Quantifying Recycled Moisture in Precipitation in Qilian Mountains
Abstract
:1. Introduction
2. Study Area and Observation Network
2.1. Study Area
2.2. Observation Network, Sampling, and Analysis
3. Method
3.1. Three-Component Mixing Model
3.2. Hysplit Model and the Upper Wind Direction
3.3. Method of Reducing Experimental Error
4. Results and Analysis
4.1. Isotopic Composition of Different Water Bodies
4.2. The Path of Moisture Transport
4.3. Spatial and Temporal Differences of Recycled Moisture
5. Discussion
5.1. Recycled Moisture in Inland River Basins
5.1.1. Differences between Mountainous Areas in Inland River Basins
5.1.2. Recycled Moisture Contribution in Mountainous, Oasis, and Desert Areas
5.2. Recycled Moisture in Precipitation in Different Regions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balagizi, C.M.; Kasereka, M.M.; Cuoco, E.; Liotta, M. Influence of moisture source dynamics and weather patterns on stable isotopes ratios of precipitation in Central-Eastern Africa. Sci. Total Environ. 2018, 628, 1058–1078. [Google Scholar] [CrossRef]
- Zannoni, D.; Steen-Larsen, H.C.; Rampazzo, G.; Dreossi, G.; Stenni, B.; Bergamasco, A. The atmospheric water cycle of a coastal lagoon: An isotope study of the interactions between water vapor, precipitation and surface waters. J. Hydrol. 2019, 572, 630–644. [Google Scholar] [CrossRef]
- Gibson, J.J.; Reid, R. Water balance along a chain of tundra lakes: A 20-year isotopic perspective. J. Hydrol. 2014, 519, 2148–2164. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X.; Wang, N.; Kong, Y.; Wang, L. Contribution of recycled moisture to local precipitation in the inland Heihe River Basin. Agric. For. Meteorol. 2019, 271, 316–335. [Google Scholar] [CrossRef]
- Zemp, D.C.; Schleussner, C.F.; Barbosa, H.M.J.; Van der Ent, R.J.; Donges, J.F.; Heinke1, J.; Sampaio, G.; Rammig, A. On the importance of cascading moisture recycling in South America. Atmos. Chem. Phys. 2014, 14, 13337–13359. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.F.; Guo, H.W.; Qin, D.H.; Pan, H.Q.; Zhang, Y.; Jia, W.X.; Ma, X.G. Contribution of recycled moisture to precipitation in the monsoon marginal zone: Estimate based on stable isotope data. J. Hydrol. 2019, 569, 423–435. [Google Scholar] [CrossRef]
- Cui, J.; Tian, L.; Biggs, T.W.; Wen, R. Deuterium-excess determination of evaporation to inflow ratios of an alpine lake: Implications for water balance and modeling. Hydrol. Process. 2017, 31, 1034–1046. [Google Scholar] [CrossRef]
- Zhu, G.F.; Zhang, Z.X.; Guo, H.W.; Zhang, Y.; Yong, L.L.; Wan, Q.Z.; Sun, Z.G.; Ma, H.Y. Below-Cloud Evaporation of Precipitation Isotope over Mountain-oasis-desert in Arid Area. J. Hydrometeorol. 2021, 22, 2533–2545. [Google Scholar] [CrossRef]
- Attar, A. Global environment: Water, air and geochemical cycles. Int. J. Environ. Stud. 2013, 70, 155–156. [Google Scholar] [CrossRef]
- Pokam, W.M.; Djiotang, L.A.T.; Mkankam, F.K. Atmospheric water vapor transport and recycling in Equatorial Central Africa through NCEP/NCAR reanalysis data. Clim. Dyn. 2014, 38, 553. [Google Scholar] [CrossRef] [Green Version]
- Trzeciak, T.M.; Garcia Carreras, L.; Marsham, J.H. Cross-Saharan transport of water vapor via recycled cold pool outflows from moist convection. Geophys. Res. Lett. 2017, 44, 1554–1563. [Google Scholar] [CrossRef]
- An, W.L.; Hou, S.G.; Zhang, Q.; Wu, W.B.; Xu, S.Y.; Pang, H.X.; Wang, Y.T.; Liu, Y.P. Enhanced recent local moisture recycling on the northwestern Tibetan Plateau deduced from ice core deuterium excess records. J. Geophys. Res. Atmos. 2017, 122, 12541–12556. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R.; Bowser, C.J.; Kendall, C. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate based on stable isotope data. Geophys. Res. Lett. 1994, 21, 557–560. [Google Scholar] [CrossRef]
- Brock, B.E.; Yi, Y.; Clogg-Wright, K.P.; Edwards, T.W.D.; Wolfe, B.B. Multi-year landscape-scale assessment of lakewater balances in the Slave River Delta, NWT, using water isotope tracers. J. Hydrol. 2009, 379, 81–91. [Google Scholar] [CrossRef]
- Gat, J.R.; Matsui, E. Atmospheric water balance in the Amazon basin: An isotopic evapotranspiration model. J. Geophys. Res. 1991, 96, 13179. [Google Scholar] [CrossRef]
- Xu, Y.; Kang, S.; Zhang, Y.; Zhang, Y. A method for estimating the contribution of evaporative vapor from Nam Co to local atmospheric vapor based on stable isotopes of water bodies. China Sci. Bull. 2011, 56, 1511–1517. [Google Scholar] [CrossRef] [Green Version]
- Vallet-Coulomb, C.; Gasse, F.; Sonzogni, C. Seasonal evolution of the isotopic composition of atmospheric water vapour above a tropical lake: Deuterium excess and implication for water recycling. Geochim. Et Cosmochim. Acta 2008, 72, 4661–4674. [Google Scholar] [CrossRef]
- Yamanaka, T.; Ma, W. Runoff prediction in a poorly gauged basin using isotope-calibrated models. J. Hydrol. 2017, 544, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Peng, T.R.; Liu, K.K.; Wang, C.H.; Chuang, K.H. A water isotope approach to assessing moisture recycling in the island-based precipitation of Taiwan: A case study in the western Pacific. Water Resour. Res. 2011, 47, 2168–2174. [Google Scholar] [CrossRef]
- Li, Z.X.; Feng, Q.; Wang, Q.J.; Kong, Y.L.; Cheng, A.F.; Yong, S.; Li, Y.G.; Li, J.G.; Guo, X.Y. Contributions of local terrestrial evaporation and transpiration to precipitation using δ18O and D-excess as a proxy in Shiyang inland river basin in China. Glob. Planet. Chang. 2016, 146, 140–151. [Google Scholar]
- Kong, Y.L.; Pang, Z.H.; Froehlich, K. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus B Chem. Phys. Meteorol. 2013, 65, 19251. [Google Scholar] [CrossRef]
- Wang, S.J.; Zhang, M.J.; Che, Y.J.; Chen, F.L.; Qiang, F. Contribution of recycled moisture to precipitation in oases of arid central Asia: A stable isotope approach. Water Resour. Res. 2016, 52, 3246–3257. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Masson-Delmotte, V.; Yao, T.D.; Tian, L.D.; Risi, C.; Hoffmann, G. Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling. J. Clim. 2011, 24, 3161–3178. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.J.; Chen, Y.N.; Wang, H.J.; Zhang, S.H. Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Glob. Planet. Chang. 2015, 135, 28–37. [Google Scholar] [CrossRef]
- Yao, T.C.; Zhang, X.P.; Guan, H.D.; Zhou, H.; Hua, M.Q.; Wang, X.J. Climatic and environmental controls on stable isotopes in atmospheric water vapor near the surface observed in Changsha, China. Atmos. Environ. 2018, 189, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, A.; Numaguti, A.; Tsujimura, M.; Fujita, K.; Nakawo, M. Water vapor transport to the Tibetan Plateau revealed with stable isotopes of precipitation: A new hypothesis for unusual isotope signals. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 8–12 December 2003. [Google Scholar]
- Sun, Z.G.; Zhu, G.F.; Zhang, Z.X.; Xu, Y.X.; Yong, L.L.; Wan, Q.Z.; Ma, H.Y.; Sang, L.Y.; Liu, Y.W. Identifying surface water evaporation loss of inland river basin based on evaporation enrichment model. Hydrol. Process. 2021, 35, e14093. [Google Scholar] [CrossRef]
- Brubaker, K.L.; Entekhabi, D.; Eagleson, P.S. Estimation of Continental Precipitation Recycling. J. Clim. 1993, 6, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Stechmann, S.N.; Hottovy, S. A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. J. Atmos. Sci. 2015, 72, 4721–4738. [Google Scholar]
- Friedman, I. Compilation of stable isotope fractionation factors of geochemical interest. In Data of Geochemistry; United States Government Printing Office: Washington, DC, USA, 1977; Volume 440kk, pp. KK1–KK2. [Google Scholar]
- Criss, R.E. Principles of Stable Isotope Distribution; Oxford University Press: Oxford, MS, USA, 1999. [Google Scholar]
- Hu, W.F.; Yao, J.Q.; He, Q.; Yang, Q. Spatial and Temporal Variability of Water Vapor Content during 1961-2011 in Tianshan Mountains, China. J. Mt. Sci. 2015, 12, 571–581. [Google Scholar] [CrossRef]
- Flanagan, L.B.; Comstock, J.P.; Ehleringer, J.R. Comparison of Modeled and Observed Environmental Influences on the Stable Oxygen and Hydrogen Isotope Composition of Leaf Water inPhaseolus vulgaris. Plant Physiol. 1991, 96, 588–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.A.; Islam, M.M.; Islam, M.N.; Almazroui, M. Investigations of MODIS AOD and cloud properties with CERES sensor based net cloud radiative effect and a NOAA HYSPLIT Model over Bangladesh for the period 2001–2016. Atmos. Res. 2019, 215, 268–283. [Google Scholar] [CrossRef]
- Bagheri, R.; Bagheri, F.; Karami, G.H.; Jafari, H. Chemo-isotopes (18O & 2H) signatures and HYSPLIT model application: Clues to the atmospheric moisture and air mass origins. Atmos. Environ. 2019, 215, 116892. [Google Scholar]
- Connan, O.; Smith, K.; Organo, C.; Solier, L.; Maro, D.; Hebert, D. Comparison of rimpuff, hysplit, adms atmospheric dispersion model outputs, using emergency response procedures, with 85kr measurements made in the vicinity of nuclear reprocessing plant. J. Environ. Radioact. 2013, 124, 266–277. [Google Scholar] [CrossRef]
- Michelsen, N.; Reshid, M.; Siebert, C.; Schulz, S.; Knöller, K.; Weise, S.M.; Rausch, R.; Al-Saud, M.; Schüth, C. Isotopic and chemical composition of precipitation in Riyadh, Saudi Arabia. Chem. Geol. 2015, 413, 51–62. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.Y.; Jiang, Z.; Chen, H.; Zhang, C.; Xiao, X. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai–Tibet Plateau, China. Sci. Total Environ. 2016, 542, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.R.; Peng, X.H.; Sheng, Y.X.; Chen, Y.M. Determination of Hydrogen and Oxygen Isotopes in Liquid Water by Laser Isotope Analyzer and Spectral Pollution Correction. J. Ecol. 2013, 32, 1181–1186. [Google Scholar]
- Meng, X.J.; Wen, X.F.; Zhang, X.Y.; Han, J.Y.; Sun, X.M.; Li, X.B. The effect of organic matter on the determination of δ18O and δD in plant leaf and stem water by infrared spectroscopy. Chin. J. Eco-Agric. 2012, 20, 1359–1365. [Google Scholar] [CrossRef]
- Van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 2010, 46, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Su, T.; Lu, Z.Y.; Zhou, J.; Hou, W.; Tu, G. Spatial distribution and seasonal variation characteristics of global atmospheric moisture recycling. Acta Physica Sinica Chin. Ed. 2014, 63, 099201-972. [Google Scholar]
- Yamanaka, T.; Shimizu, R. Spatial distribution of deuterium in atmospheric water vapor: Diagnosing sources and the mixing of atmospheric moisture. Geochim. Cosmochim. Acta 2007, 71, 3162–3169. [Google Scholar] [CrossRef] [Green Version]
- Aizen, V.B. Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records. Ann. Glaciol. 2006, 43, 49–60. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.D.; Yao, T.D. High-resolution climatic and environmental records from the Tibetan Plateau ice cores. Chin. Sci. Bull. 2016, 61, 926–937. [Google Scholar] [CrossRef]
- Conroy, J.L.; Noone, D.; Cobb, K.M.; Moerman, J.W.; Konecky, B.L. Paired stable isotopologues in precipitation and vapor: A case study of the amount effect within western tropical Pacific storms. J. Geophys. Res. Atmos. 2016, 121, 3290–3303. [Google Scholar] [CrossRef] [Green Version]
Sampling Site | Abbreviation | Lon (°E) | Lat (°N) | Alt (m) | Number and Species of Sample | ||||
---|---|---|---|---|---|---|---|---|---|
Precipitation | Surface | Soil | Plant | Vegetation Species | |||||
Xiyingwugou | A | 102.18 | 37.89 | 2097 | 47 | 30 | 130 | 24 | Forests (Populus L.) |
Huajian | B | 102.01 | 37.83 | 2323 | 47 | 24 | 140 | 26 | Shrubs (Caragana sinica Rehder) |
Ningchan | C | 101.89 | 37.7 | 2721 | 56 | 16 | 100 | 20 | Forests (Picea asperata Mast.) |
Lenglongling | D | 101.86 | 37.56 | 3647 | 95 | 12 | 80 | 20 | —— |
Season | Site | e(hPa) | T(K) | h (%) | δ18OP (‰) | δ18OPv ‰) | δ18OEv (‰) | δ18OEv (‰) | δ18OAdv (‰) | δ2Hp (‰) | δ2Hpv (‰) | δ2HTr (‰) | δ2HEv (‰) | δ2HAdv (‰) | fTr (%) | fEv (%) | fAdv (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring | A | 17.47 | 288.52 | 41.1 | −7.58 | −17.79 | −6.63 | —— | —— | −49 | −139.66 | −58.1 | —— | —— | —— | —— | —— |
B | 15.94 | 287.11 | 38.7 | −5.00 | −15.33 | 14.64 | −28.49 | −17.79 | −34.91 | −127.37 | −18.39 | −133.36 | −139.66 | 9.8 | 6.7 | 83.5 | |
C | 12.3 | 283.17 | 51.1 | −6.92 | −17.63 | −2.39 | −33.17 | −18.11 | −46.12 | −143.78 | −45.25 | −147.18 | −152.75 | 8.1 | 5.2 | 86.7 | |
D | 8.194 | 277.26 | 60.3 | −9.59 | −20.88 | —— | −34.59 | −22.21 | −57.2 | −163.25 | —— | −155.43 | −186.81 | 9.9 | 90.1 | ||
Summer | A | 20.48 | 291.03 | 69.66 | −4.449 | −14.43 | −4.735 | —— | —— | −23.87 | −111.4 | −63.29 | —— | —— | —— | —— | —— |
B | 20.45 | 291 | 62.23 | −4.53 | −14.51 | −1.123 | −30.01 | −14.45 | −23.21 | −110.8 | −50.42 | −158.5 | −111.4 | 3.96 | 3.81 | 92.23 | |
C | 16.87 | 287.98 | 70.64 | −6.225 | −16.48 | −4.014 | −35.87 | −16.48 | −35.64 | −127 | −40.24 | −166.2 | −128.4 | 2.16 | 1.36 | 96.48 | |
D | 11.33 | 281.95 | 78.42 | −9.109 | −19.93 | 2.6452 | −24.3 | −20.79 | −52.19 | −151.5 | −12.14 | −72.34 | −166.6 | 4.86 | 7.99 | 87.15 | |
Autumn | A | 16.52 | 287.66 | 65.77 | −4.232 | −14.51 | −4.869 | —— | —— | −27.57 | −119.3 | −63.2 | —— | —— | —— | —— | —— |
B | 15.99 | 287.15 | 60.85 | −4.34 | −14.67 | −0.359 | −30.32 | −14.85 | −28.79 | −121.2 | −47.12 | −148.2 | −122.3 | 1.67 | 0.38 | 97.95 | |
C | 12.10 | 282.93 | 71.88 | −6.049 | −16.77 | −4.035 | −33.18 | −17.66 | −41.31 | −139.3 | −40.24 | −122.6 | −148.5 | 8.17 | 1.46 | 90.37 | |
D | 8.816 | 278.3 | 76.29 | −8.976 | −20.16 | —— | −28.25 | −20.31 | −56.62 | −161.1 | —— | −80.9 | −172.4 | —— | 6.45 | 93.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhu, G.; Pan, H.; Sun, Z.; Sang, L.; Liu, Y. Quantifying Recycled Moisture in Precipitation in Qilian Mountains. Sustainability 2021, 13, 12943. https://doi.org/10.3390/su132312943
Zhang Z, Zhu G, Pan H, Sun Z, Sang L, Liu Y. Quantifying Recycled Moisture in Precipitation in Qilian Mountains. Sustainability. 2021; 13(23):12943. https://doi.org/10.3390/su132312943
Chicago/Turabian StyleZhang, Zhuanxia, Guofeng Zhu, Hanxiong Pan, Zhigang Sun, Liyuan Sang, and Yuwei Liu. 2021. "Quantifying Recycled Moisture in Precipitation in Qilian Mountains" Sustainability 13, no. 23: 12943. https://doi.org/10.3390/su132312943
APA StyleZhang, Z., Zhu, G., Pan, H., Sun, Z., Sang, L., & Liu, Y. (2021). Quantifying Recycled Moisture in Precipitation in Qilian Mountains. Sustainability, 13(23), 12943. https://doi.org/10.3390/su132312943