google Scholar]
- US Geological Survey (USGS) Gap Analysis Program (GAP), 20160505, Protected Areas Database of the United States (PAD-US): USGS Gap Analysis Program (GAP). Available online: https://doi.org/10.5066/F7G73BSZ (accessed on 3 September 2021). [CrossRef]
- Manson, S.; Schroeder, J.; Van Riper, D.; Ruggles, S. IPUMS National Historical Geographic Information System, version 14.0; [Database]; IPUMS: Minneapolis, MN, USA, 2019. [Google Scholar] [CrossRef]
- U.S. Census Bureau (2021) Glossary. Available online: https://www.census.gov/programs-surveys/geography/about/glossary.html (accessed on 3 November 2021).
- Tanner, R. Inholdings within wilderness. Int. J. Wilderness 2002, 8, 9–14. [Google Scholar]
- Hagler, Y. Defining U.S. Megaregions. New York: Regional Plan Association/America 2050. 2009. Available online: https://s3.us-east-1.amazonaws.com/rpa-org/pdfs/2050-Paper-Defining-US-Megaregions.pdf (accessed on 11 September 2018).
- Seto, K.C.; Pandey, B. Urban land use: Central to building a sustainable future. One Earth 2019, 1, 168–170. [Google Scholar] [CrossRef] [Green Version]
- Hjerpe, E.; Hussain, A.; Holmes, T. Amenity migration and public lands: Rise of the protected areas. Environ. Manag. 2020, 66, 56–71. [Google Scholar] [CrossRef] [PubMed]
- Reisig, D.; Mullan, K.; Hansen, A.; Powell, S.; Theobald, D.; Ulrich, R. Natural amenities and low-density residential development: Magnitude and spatial scale of influences. Land Use Policy 2021, 102, 105285. [Google Scholar] [CrossRef]
- Ahmed, S.; Jackson-Smith, D. Impacts of spatial patterns of rural and exurban residential development on agricultural trends in the Intermountain West. SAGE Open 2019, 9, 2158244019871037. [Google Scholar] [CrossRef] [Green Version]
- Leu, M.; Hanser, S.E.; Knick, S.T. The human footprint in the West: A large-scale analysis of anthropogenic impacts. Ecol. Appl. 2008, 18, 1119–1139. [Google Scholar] [CrossRef] [PubMed]
- Pejchar, L.; Reed, S.E.; Bixler, P.; Ex, L.; Mockrin, M.H. Consequences of residential development for biodiversity and human well-being. Front. Ecol. Environ. 2015, 13, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Ramaswami, A. Impact of locational choices and consumer behaviors on personal land footprints: An exploration across the urban–rural continuum in the United States. Environ. Sci. Technol. 2020, 54, 3091–3102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, M. The effects of urban patterns on ecosystem function. Int. Reg. Sci. Rev. 2005, 28, 168–192. [Google Scholar] [CrossRef]
- Bounoua, L.; Nigro, J.; Thome, K.; Zhang, P.; Fathi, N.; Lachir, A. A method for mapping future urbanization in the United States. Urban Sci. 2018, 2, 40. [Google Scholar] [CrossRef] [Green Version]
- Alig, R.J.; Kline, J.D.; Lichtenstein, M. Urbanization on the US landscape: Looking ahead in the 21st century. Landsc. Urban Plan. 2004, 69, 219–234. [Google Scholar] [CrossRef]
- Hamidi, S.; Ewing, R. A longitudinal study of changes in urban sprawl between 2000 and 2010 in the United States. Landsc. Urban Plan. 2014, 128, 72–82. [Google Scholar] [CrossRef]
- Kline, J.; Alig, R. Does land use planning slow the conversion of forest and farm lands? Growth Chang. 1999, 30, 3–22. [Google Scholar] [CrossRef]
- Kline, J.D.; Thiers, P.; Ozawa, C.P.; Yeakley, J.A.; Gordon, S.N. How well has land-use planning worked under different governance regimes? A case study in the Portland, OR-Vancouver, WA metropolitan area, USA. Landsc. Urban Plan. 2014, 131, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Mockrin, M.H.; Reed, S.E.; Pejchar, L.; Salo, J. Balancing housing growth and land conservation: Conservation development preserves private lands near protected areas. Landsc. Urban Plan. 2017, 157, 598–607. [Google Scholar] [CrossRef] [Green Version]
- Dark, S.J.; Bram, D. The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr. Earth Environ. 2007, 31, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Openshaw, S. The Modifiable Areal Unit Problem. Concepts and Techniques in Modern Geography; Geo Books: Norwich, UK, 1984; No. 38. [Google Scholar]
- Sastry, N.; Gregory, J. The location of displaced New Orleans residents in the year after Hurricane Katrina. Demography 2014, 51, 753–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, D.J.; Greenfield, E.J. Evaluating the National Land Cover Database tree canopy and impervious cover estimates across the conterminous United States: A comparison with photo-interpreted estimates. Environ. Manag. 2010, 46, 378–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wickham, J.; Herold, N.; Stehman, S.V.; Homer, C.G.; Xian, G.; Claggett, P. Accuracy assessment of NLCD 2011 impervious cover data for the Chesapeake Bay region, USA. ISPRS J. Photogramm. Remote Sens. 2018, 146, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Wickham, J.; Stehman, S.V.; Neale, A.C.; Mehaffey, M. Accuracy assessment of NLCD 2011 percent impervious cover for selected USA metropolitan areas. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101955. [Google Scholar] [CrossRef]
- Smith, M.L.; Zhou, W.; Cadenasso, M.; Grove, M.; Band, L.E. Evaluation of the National Land Cover Database for hydrologic applications in urban and suburban Baltimore, Maryland. J. Am. Water Resour. Assoc. 2010, 46, 429–442. [Google Scholar] [CrossRef]
- Bhatta, B.; Saraswati, S.; Bandyopadhyay, D. Urban sprawl measurement from remote sensing data. Appl. Geogr. 2010, 30, 731–740. [Google Scholar] [CrossRef]
Housing Density Transitions (00–10) | Land Area | New Impervious Development | Mean Per Capita Land Consumption | |||
---|---|---|---|---|---|---|
Area (km2) | % of Total Private Land | Area (km2) | % Change | 2000 (ha/Person) | 2010 (ha/Person) | |
Rural to Exurban | 172,091.9 | 3.0 | 351.4 | 23.3 | 0.5 | 0.08 |
Rural to Suburban | 1365.9 | 0.02 | 252.3 | 211.1 | 3.1 | 0.03 |
Rural to Urban | 84.3 | 0.001 | 29.1 | 232.7 | 3.6 | 0.06 |
Exurban to Suburban | 25,988.5 | 0.45 | 1543.1 | 47.8 | 0.12 | 0.03 |
Exurban to Urban | 72.6 | 0.001 | 16.6 | 82.8 | 0.4 | 0.02 |
Suburban to Urban | 1992.8 | 0.03 | 95.2 | 11.04 | 0.03 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vogler, J.B.; Vukomanovic, J. Trends in United States Human Footprint Revealed by New Spatial Metrics of Urbanization and Per Capita Land Change. Sustainability 2021, 13, 12852. https://doi.org/10.3390/su132212852
Vogler JB, Vukomanovic J. Trends in United States Human Footprint Revealed by New Spatial Metrics of Urbanization and Per Capita Land Change. Sustainability. 2021; 13(22):12852. https://doi.org/10.3390/su132212852
Chicago/Turabian StyleVogler, John B., and Jelena Vukomanovic. 2021. "Trends in United States Human Footprint Revealed by New Spatial Metrics of Urbanization and Per Capita Land Change" Sustainability 13, no. 22: 12852. https://doi.org/10.3390/su132212852
APA StyleVogler, J. B., & Vukomanovic, J. (2021). Trends in United States Human Footprint Revealed by New Spatial Metrics of Urbanization and Per Capita Land Change. Sustainability, 13(22), 12852. https://doi.org/10.3390/su132212852