A Review of Environmental Pollution from the Use and Disposal of Cigarettes and Electronic Cigarettes: Contaminants, Sources, and Impacts
Abstract
:1. Introduction
2. Contaminants
2.1. Nicotine
2.2. Tobacco-Specific Nitrosamines
2.3. Polycyclic Aromatic Hydrocarbons
2.4. Metals and Metalloids
3. Contaminant Sources
3.1. Cigarette Butts
3.2. Air Contamination from Combustible Cigarettes
3.3. Electronic Cigarettes
3.4. Waste Management Systems
4. Environmental Impacts
4.1. Microorganisms
4.2. Plants
4.3. Non-Mammalian Animals
4.4. Mammalian Animals
4.5. Humans
4.6. Economic Impacts of Contamination
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Araújo, M.C.B.; Costa, M.F. A critical review of the issue of cigarette butt pollution in coastal environments. Environ. Res. 2019, 172, 137–149. [Google Scholar] [CrossRef]
- Novotny, T.E.; Bialous, S.A.; Burt, L.; Curtis, C.; Costa, V.L.D.; Iqtidar, S.U.; Liu, Y.; Pujari, S.; Tursan d’Espaignet, E. The environmental and health impacts of tobacco agriculture, cigarette manufacture and consumption. Bull. World Health Organ. 2015, 93, 877–880. [Google Scholar] [CrossRef]
- Pisinger, C.; Døssing, M. A systematic review of health effects of electronic cigarettes. Prev. Med. 2014, 69, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Marynak, K.L.; Gammon, D.; Rogers, T.; Coats, E.M.; Singh, T.; King, B.A. Sales of Nicotine-Containing Electronic Cigarette Products: United States, 2015. Am. J. Public Health 2017, 107, 702–705. [Google Scholar] [CrossRef]
- Cullen, K.A.; Gentzke, A.S.; Sawdey, M.D.; Chang, J.T.; Anic, G.M.; Wang, T.W.; Creamer, M.R.; Jamal, A.; Ambrose, B.K.; King, B.A. e-Cigarette Use Among Youth in the United States, 2019. JAMA 2019, 322, 2095. [Google Scholar] [CrossRef]
- European Commission. Special Eurobarometer 458 Attitudes of Europeans towards Tobacco and Electronic Cigarettes; Report; European Union: Brussels, Belgium, 2017; ISBN 978-92-79-69104-1. [Google Scholar]
- Gentzke, A.S.; Creamer, M.; Cullen, K.A.; Ambrose, B.K.; Willis, G.; Jamal, A.; King, B.A. Vital Signs: Tobacco Product Use Among Middle and High School Students—United States, 2011–2018. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Maziak, W.; Ben Taleb, Z.; Bahelah, R.; Islam, F.; Jaber, R.; Auf, R.; Salloum, R.G. The global epidemiology of waterpipe smoking. Tob. Control 2015, 24, i3–i12. [Google Scholar] [CrossRef]
- Simonavicius, E.; McNeill, A.; Shahab, L.; Brose, L.S. Heat-not-burn tobacco products: A systematic literature review. Tob. Control 2019, 28, 582–594. [Google Scholar] [CrossRef]
- World Health Organization. Tobacco Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/tobacco (accessed on 1 June 2021).
- Zafeiridou, M.; Hopkinson, N.S.; Voulvoulis, N. Cigarette Smoking: An Assessment of Tobacco’s Global Environmental Footprint Across Its Entire Supply Chain. Environ. Sci. Technol. 2018, 52, 8087–8094. [Google Scholar] [CrossRef]
- Hoh, E.; Wei, H.-H.; Richardson, W.; Dodder, N.; Watanabe, K.; Cibor, A.; Novotny, T.E.; Gersberg, R. Determination of Leachable Organic Compounds in Smoked Cigarettes and Their Bioaccumulation Potentials in the Marine Mussel, Mytilus galloprovincialis. In Proceedings of the 2019 Annual Meeting Society for Research on Nicotine and Tobacco, San Francisco, CA, USA, 20–23 February 2019. [Google Scholar]
- Novotny, T.E.; Slaughter, E. Tobacco Product Waste: An Environmental Approach to Reduce Tobacco Consumption. Curr. Environ. Health Rep. 2014, 1, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Van Schalkwyk, M.C.I.; Novotny, T.E.; McKee, M. No more butts. BMJ 2019, 367, l5890. [Google Scholar] [CrossRef]
- Hendlin, Y.H. Alert: Public Health Implications of Electronic Cigarette Waste. Am. J. Public Health 2018, 108, 1489–1490. [Google Scholar] [CrossRef]
- Mock, J.; Hendlin, Y.H. Notes from the Field: Environmental Contamination from E-cigarette, Cigarette, Cigar, and Cannabis Products at 12 High Schools—San Francisco Bay Area, 2018–2019. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 897–899. [Google Scholar] [CrossRef] [Green Version]
- Araújo, M.C.B.; Costa, M.F. From Plant to Waste: The Long and Diverse Impact Chain Caused by Tobacco Smoking. Int. J. Environ. Res. Public Health 2019, 16, 2690. [Google Scholar] [CrossRef] [Green Version]
- Poppendieck, D.G.; Khurshid, S.S.; Emmerich, S.J. Measuring Airborne Emissions from Cigarette Butts: Literature Review and Experimental Plan; National Institute of Standards and Technology US Department of Commerce: Gaithersburg, MA, USA, 2016. [CrossRef]
- Kozlowski, L.T.; Mehta, N.Y.; Sweeney, C.T.; Schwartz, S.S.; Vogler, G.P.; Jarvis, M.J.; West, R.J. Filter ventilation and nicotine content of tobacco in cigarettes from Canada, the United Kingdom, and the United States. Tob. Control 1998, 7, 369–375. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.L.; Hukkanen, J.; Jacob, P. Nicotine Chemistry, Metabolism, Kinetics and Biomarkers. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2009, pp. 29–60. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, N.; Özel, M.Z.; Lewis, A.; Marcé-Recasens, R.M.; Borrull, F.; Hamilton, J.F. Exposure to nitrosamines in thirdhand tobacco smoke increases cancer risk in non-smokers. Environ. Int. 2014, 71, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Benotti, M.J.; Brownawell, B.J. Distributions of Pharmaceuticals in an Urban Estuary during both Dry- and Wet-Weather Conditions. Environ. Sci. Technol. 2007, 41, 5795–5802. [Google Scholar] [CrossRef]
- Banyasz, J.L. The Physical Chemistry of Nicotine. In Analytical Determination of Nicotine and Related Compounds and Their Metabolites; Gorrod, J.W., Jacob, P., III, Eds.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 149–190. [Google Scholar]
- Pankow, J.F.; Mader, B.T.; Isabelle, L.M.; Luo, W.; Pavlick, A.; Liang, C. Conversion of Nicotine in Tobacco Smoke to Its Volatile and Available Free-Base Form through the Action of Gaseous Ammonia. Environ. Sci. Technol. 1997, 31, 2428–2433. [Google Scholar] [CrossRef]
- Li, L.; Lee, Y.; Pappone, P.; Palma, A.; McNamee, M. Site-specific mutations of nicotinic acetylcholine receptor at the lipid-protein interface dramatically alter ion channel gating. Biophys. J. 1992, 62, 61–63. [Google Scholar] [CrossRef] [Green Version]
- Seckar, J.A.; Stavanja, M.S.; Harp, P.R.; Yi, Y.; Garner, C.D.; Doi, J. Environmental fate and effects of nicotine released during cigarette production. Environ. Toxicol. Chem. 2008, 27, 1505–1514. [Google Scholar] [CrossRef]
- Morie, G.P. Fraction of Protonated and Unprotonated Nicotine in Tobacco Smoke at Various PH Values. Tob. Sci. 1972, 16, 167. [Google Scholar]
- Akçay, G.; Yurdakoç, K. Removal of Nicotine and Its Pharmaceutical Derivatives from Aqueous Solution by Raw Bentonite and Dodecylammonium-Bentonite. J. Sci. Ind. Res. 2008, 67, 451–454. [Google Scholar]
- de Lucas, A.; Cañizares, P.; García, M.A.; Gómez, J.; Rodríguez, J.F. Recovery of Nicotine from Aqueous Extracts of Tobacco Wastes by an H+-Form Strong-Acid Ion Exchanger. Ind. Eng. Chem. Res. 1998, 37, 4783–4791. [Google Scholar] [CrossRef]
- Medana, C.; Santoro, V.; Bello, F.D.; Sala, C.; Pazzi, M.; Sarro, M.; Calza, P. Mass spectrometric fragmentation and photocatalytic transformation of nicotine and cotinine. Rapid Commun. Mass Spectrom. 2016, 30, 2617–2627. [Google Scholar] [CrossRef]
- Passananti, M.; Temussi, F.; Iesce, M.R.; Previtera, L.; Mailhot, G.; Vione, D.; Brigante, M. Photoenhanced transformation of nicotine in aquatic environments: Involvement of naturally occurring radical sources. Water Res. 2014, 55, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Konstantinou, E.; Fotopoulou, F.; Drosos, A.; Dimakopoulou, N.; Zagoriti, Z.; Niarchos, A.; Makrynioti, D.; Kouretas, D.; Farsalinos, K.; Lagoumintzis, G.; et al. Tobacco-specific nitrosamines: A literature review. Food Chem. Toxicol. 2018, 118, 198–203. [Google Scholar] [CrossRef]
- Leigh, N.J.; Palumbo, M.N.; Marino, A.M.; O’Connor, R.J.; Goniewicz, M.L. Tobacco-specific nitrosamines (TSNA) in heated tobacco product IQOS. Tob. Control 2018, 27, s37–s38. [Google Scholar] [CrossRef] [Green Version]
- Fowles, J.; Bates, M. The Chemical Constituents in Cigarettes and Cigarette Smoke: Priorities for Harm Reduction; A Report to the New Zealand Ministry of Health; Epidemiology and Toxicology Group, ESR, Kenepuru Science Centre: Porirua, New Zealand, 2000; p. 65. [Google Scholar]
- Farren, N.J.; Ramírez, N.; Lee, J.D.; Finessi, E.; Lewis, A.C.; Hamilton, J.F. Estimated Exposure Risks from Carcinogenic Nitrosamines in Urban Airborne Particulate Matter. Environ. Sci. Technol. 2015, 49, 9648–9656. [Google Scholar] [CrossRef] [Green Version]
- Sleiman, M.; Gundel, L.A.; Pankow, J.F.; Jacob, P.; Singer, B.C.; Destaillats, H. Formation of carcinogens indoors by surface-mediated reactions of nicotine with nitrous acid, leading to potential thirdhand smoke hazards. Proc. Natl. Acad. Sci. USA 2010, 107, 6576–6581. [Google Scholar] [CrossRef] [Green Version]
- Protano, C.; Vitali, M. The New Danger of Thirdhand Smoke: Why Passive Smoking Does Not Stop at Secondhand Smoke. Environ. Health Perspect. 2011, 119, a422. [Google Scholar] [CrossRef]
- Lee, H.-L.; Hsieh, D.P.; Li, L.-A. Polycyclic aromatic hydrocarbons in cigarette sidestream smoke particulates from a Taiwanese brand and their carcinogenic relevance. Chemosphere 2011, 82, 477–482. [Google Scholar] [CrossRef]
- Lodovici, M.; Akpan, V.; Evangelisti, C.; Dolara, P. Sidestream tobacco smoke as the main predictor of exposure to polycyclic aromatic hydrocarbons. J. Appl. Toxicol. 2004, 24, 277–281. [Google Scholar] [CrossRef]
- Gong, M.; Daniels, N.; Poppendieck, D. Measurement of chemical emission rates from cigarette butts into air. Indoor Air 2020, 30, 711–724. [Google Scholar] [CrossRef]
- Poppendieck, D.; Gong, M.; Pham, V. Influence of temperature, relative humidity, and water saturation on airborne emissions from cigarette butts. Sci. Total Environ. 2020, 712, 136422. [Google Scholar] [CrossRef]
- Hildemann, L.M.; Markowski, G.R.; Cass, G.R. Chemical composition of emissions from urban sources of fine organic aerosol. Environ. Sci. Technol. 1991, 25, 744–759. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, K.; Gocht, T.; Grathwohl, P. Transport of polycyclic aromatic hydrocarbons in highly vulnerable karst systems. Environ. Pollut. 2011, 159, 133–139. [Google Scholar] [CrossRef]
- Manzetti, S. Ecotoxicity of polycyclic aromatic hydrocarbons, aromatic amines, and nitroarenes through molecular properties. Environ. Chem. Lett. 2012, 10, 349–361. [Google Scholar] [CrossRef]
- Harmon, T.C.; Burks, G.A.; Aycaguer, A.-C.; Jackson, K. Thermally Enhanced Vapor Extraction for Removing PAHs from Lampblack-Contaminated Soil. J. Environ. Eng. 2001, 127, 986–993. [Google Scholar] [CrossRef]
- Dobaradaran, S.; Schmidt, T.C.; Lorenzo-Parodi, N.; Jochmann, M.A.; Nabipour, I.; Raeisi, A.; Stojanović, N.; Mahmoodi, M. Cigarette butts: An overlooked source of PAHs in the environment? Environ. Pollut. 2019, 249, 932–939. [Google Scholar] [CrossRef]
- Dobaradaran, S.; Schmidt, T.C.; Lorenzo-Parodi, N.; Kaziur-Cegla, W.; Jochmann, M.A.; Nabipour, I.; Lutze, H.V.; Telgheder, U. Polycyclic aromatic hydrocarbons (PAHs) leachates from cigarette butts into water. Environ. Pollut. 2020, 259, 113916. [Google Scholar] [CrossRef]
- Gong, M.; Khurshid, S.; Poppendieck, D. What’s in a butt? Environmental contamination from airborne cigarette butt emissions. Integr. Environ. Assess. Manag. 2017, 13, 549–551. [Google Scholar] [CrossRef]
- Moriwaki, H.; Kitajima, S.; Katahira, K. Waste on the roadside, ‘poi-sute’ waste: Its distribution and elution potential of pollutants into environment. Waste Manag. 2009, 29, 1192–1197. [Google Scholar] [CrossRef] [Green Version]
- Golia, E.E.; Dimirkou, A.; Mitsios, I.K. Accumulation of Metals on Tobacco Leaves (Primings) Grown in an Agricultural Area in Relation to Soil. Bull. Environ. Contam. Toxicol. 2007, 79, 158–162. [Google Scholar] [CrossRef]
- Golia, E.E.; Dimirkou, A.; Mitsios, I.K. Heavy-Metal Concentration in Tobacco Leaves in Relation to Their Available Soil Fractions. Commun. Soil Sci. Plant Anal. 2009, 40, 106–120. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Ma, Y.; Wang, H.; Shi, Y. Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.). Chemosphere 2016, 144, 1960–1965. [Google Scholar] [CrossRef]
- Fresquez, M.R.; Pappas, R.S.; Watson, C.H. Establishment of Toxic Metal Reference Range in Tobacco from US Cigarettes. J. Anal. Toxicol. 2013, 37, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Armendáriz, C.R.; Garcia, T.; Soler, A.; Ángel, J.G.F.; Glez-Weller, D.; González, G.L.; de la Torre, A.H.; Gironés, C.R. Heavy metals in cigarettes for sale in Spain. Environ. Res. 2015, 143, 162–169. [Google Scholar] [CrossRef]
- Stephens, W.E.; Calder, A.; Newton, J. Source and Health Implications of High Toxic Metal Concentrations in Illicit Tobacco Products. Environ. Sci. Technol. 2005, 39, 479–488. [Google Scholar] [CrossRef]
- Adriano, D.C.; Chlopecka, A.; Kaplan, D.I. Role of Soil Chemistry in Soil Remediation and Ecosystem Conservation. Soil Chem. Ecosys. Health 1998, 52, 361–386. [Google Scholar]
- Traina, S.J. The Environmental Chemistry of Cadmium. In Cadmium in Soils and Plants; McLaughlin, M.J., Singh, B.R., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 11–37. ISBN 978-94-010-5916-9. [Google Scholar]
- Traina, S.J.; Laperche, V. Contaminant bioavailability in soils, sediments, and aquatic environments. Proc. Natl. Acad. Sci. USA 1999, 96, 3365–3371. [Google Scholar] [CrossRef] [Green Version]
- Sposito, G. The Chemistry of Soils; Oxford University Press: Oxfordshire, Great Britain, 2008. [Google Scholar]
- Campbell, R.C.J.; Stephens, W.; Finch, A.A.; Geraki, K. Controls on the Valence Species of Arsenic in Tobacco Smoke: XANES Investigation with Implications for Health and Regulation. Environ. Sci. Technol. 2014, 48, 3449–3456. [Google Scholar] [CrossRef]
- Pappas, R.; Polzin, G.; Zhang, L.; Watson, C.; Paschal, D.; Ashley, D. Cadmium, lead, and thallium in mainstream tobacco smoke particulate. Food Chem. Toxicol. 2006, 44, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Dobaradaran, S.; Schmidt, T.C.; Nabipour, I.; Ostovar, A.; Raeisi, A.; Saeedi, R.; Khorsand, M.; Khajeahmadi, N.; Keshtkar, M. Cigarette butts abundance and association of mercury and lead along the Persian Gulf beach: An initial investigation. Environ. Sci. Pollut. Res. 2018, 25, 5465–5473. [Google Scholar] [CrossRef] [Green Version]
- Pelit, F.O.; Demirdöğen, R.E.; Henden, E. Investigation of heavy metal content of Turkish tobacco leaves, cigarette butt, ash, and smoke. Environ. Monit. Assess. 2013, 185, 9471–9479. [Google Scholar] [CrossRef]
- Koutela, N.; Fernández, E.; Saru, M.-L.; Psillakis, E. A comprehensive study on the leaching of metals from heated tobacco sticks and cigarettes in water and natural waters. Sci. Total Environ. 2020, 714, 136700. [Google Scholar] [CrossRef]
- Mansouri, N.; Etebari, M.; Ebrahimi, A.; Ebrahimpour, K.; Rahimi, B.; Hassanzadeh, A. Arsenic Content of Cigarette Butt Leachate of Five Cigarette Brands into Water. Int. J. Environ. Health Eng. 2020, 9, 13. [Google Scholar]
- Moerman, J.W.; Potts, G.E. Analysis of metals leached from smoked cigarette litter. Tob. Control 2011, 20, i30–i35. [Google Scholar] [CrossRef] [Green Version]
- Qamar, W.; Abdelgalil, A.A.; Aljarboa, S.; Alhuzani, M.; Altamimi, M. Cigarette waste: Assessment of hazard to the environment and health in Riyadh city. Saudi J. Biol. Sci. 2020, 27, 1380–1383. [Google Scholar] [CrossRef]
- Mikheev, V.B.; Brinkman, M.C.; Granville, C.A.; Gordon, S.M.; Clark, P.I. Real-Time Measurement of Electronic Cigarette Aerosol Size Distribution and Metals Content Analysis. Nicotine Tob. Res. 2016, 18, 1895–1902. [Google Scholar] [CrossRef] [Green Version]
- Olmedo, P.; Goessler, W.; Tanda, S.; Grau-Perez, M.; Jarmul, S.; Aherrera, A.; Chen, R.; Hilpert, M.; Cohen, J.E.; Navas-Acien, A.; et al. Metal Concentrations in e-Cigarette Liquid and Aerosol Samples: The Contribution of Metallic Coils. Environ. Health Perspect. 2018, 126, 027010. [Google Scholar] [CrossRef]
- Saffari, A.; Daher, N.; Ruprecht, A.; De Marco, C.; Pozzi, P.; Boffi, R.; Hamad, S.H.; Shafer, M.M.; Schauer, J.J.; Westerdahl, D.; et al. Particulate metals and organic compounds from electronic and tobacco-containing cigarettes: Comparison of emission rates and secondhand exposure. Environ. Sci. Process. Impacts 2014, 16, 2259–2267. [Google Scholar] [CrossRef]
- Williams, M.; Villarreal, A.; Bozhilov, K.; Lin, S.; Talbot, P. Metal and Silicate Particles Including Nanoparticles Are Present in Electronic Cigarette Cartomizer Fluid and Aerosol. PLoS ONE 2013, 8, e57987. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Bozhilov, K.N.; Talbot, P. Analysis of the elements and metals in multiple generations of electronic cigarette atomizers. Environ. Res. 2019, 175, 156–166. [Google Scholar] [CrossRef] [Green Version]
- Zervas, E.; Matsouki, N.; Kyriakopoulos, G.; Poulopoulos, S.; Ioannides, T.; Katsaounou, P. Transfer of metals in the liquids of electronic cigarettes. Inhal. Toxicol. 2020, 32, 240–248. [Google Scholar] [CrossRef]
- Song, Q.; Li, J. Environmental effects of heavy metals derived from the e-waste recycling activities in China: A systematic review. Waste Manag. 2014, 34, 2587–2594. [Google Scholar] [CrossRef]
- Bonanomi, G.; Maisto, G.; De Marco, A.; Cesarano, G.; Zotti, M.; Mazzei, P.; Libralato, G.; Staropoli, A.; Siciliano, A.; De Filippis, F.; et al. The fate of cigarette butts in different environments: Decay rate, chemical changes and ecotoxicity revealed by a 5-years decomposition experiment. Environ. Pollut. 2020, 261, 114108. [Google Scholar] [CrossRef]
- Chevalier, Q.; El Hadri, H.; Petitjean, P.; Coz, M.B.-L.; Reynaud, S.; Grassl, B.; Gigault, J. Nano-litter from cigarette butts: Environmental implications and urgent consideration. Chemosphere 2018, 194, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Valiente, R.; Escobar, F.; Pearce, J.; Bilal, U.; Franco, M.; Sureda, X. Estimating and mapping cigarette butt littering in urban environments: A GIS approach. Environ. Res. 2020, 183, 109142. [Google Scholar] [CrossRef]
- Hoellein, T.; Rojas, M.; Pink, A.; Gasior, J.; Kelly, J. Anthropogenic Litter in Urban Freshwater Ecosystems: Distribution and Microbial Interactions. PLoS ONE 2014, 9, e98485. [Google Scholar] [CrossRef]
- Ocean Conservancy. International Coastal Cleanup: 2020 Report; Ocean Conservancy: Washington, DC, USA, 2020; p. 32. [Google Scholar]
- Healton, C.G.; Cummings, K.M.; O’Connor, R.J.; Novotny, T.E. Butt really? The environmental impact of cigarettes. Tob. Control 2011, 20, i1. [Google Scholar] [CrossRef] [Green Version]
- Kungskulniti, N.; Charoenca, N.; Hamann, S.L.; Pitayarangsarit, S.; Mock, J. Cigarette Waste in Popular Beaches in Thailand: High Densities that Demand Environmental Action. Int. J. Environ. Res. Public Health 2018, 15, 630. [Google Scholar] [CrossRef] [Green Version]
- Novotny, T.E.; Lum, K.; Smith, E.; Wang, V.; Barnes, R. Cigarettes Butts and the Case for an Environmental Policy on Hazardous Cigarette Waste. Int. J. Environ. Res. Public Health 2009, 6, 1691–1705. [Google Scholar] [CrossRef]
- Wallbank, L.A.; MacKenzie, R.; Beggs, P.J. Environmental impacts of tobacco product waste: International and Australian policy responses. Ambio 2016, 46, 361–370. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Tobacco and Its Environmental Impact: An Overview; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-151249-7. [Google Scholar]
- Fischer, S.; Thümmler, K.; Volkert, B.; Hettrich, K.; Schmidt, I.; Fischer, K. Properties and Applications of Cellulose Acetate. Macromol. Symp. 2008, 262, 89–96. [Google Scholar] [CrossRef]
- Bonanomi, G.; Incerti, G.; Cesarano, G.; Gaglione, S.A.; Lanzotti, V. Cigarette Butt Decomposition and Associated Chemical Changes Assessed by 13C CPMAS NMR. PLoS ONE 2015, 10, e0117393. [Google Scholar] [CrossRef] [Green Version]
- Kadir, A.A.; Sarani, N.A. Cigarette Butts Pollution and Environmental Impact—A Review. Appl. Mech. Mater. 2015, 773–774, 1106–1110. [Google Scholar] [CrossRef] [Green Version]
- Joly, F.-X.; Coulis, M. Comparison of cellulose vs. plastic cigarette filter decomposition under distinct disposal environments. Waste Manag. 2018, 72, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Harris, B. The intractable cigarette ‘filter problem’. Tob. Control 2011, 20, i10–i16. [Google Scholar] [CrossRef]
- Belzagui, F.; Buscio, V.; Gutiérrez-Bouzán, C.; Vilaseca, M. Cigarette butts as a microfiber source with a microplastic level of concern. Sci. Total Environ. 2021, 762, 144165. [Google Scholar] [CrossRef]
- Venugopal, P.D.; Hanna, S.K.; Gagliano, G.G.; Chang, H.W. No Butts on the Beach: Aquatic Toxicity of Cigarette Butt Leachate Chemicals. Tob. Regul. Sci. 2021, 7, 17–30. [Google Scholar] [CrossRef]
- Green, A.L.R.; Putschew, A.; Nehls, T. Littered cigarette butts as a source of nicotine in urban waters. J. Hydrol. 2014, 519, 3466–3474. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, N.; Qu, C.; Wu, X.; Zhang, J.; Zhang, X. Cigarette Butts and Their Application in Corrosion Inhibition for N80 Steel at 90 °C in a Hydrochloric Acid Solution. Ind. Eng. Chem. Res. 2010, 49, 3986–3991. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, N.; Qu, C.; Zhang, J.; Zhang, X. Comparison of the Corrosion Inhibitive Effect of Anaerobic and Aerobic Cigarette Butts Water Extracts on N80 Steel at 90 °C in Hydrochloric Acid Solution. Ind. Eng. Chem. Res. 2010, 49, 12452–12460. [Google Scholar] [CrossRef]
- Dobaradaran, S.; Nabipour, I.; Saeedi, R.; Ostovar, A.; Khorsand, M.; Khajeahmadi, N.; Hayati, R.; Keshtkar, M. Association of metals (Cd, Fe, As, Ni, Cu, Zn and Mn) with cigarette butts in northern part of the Persian Gulf. Tob. Control 2017, 26, 461–463. [Google Scholar] [CrossRef]
- Dobaradaran, S.; Schmidt, T.C.; Kaziur-Cegla, W.; Jochmann, M.A. BTEX compounds leachates from cigarette butts into water environment: A primary study. Environ. Pollut. 2021, 269, 116185. [Google Scholar] [CrossRef]
- Lawal, M.S.; Ologundudu, S.O. Toxicity of Cigarette Filter Leachates on Hymenochirus Curtipes and Clarias Gariepinus in Nigeria. J. Environ. Ext. 2013, 11, 7–14. [Google Scholar]
- Van Dijk, W.D.; Gopal, S.; Scheepers, P.T.J. Nanoparticles in cigarette smoke; real-time undiluted measurements by a scanning mobility particle sizer. Anal. Bioanal. Chem. 2011, 399, 3573–3578. [Google Scholar] [CrossRef] [Green Version]
- Rebischung, F.; Chabot, L.; Biaudet, H.; Pandard, P. Cigarette butts: A small but hazardous waste, according to European regulation. Waste Manag. 2018, 82, 9–14. [Google Scholar] [CrossRef]
- Torkashvand, J.; Farzadkia, M.; Sobhi, H.R.; Esrafili, A. Littered cigarette butt as a well-known hazardous waste: A comprehensive systematic review. J. Hazard. Mater. 2020, 383, 121242. [Google Scholar] [CrossRef]
- Jacob, I.P.; Benowitz, N.L.; Destaillats, H.; Gundel, L.; Hang, B.; Martins-Green, M.; Matt, G.E.; Quintana, P.J.E.; Samet, J.M.; Schick, S.F.; et al. Thirdhand Smoke: New Evidence, Challenges, and Future Directions. Chem. Res. Toxicol. 2017, 30, 270–294. [Google Scholar] [CrossRef] [Green Version]
- Cecinato, A.; Balducci, C.; Romagnoli, P.; Perilli, M. Airborne psychotropic substances in eight Italian big cities: Burdens and behaviours. Environ. Pollut. 2012, 171, 140–147. [Google Scholar] [CrossRef]
- Klepeis, N.E.; Ott, W.R.; Switzer, P. Real–Time Measurement of Outdoor Tobacco Smoke Particles. J. Air Waste Manag. Assoc. 2007, 57, 522–534. [Google Scholar] [CrossRef]
- Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. Sources of Fine Organic Aerosol. 6. Cigaret Smoke in the Urban Atmosphere. Environ. Sci. Technol. 1994, 28, 1375–1388. [Google Scholar] [CrossRef]
- Schauer, J.J.; Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ. 1996, 30, 3837–3855. [Google Scholar] [CrossRef]
- Brennan, E.; Cameron, M.; Warne, C.; Durkin, S.; Borland, R.; Travers, M.J.; Hyland, A.; Wakefield, M.A. Secondhand smoke drift: Examining the influence of indoor smoking bans on indoor and outdoor air quality at pubs and bars. Nicotine Tob. Res. 2010, 12, 271–277. [Google Scholar] [CrossRef]
- Sureda, X.; Martínez-Sánchez, J.M.; López, M.J.; Fu, M.; Agüero, F.; Saltó, E.; Nebot, M.; Fernández, E. Secondhand smoke levels in public building main entrances: Outdoor and indoor PM2.5assessment. Tob. Control 2012, 21, 543–548. [Google Scholar] [CrossRef]
- Cho, H.; Lee, K.; Hwang, Y.; Richardson, P.; Bratset, H.; Teeters, E.; Record, R.; Riker, C.; Hahn, E.J. Outdoor tobacco smoke exposure at the perimeter of a tobacco-free university. J. Air Waste Manag. Assoc. 2014, 64, 863–866. [Google Scholar] [CrossRef] [Green Version]
- Fleck, A.D.S.; Carneiro, M.F.H.; Barbosa, F.; Thiesen, F.V.; Amantéa, S.L.; Rhoden, C.R. Monitoring an outdoor smoking area by means of PM2.5 measurement and vegetal biomonitoring. Environ. Sci. Pollut. Res. 2015, 23, 21187–21194. [Google Scholar] [CrossRef]
- Ott, W.R.; Acevedo-Bolton, V.; Cheng, K.-C.; Jiang, R.-T.; Klepeis, N.E.; Hildemann, L.M. Outdoor fine and ultrafine particle measurements at six bus stops with smoking on two California arterial highways—Results of a pilot study. J. Air Waste Manag. Assoc. 2013, 64, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, P.; Zhang, B.; Bondy, S.J.; Klepeis, N.; Ferrence, R. Not just ‘a few wisps’: Real-time measurement of tobacco smoke at entrances to office buildings. Tob. Control 2011, 20, 212–218. [Google Scholar] [CrossRef]
- López, M.J.; Fernández, E.; Gorini, G.; Moshammer, H.; Polanska, K.; Clancy, L.; Dautzenberg, B.; Delrieu, A.; Invernizzi, G.; Muñoz, G.; et al. Exposure to Secondhand Smoke in Terraces and Other Outdoor Areas of Hospitality Venues in Eight European Countries. PLoS ONE 2012, 7, e42130. [Google Scholar] [CrossRef] [Green Version]
- Matt, G.; Quintana, P.J.E.; Destaillats, H.; Gundel, L.A.; Sleiman, M.; Singer, B.C.; Jacob, P.; Benowitz, N.; Winickoff, J.P.; Rehan, V.; et al. Thirdhand Tobacco Smoke: Emerging Evidence and Arguments for a Multidisciplinary Research Agenda. Environ. Health Perspect. 2011, 119, 1218–1226. [Google Scholar] [CrossRef] [Green Version]
- Díez-Izquierdo, A.; Cassanello-Peñarroya, P.; Lidón-Moyano, C.; Matilla-Santander, N.; Balaguer, A.; Martínez-Sánchez, J.M. Update on thirdhand smoke: A comprehensive systematic review. Environ. Res. 2018, 167, 341–371. [Google Scholar] [CrossRef]
- E Matt, G.; E Quintana, P.J.; Zakarian, J.M.; Hoh, E.; Hovell, M.F.; Mahabee-Gittens, M.; Watanabe, K.; Datuin, K.; Vue, C.; A Chatfield, D. When smokers quit: Exposure to nicotine and carcinogens persists from thirdhand smoke pollution. Tob. Control 2017, 26, 548–556. [Google Scholar] [CrossRef]
- Singer, B.C.; Hodgson, A.T.; Guevarra, K.S.; Hawley, E.L.; Nazaroff, W.W. Gas-Phase Organics in Environmental Tobacco Smoke. 1. Effects of Smoking Rate, Ventilation, and Furnishing Level on Emission Factors. Environ. Sci. Technol. 2002, 36, 846–853. [Google Scholar] [CrossRef]
- Masoner, J.R.; Kolpin, D.W.; Furlong, E.T.; Cozzarelli, I.M.; Gray, J.L.; Schwab, E.A. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States. Environ. Sci. Process. Impacts 2014, 16, 2335–2354. [Google Scholar] [CrossRef]
- Matt, G.E.; Quintana, P.J.; Hoh, E.; Zakarian, J.M.; Dodder, N.; Record, R.A.; Hovell, M.F.; Mahabee-Gittens, E.M.; Padilla, S.; Markman, L.; et al. Persistent tobacco smoke residue in multiunit housing: Legacy of permissive indoor smoking policies and challenges in the implementation of smoking bans. Prev. Med. Rep. 2020, 18, 101088. [Google Scholar] [CrossRef]
- Bertholon, J.; Becquemin, M.; Annesi-Maesano, I.; Dautzenberg, B. Electronic Cigarettes: A Short Review. Respiration 2013, 86, 433–438. [Google Scholar] [CrossRef]
- Caponnetto, P.; Campagna, D.; Papale, G.; Russo, C.; Polosa, R. The emerging phenomenon of electronic cigarettes. Expert Rev. Respir. Med. 2012, 6, 63–74. [Google Scholar] [CrossRef]
- Grana, R.; Benowitz, N.; Glantz, S.A. E-Cigarettes. Circulation 2014, 129, 1972–1986. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. E-Cigarette Use among Youth and Young Adults: A Report of the Surgeon General; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Atlanta, GA, USA, 2016; p. 295.
- Breland, A.; Soule, E.; Lopez, A.; Ramôa, C.; El-Hellani, A.; Eissenberg, T. Electronic cigarettes: What are they and what do they do? Ann. N. Y. Acad. Sci. 2017, 1394, 5–30. [Google Scholar] [CrossRef]
- Dai, H.; Leventhal, A.M. Prevalence of e-Cigarette Use Among Adults in the United States, 2014–2018. JAMA 2019, 322, 1824–1827. [Google Scholar] [CrossRef] [Green Version]
- Delnevo, C.; Giovenco, D.P.; Hrywna, M. Rapid proliferation of illegal pod-mod disposable e-cigarettes. Tob. Control 2020, 29, 150–151. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Enforcement Priorities for Electronic Nicotine Delivery Systems (ENDS) and Other Deemed Products on the Market without Premarket Authorization: Guidance for Industry; Office of Compliance and Enforcement, Office of Health Communication and Education, Office of Regulations, and Office of Science in the Center for Tobacco Products, Food and Drug Administration, U.S. Department of Health and Human Services: Silver Spring, MD, USA, 2020.
- Krause, M.; Townsend, T.G. Hazardous waste status of discarded electronic cigarettes. Waste Manag. 2015, 39, 57–62. [Google Scholar] [CrossRef]
- Herrington, J.S.; Myers, C. Electronic cigarette solutions and resultant aerosol profiles. J. Chromatogr. A 2015, 1418, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Czoli, C.D.; Goniewicz, M.; Palumbo, M.; Leigh, N.; White, C.M.; Hammond, D. Identification of flavouring chemicals and potential toxicants in e-cigarette products in Ontario, Canada. Can. J. Public Health 2019, 110, 542–550. [Google Scholar] [CrossRef]
- Fagan, P.; Pokhrel, P.; A Herzog, T.; Moolchan, E.T.; Cassel, K.D.; A Franke, A.; Li, X.; Pagano, I.; Trinidad, D.R.; Sakuma, K.-L.K.; et al. Sugar and Aldehyde Content in Flavored Electronic Cigarette Liquids. Nicotine Tob. Res. 2017, 20, 985–992. [Google Scholar] [CrossRef]
- Khlystov, A.; Samburova, V. Flavoring Compounds Dominate Toxic Aldehyde Production during E-Cigarette Vaping. Environ. Sci. Technol. 2016, 50, 13080–13085. [Google Scholar] [CrossRef]
- Sassano, M.F.; Davis, E.; Keating, J.E.; Zorn, B.T.; Kochar, T.K.; Wolfgang, M.C.; Glish, G.L.; Tarran, R. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLoS Biol. 2018, 16, e2003904. [Google Scholar] [CrossRef]
- A Tierney, P.; Karpinski, C.D.; E Brown, J.; Luo, W.; Pankow, J.F. Flavour chemicals in electronic cigarette fluids. Tob. Control 2016, 25, e10–e15. [Google Scholar] [CrossRef] [Green Version]
- Czogala, J.; Goniewicz, M.L.; Fidelus, B.; Zielinska-Danch, W.; Travers, M.J.; Sobczak, A. Secondhand Exposure to Vapors From Electronic Cigarettes. Nicotine Tob. Res. 2014, 16, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Farsalinos, K.E.; Kistler, K.A.; Pennington, A.; Spyrou, A.; Kouretas, D.; Gillman, G. Aldehyde levels in e-cigarette aerosol: Findings from a replication study and from use of a new-generation device. Food Chem. Toxicol. 2018, 111, 64–70. [Google Scholar] [CrossRef]
- Logue, J.M.; Sleiman, M.; Montesinos, V.N.; Russell, M.L.; Litter, M.I.; Benowitz, N.L.; Gundel, L.A.; Destaillats, H. Emissions from Electronic Cigarettes: Assessing Vapers’ Intake of Toxic Compounds, Secondhand Exposures, and the Associated Health Impacts. Environ. Sci. Technol. 2017, 51, 9271–9279. [Google Scholar] [CrossRef] [Green Version]
- Sleiman, M.; Logue, J.M.; Montesinos, N.; Russell, M.L.; Litter, M.I.; Gundel, L.A.; Destaillats, H. Emissions from Electronic Cigarettes: Key Parameters Affecting the Release of Harmful Chemicals. Environ. Sci. Technol. 2016, 50, 9644–9651. [Google Scholar] [CrossRef] [Green Version]
- Casebolt, R.; Cook, S.J.; Islas, A.; Brown, A.; Castle, K.; Dutcher, D.D. Carbon monoxide concentration in mainstream E-cigarette emissions measured with diode laser spectroscopy. Tob. Control 2019, 29, 652–655. [Google Scholar] [CrossRef]
- Lerner, C.A.; Sundar, I.K.; Watson, R.; Elder, A.; Jones, R.; Done, D.; Kurtzman, R.; Ossip, D.J.; Robinson, R.; McIntosh, S.; et al. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols. Environ. Pollut. 2015, 198, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Cromwell, B.; Mota, L.C.; Levine, M. Detection of Potentially Toxic Additives in Electronic Cigarettes and Cigarette Flavourings. Anal. Lett. 2019, 53, 1407–1415. [Google Scholar] [CrossRef]
- Castiglioni, S.; Senta, I.; Borsotti, A.; Davoli, E.; Zuccato, E. A novel approach for monitoring tobacco use in local communities by wastewater analysis. Tob. Control 2015, 24, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Hedgespeth, M.L.; Sapozhnikova, Y.; Pennington, P.; Clum, A.; Fairey, A.; Wirth, E. Pharmaceuticals and personal care products (PPCPs) in treated wastewater discharges into Charleston Harbor, South Carolina. Sci. Total Environ. 2012, 437, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Fontela, M.; Ventura, F. Traceability of Emerging Contaminants from Wastewater to Drinking Water. In Emerging Contaminants from Industrial and Municipal Waste; Barceló, D., Petrovic, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5S/1, pp. 143–168. ISBN 978-3-540-74793-2. [Google Scholar]
- Maessen, G.C.; Wijnhoven, A.M.; Neijzen, R.L.; Paulus, M.C.; Van Heel, D.A.M.; Bomers, B.H.A.; Boersma, L.E.; Konya, B.; Van Der Heyden, M.A.G. Nicotine intoxication by e-cigarette liquids: A study of case reports and pathophysiology. Clin. Toxicol. 2019, 58, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.L.; Aparicio, I.; Callejón, M.; Alonso, E. Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). J. Hazard. Mater. 2009, 164, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Senta, I.; Lor, E.G.; Borsotti, A.; Zuccato, E.; Castiglioni, S. Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment. Water Res. 2015, 74, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Hukkanen, J.; Jacob, P., III; Benowitz, N.L. Metabolism and Disposition Kinetics of Nicotine. Pharmacol. Rev. 2005, 57, 79–115. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, J.; Hölscher, B.; Seiwert, M.; Carty, C.L.; Merkel, G.; Schulz, C. Nicotine and cotinine in adults’ urine: The German Environmental Survey 1998. J. Expo. Sci. Environ. Epidemiol. 2004, 15, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Zarrelli, A.; DellaGreca, M.; Parolisi, A.; Iesce, M.R.; Cermola, F.; Temussi, F.; Isidori, M.; Lavorgna, M.; Passananti, M.; Previtera, L. Chemical fate and genotoxic risk associated with hypochlorite treatment of nicotine. Sci. Total Environ. 2012, 426, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Buerge, I.J.; Kahle, M.; Buser, H.-R.; Müller, M.D.; Poiger, T. Nicotine Derivatives in Wastewater and Surface Waters: Application as Chemical Markers for Domestic Wastewater. Environ. Sci. Technol. 2008, 42, 6354–6360. [Google Scholar] [CrossRef]
- Ekpeghere, K.I.; Sim, W.-J.; Lee, H.-J.; Oh, J.-E. Occurrence and distribution of carbamazepine, nicotine, estrogenic compounds, and their transformation products in wastewater from various treatment plants and the aquatic environment. Sci. Total Environ. 2018, 640–641, 1015–1023. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.M.; Uclés, S.; Hernando, M.; Davoli, E.; Fernández-Alba, A. Evaluation of selected ubiquitous contaminants in the aquatic environment and their transformation products. A pilot study of their removal from a sewage treatment plant. Water Res. 2011, 45, 2331–2341. [Google Scholar] [CrossRef]
- Focazio, M.J.; Kolpin, D.W.; Barnes, K.K.; Furlong, E.; Meyer, M.; Zaugg, S.D.; Barber, L.B.; Thurman, E.M. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States—II) Untreated drinking water sources. Sci. Total Environ. 2008, 402, 201–216. [Google Scholar] [CrossRef]
- Barnes, K.K.; Kolpin, D.W.; Furlong, E.; Zaugg, S.D.; Meyer, M.; Barber, L.B. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I) Groundwater. Sci. Total Environ. 2008, 402, 192–200. [Google Scholar] [CrossRef]
- Godfrey, E.; Woessner, W.W.; Benotti, M.J. Pharmaceuticals in On-Site Sewage Effluent and Ground Water, Western Montana. Ground Water 2007, 45, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Schaider, L.A.; Ackerman, J.M.; Rudel, R.A. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer. Sci. Total Environ. 2016, 547, 470–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 2012, 416, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Verstraeten, I.; Fetterman, G.; Meyer, M.; Bullen, T.; Sebree, S. Use of tracers and isotopes to evaluate vulnerability of water in domestic wells to septic waste. Ground Water Monit. Remediat. 2005, 25, 107–117. [Google Scholar] [CrossRef]
- Kinney, C.A.; Furlong, E.T.; Werner, S.L.; Cahill, J.D. Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environ. Toxicol. Chem. 2006, 25, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Teijon, G.; Candela, L.; Tamoh, K.; Molina-Díaz, A.; Fernández-Alba, A. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci. Total Environ. 2010, 408, 3584–3595. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012, 163, 287–303. [Google Scholar] [CrossRef] [Green Version]
- Barnes, K.K.; Christenson, S.C.; Kolpin, D.W.; Focazio, M.J.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.; Barber, L.B. Pharmaceuticals and Other Organic Waste Water Contaminants Within a Leachate Plume Downgradient of a Municipal Landfill. Ground Water Monit. Remediat. 2004, 24, 119–126. [Google Scholar] [CrossRef]
- Buszka, P.M.; Yeskis, D.J.; Kolpin, D.W.; Furlong, E.; Zaugg, S.D.; Meyer, M. Waste-Indicator and Pharmaceutical Compounds in Landfill-Leachate-Affected Ground Water near Elkhart, Indiana, 2000–2002. Bull. Environ. Contam. Toxicol. 2009, 82, 653–659. [Google Scholar] [CrossRef]
- Baderna, D.; Maggioni, S.; Boriani, E.; Gemma, S.; Molteni, M.; Lombardo, A.; Colombo, A.; Bordonali, S.; Rotella, G.; Lodi, M.; et al. A combined approach to investigate the toxicity of an industrial landfill’s leachate: Chemical analyses, risk assessment and in vitro assays. Environ. Res. 2011, 111, 603–613. [Google Scholar] [CrossRef]
- Schwarzbauer, J.; Heim, S.; Brinker, S.; Littke, R. Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Res. 2002, 36, 2275–2287. [Google Scholar] [CrossRef]
- Lee, D.G.; Roehrdanz, P.R.; Feraud, M.; Ervin, J.; Anumol, T.; Jia, A.; Park, M.; Tamez, C.; Morelius, E.W.; Gardea-Torresdey, J.L.; et al. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers. Water Res. 2015, 85, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masoner, J.R.; Kolpin, D.W.; Cozzarelli, I.M.; Barber, L.B.; Burden, D.S.; Foreman, W.T.; Forshay, K.J.; Furlong, E.T.; Groves, J.F.; Hladik, M.L.; et al. Urban Stormwater: An Overlooked Pathway of Extensive Mixed Contaminants to Surface and Groundwaters in the United States. Environ. Sci. Technol. 2019, 53, 10070–10081. [Google Scholar] [CrossRef] [Green Version]
- Fairbairn, D.J.; Elliott, S.; Kiesling, R.L.; Schoenfuss, H.L.; Ferrey, M.L.; Westerhoff, B.M. Contaminants of emerging concern in urban stormwater: Spatiotemporal patterns and removal by iron-enhanced sand filters (IESFs). Water Res. 2018, 145, 332–345. [Google Scholar] [CrossRef]
- Wallbank, L.; MacKenzie, R.; Freeman, B.; Winstanley, M.H. The Environmental Impact of Tobacco Use. In Tobacco in Australia: Facts and Issues; Scollo, M.M., Winstanley, M.H., Eds.; Cancer Council Victoria: Melbourne, Australia, 2016. [Google Scholar]
- Hiki, K.; Nakajima, F.; Tobino, T. Causes of highway road dust toxicity to an estuarine amphipod: Evaluating the effects of nicotine. Chemosphere 2017, 168, 1365–1374. [Google Scholar] [CrossRef]
- Schmidt, R.; Ulanova, D.; Wick, L.Y.; Bode, H.B.; Garbeva, P. Microbe-driven chemical ecology: Past, present and future. ISME J. 2019, 13, 2656–2663. [Google Scholar] [CrossRef] [Green Version]
- Chopyk, J.; Chattopadhyay, S.; Kulkarni, P.; Smyth, E.M.; Hittle, L.E.; Paulson, J.N.; Pop, M.; Buehler, S.S.; Clark, P.I.; Mongodin, E.F.; et al. Temporal Variations in Cigarette Tobacco Bacterial Community Composition and Tobacco-Specific Nitrosamine Content Are Influenced by Brand and Storage Conditions. Front. Microbiol. 2017, 8, 358. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Yu, L.; Zhang, J.; Zhang, X.; Xue, Y.; Liu, J.; Zou, X. Characterization of the core microbiome in tobacco leaves during aging. Microbiologyopen 2020, 9, e984. [Google Scholar] [CrossRef] [Green Version]
- Smyth, E.M.; Kulkarni, P.; Claye, E.; Stanfill, S.; Tyx, R.; Maddox, C.; Mongodin, E.F.; Sapkota, A.R. Smokeless tobacco products harbor diverse bacterial microbiota that differ across products and brands. Appl. Microbiol. Biotechnol. 2017, 101, 5391–5403. [Google Scholar] [CrossRef]
- Tyx, R.; Stanfill, S.B.; Keong, L.M.; Rivera, A.J.; Satten, G.A.; Watson, C.H. Characterization of Bacterial Communities in Selected Smokeless Tobacco Products Using 16S rDNA Analysis. PLoS ONE 2016, 11, e0146939. [Google Scholar] [CrossRef]
- World Health Organization Study. Group on Tobacco Product Regulation Report on the Scientific Basis of Tobacco Product Regulation: Seventh Report of a WHO Study Group; WHO Technical Report Series; World Health Organization: Geneva, Switzerland, 2019; p. 260. [Google Scholar]
- Sapkota, A.R.; Berger, S.; Vogel, T.M. Human Pathogens Abundant in the Bacterial Metagenome of Cigarettes. Environ. Health Perspect. 2010, 118, 351–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Jin, J.; Beger, R.D.; Cerniglia, C.E.; Yang, M.; Chen, H. Metabolomics evaluation of the impact of smokeless tobacco exposure on the oral bacterium Capnocytophaga sputigena. Toxicol. In Vitro 2016, 36, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zhou, X.; Cheng, L.; Li, M. The Impact of Smoking on Subgingival Microflora: From Periodontal Health to Disease. Front. Microbiol. 2020, 11, 66. [Google Scholar] [CrossRef]
- Shah, S.A.; Ganesan, S.M.; Varadharaj, S.; Dabdoub, S.M.; Walters, J.D.; Kumar, P.S. The making of a miscreant: Tobacco smoke and the creation of pathogen-rich biofilms. NPJ Biofilms Microbiomes 2017, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yang, I.; Sandeep, S.; Rodriguez, J. The oral health impact of electronic cigarette use: A systematic review. Crit. Rev. Toxicol. 2020, 50, 97–127. [Google Scholar] [CrossRef]
- Northrup, T.F.; Stotts, A.L.; Suchting, R.; Matt, G.E.; Quintana, P.J.; Khan, A.M.; Green, C.; Klawans, M.R.; Johnson, M.; Benowitz, N.; et al. Thirdhand smoke associations with the gut microbiomes of infants admitted to a neonatal intensive care unit: An observational study. Environ. Res. 2021, 197, 111180. [Google Scholar] [CrossRef]
- Kelley, S.T.; Liu, W.; Quintana, P.J.E.; Hoh, E.; Dodder, N.G.; Mahabee-Gittens, E.M.; Padilla, S.; Ogden, S.; Frenzel, S.; Sisk-Hackworth, L.; et al. Altered microbiomes in thirdhand smoke-exposed children and their home environments. Pediatr. Res. 2021, 1–8. [Google Scholar] [CrossRef]
- Biller, O.M.; Adler, L.S.; Irwin, R.E.; McAllister, C.; Palmer-Young, E.C. Possible Synergistic Effects of Thymol and Nicotine against Crithidia bombi Parasitism in Bumble Bees. PLoS ONE 2015, 10, e0144668. [Google Scholar] [CrossRef]
- Oropesa, A.L.; Floro, A.M.; Palma, P. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem. Environ. Sci. Pollut. Res. 2017, 24, 16605–16616. [Google Scholar] [CrossRef]
- Mu, Y.; Chen, Q.; Parales, R.E.; Lu, Z.; Hong, Q.; He, J.; Qiu, J.; Jiang, J. Bacterial catabolism of nicotine: Catabolic strains, pathways and modules. Environ. Res. 2020, 183, 109258. [Google Scholar] [CrossRef]
- He, C.; Huang, Y.; Liu, P.; Wei, J.; Yang, Y.; Xu, L.; Xiao, M. Transcriptome analysis of genes and metabolic pathways associated with nicotine degradation in Aspergillus oryzae 112822. BMC Genom. 2019, 20, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Tang, L.; Yao, Y.; Wang, H.; Min, H.; Lu, Z. Bioremediation of the tobacco waste-contaminated soil by Pseudomonas sp. HF-1: Nicotine degradation and microbial community analysis. Appl. Microbiol. Biotechnol. 2013, 97, 6077–6088. [Google Scholar] [CrossRef] [PubMed]
- Micevska, T.; Warne, M.S.J.; Pablo, F.; Patra, R. Variation in, and Causes of, Toxicity of Cigarette Butts to a Cladoceran and Microtox. Arch. Environ. Contam. Toxicol. 2006, 50, 205–212. [Google Scholar] [CrossRef]
- Buchanan, C.M.; Gardner, R.M.; Komarek, R.J. Aerobic biodegradation of cellulose acetate. J. Appl. Polym. Sci. 1993, 47, 1709–1719. [Google Scholar] [CrossRef]
- Buchanan, C.M.; Dorschel, D.; Gardner, R.M.; Komarek, R.J.; Matosky, A.J.; White, A.W.; Wood, M.D. The influence of degree of substitution on blend miscibility and biodegradation of cellulose acetate blends. J. Polym. Environ. 1996, 4, 179–195. [Google Scholar] [CrossRef]
- Komarek, R.J.; Gardner, R.M.; Buchanan, C.M.; Gedon, S. Biodegradation of radiolabeled cellulose acetate and cellulose propionate. J. Appl. Polym. Sci. 1993, 50, 1739–1746. [Google Scholar] [CrossRef]
- Xu, E.G.; Richardot, W.H.; Li, S.; Buruaem, L.; Wei, H.-H.; Dodder, N.G.; Schick, S.F.; Novotny, T.; Schlenk, D.; Gersberg, R.M.; et al. Assessing Toxicity and in Vitro Bioactivity of Smoked Cigarette Leachate Using Cell-Based Assays and Chemical Analysis. Chem. Res. Toxicol. 2019, 32, 1670–1679. [Google Scholar] [CrossRef] [Green Version]
- Baran, W.; Madej-Knysak, D.; Sobczak, A.; Adamek, E. The influence of waste from electronic cigarettes, conventional cigarettes and heat-not-burn tobacco products on microorganisms. J. Hazard. Mater. 2020, 385, 121591. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Quéméneur, M.; Chifflet, S.; Akrout, F.; Bellaaj-Zouari, A.; Belhassen, M. Impact of cigarette butts on microbial diversity and dissolved trace metals in coastal marine sediment. Estuar. Coast. Shelf Sci. 2020, 240, 106785. [Google Scholar] [CrossRef]
- Koroleva, E.; Mqulwa, A.Z.; Norris-Jones, S.; Reed, S.; Tambe, Z.; Visagie, A.; Jacobs, K. Impact of cigarette butts on bacterial community structure in soil. Environ. Sci. Pollut. Res. 2021, 28, 33030–33040. [Google Scholar] [CrossRef] [PubMed]
- Selmar, D.; Engelhardt, U.H.; Hänsel, S.; Thräne, C.; Nowak, M.; Kleinwächter, M. Nicotine uptake by peppermint plants as a possible source of nicotine in plant-derived products. Agron. Sustain. Dev. 2015, 35, 1185–1190. [Google Scholar] [CrossRef] [Green Version]
- Radwan, D.S.A. Horizontal Natural Product Transfer: A so far Unconsidered Source of Contamination of Plant-Derived Commodities. J. Environ. Anal. Toxicol. 2015, 5. [Google Scholar] [CrossRef]
- Weidner, M.; Martins, R.; Müller, A.; Simon, J.; Schmitz, H. Uptake, transport and accumulation of nicotine by the Golden Potho (Epipremnum aureum): The central role of root pressure. J. Plant Physiol. 2005, 162, 139–150. [Google Scholar] [CrossRef]
- Selmar, D.; Radwan, A.; Abdalla, N.; Taha, H.; Wittke, C.; El-Henawy, A.; Alshaal, T.; Amer, M.; Kleinwächter, M.; Nowak, M.; et al. Uptake of nicotine from discarded cigarette butts—A so far unconsidered path of contamination of plant-derived commodities. Environ. Pollut. 2018, 238, 972–976. [Google Scholar] [CrossRef]
- Boxall, A.B.A.; Johnson, P.; Smith, E.J.; Sinclair, C.J.; Stutt, A.E.; Levy, L.S. Uptake of Veterinary Medicines from Soils into Plants. J. Agric. Food Chem. 2006, 54, 2288–2297. [Google Scholar] [CrossRef]
- Trapp, S.; Legind, C.N. Uptake of Organic Contaminants from Soil into Vegetables and Fruits. In Dealing with Contaminated Sites; Springer: Singapore, 2010; pp. 369–408. [Google Scholar]
- Selmar, D.; Wittke, C.; Wolffersdorff, I.B.-V.; Klier, B.; Lewerenz, L.; Kleinwächter, M.; Nowak, M. Transfer of pyrrolizidine alkaloids between living plants: A disregarded source of contaminations. Environ. Pollut. 2019, 248, 456–461. [Google Scholar] [CrossRef]
- Zhao, B.; Agblevor, F.A.; Ritesh K., C.; Jelesko, J.G. Enhanced production of the alkaloid nicotine in hairy root cultures of Nicotiana tabacum L. Plant Cell Tissue Organ Cult. (PCTOC) 2012, 113, 121–129. [Google Scholar] [CrossRef]
- Simard, S.W.; Beiler, K.J.; Bingham, M.A.; Deslippe, J.R.; Philip, L.J.; Teste, F.P. Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biol. Rev. 2012, 26, 39–60. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kaur, S.; Kohli, R.K.; Yadav, S.S. Caffeic acid affects early growth, and morphogenetic response of hypocotyl cuttings of mung bean (Phaseolus aureus). J. Plant Physiol. 2008, 165, 297–305. [Google Scholar] [CrossRef]
- Darwent, M.J.; Paterson, E.; McDonald, A.J.S.; Tomos, A.D. Biosensor reporting of root exudation from Hordeum vulgare in relation to shoot nitrate concentration. J. Exp. Bot. 2003, 54, 325–334. [Google Scholar] [CrossRef]
- Walker, T.S.; Bais, H.P.; Grotewold, E.; Vivanco, J.M. Root Exudation and Rhizosphere Biology. Plant Physiol. 2003, 132, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Montalvão, M.F.; Sampaio, L.L.G.; Gomes, H.H.F.; Malafaia, G. An insight into the cytotoxicity, genotoxicity, and mutagenicity of smoked cigarette butt leachate by using Allium cepa as test system. Environ. Sci. Pollut. Res. 2018, 26, 2013–2021. [Google Scholar] [CrossRef]
- Green, D.S.; Boots, B.; Carvalho, J.D.S.; Starkey, T. Cigarette butts have adverse effects on initial growth of perennial ryegrass (gramineae: Lolium perenne L.) and white clover (leguminosae: Trifolium repens L.). Ecotoxicol. Environ. Saf. 2019, 182, 109418. [Google Scholar] [CrossRef]
- Noble, R.E. Effect of cigarette smoke on seed germination. Sci. Total Environ. 2001, 267, 177–179. [Google Scholar] [CrossRef]
- Tileklioğlu, B.; Battal, P.; Işler, S. The effect of cigarette smoke on the growth and development of wheat (Triticum vulgare Vill.) and duckweed (Lemna minor L.). J. Environ. Sci. Health Part. A: Environ. Sci. Eng. Toxicol. 1996, 31, 2577–2581. [Google Scholar] [CrossRef]
- Mondal, N.K.; Dey, U.; Khatun, S.; Das, K.; Das, C.R. Toxic Effect of Cigarette Origin Tobacco Leaf (Nicotiana tabaccum L.) and Cigarette Smoke Extract on Germination and Bio-Chemical Changes of Bengal Gram (Cicer arietinum L.). J. Stress Physiol. Biochem. 2014, 10, 135–144. [Google Scholar]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef]
- Lima, C.F.; dos Pinto, M.A.S.; Choueri, R.B.; Moreira, L.B.; Ítalo, B.C. Occurrence, characterization, partition, and toxicity of cigarette butts in a highly urbanized coastal area. Waste Manag. 2021, 131, 10–19. [Google Scholar] [CrossRef]
- Dobaradaran, S.; Soleimani, F.; Akhbarizadeh, R.; Schmidt, T.C.; Marzban, M.; BasirianJahromi, R. Environmental fate of cigarette butts and their toxicity in aquatic organisms: A comprehensive systematic review. Environ. Res. 2021, 195, 110881. [Google Scholar] [CrossRef]
- Slaughter, E.; Gersberg, R.M.; Watanabe, K.; Rudolph, J.; Stransky, C.; E Novotny, T. Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. Tob. Control 2011, 20, i25–i29. [Google Scholar] [CrossRef]
- Green, D.S.; Kregting, L.; Boots, B. Smoked cigarette butt leachate impacts survival and behaviour of freshwater invertebrates. Environ. Pollut. 2020, 266, 115286. [Google Scholar] [CrossRef]
- Green, D.S.; Kregting, L.; Boots, B. Effects of cigarette butts on marine keystone species (Ulva lactuca L. and Mytilus edulis L.) and sediment microphytobenthos. Mar. Pollut. Bull. 2021, 165, 112152. [Google Scholar] [CrossRef]
- Yabes, L.J. Bioaccumulation of Organic Compounds from Smoked Cigarette Litter in the Freshwater Rainbow Trout, Oncorhynchus mykiss. Master’s Thesis, San Diego State University, San Diego, CA, USA, 2018. [Google Scholar]
- Kander, M.C. Bioaccumulation of Metals (As, Cd, Cr, Cu, Ni, Pb, Se, and Zn) from Smoked Cigarette Litter in Fish (Rainbow Trout) and Shellfish (Mediterranean Mussels). Master’s Thesis, San Diego State University, San Diego, CA, USA, 2017. [Google Scholar]
- Wei, H.-H. Determination of Organic Compounds in Smoked Cigarette Leachate and the Bioaccumulation Potentials in the Marine Mussel, Mytilus galloprovincialis. Master’s Thesis, San Diego State University, San Diego, CA, USA, 2018. [Google Scholar]
- Fire, S.; Wang, Z.; Berman, M.; Langlois, G.W.; Morton, S.L.; Sekula-Wood, E.; Benitez-Nelson, C. Trophic Transfer of the Harmful Algal Toxin Domoic Acid as a Cause of Death in a Minke Whale (Balaenoptera acutorostrata) Stranding in Southern California. Aquat. Mamm. 2010, 36, 342–350. [Google Scholar] [CrossRef] [Green Version]
- Suárez-Rodríguez, M.; López-Rull, I.; Garcia, C.M. Incorporation of cigarette butts into nests reduces nest ectoparasite load in urban birds: New ingredients for an old recipe? Biol. Lett. 2013, 9, 20120931. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, L.S.; Estrela, F.N.; Chagas, T.Q.; Da Silva, W.A.M.; Costa, D.R.D.O.; Pereira, I.; Vaz, B.G.; Rodrigues, A.S.D.L.; Malafaia, G. The exposure to water with cigarette residue changes the anti-predator response in female Swiss albino mice. Environ. Sci. Pollut. Res. 2018, 25, 8592–8607. [Google Scholar] [CrossRef]
- Mayer, B. How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch. Toxicol. 2014, 88, 5–7. [Google Scholar] [CrossRef] [Green Version]
- Dodmane, P.; Arnold, L.L.; Pennington, K.L.; Cohen, S.M. Orally administered nicotine induces urothelial hyperplasia in rats and mice. Toxicology 2014, 315, 49–54. [Google Scholar] [CrossRef]
- Qu, W.; Zhao, W.-H.; Wen, X.; Yan, H.-Y.; Liu, H.-X.; Hou, L.-F.; Ping, J. Prenatal nicotine exposure induces thymic hypoplasia in mice offspring from neonatal to adulthood. Toxicol. Lett. 2018, 304, 30–38. [Google Scholar] [CrossRef]
- Tang, M.-S.; Wu, X.-R.; Lee, H.-W.; Xia, Y.; Deng, F.-M.; Moreira, A.L.; Chen, L.C.; Huang, W.; Lepor, H. Electronic-cigarette smoke induces lung adenocarcinoma and bladder urothelial hyperplasia in mice. Proc. Natl. Acad. Sci. USA 2019, 116, 21727–21731. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-W.; Park, S.-H.; Weng, M.-W.; Wang, H.-T.; Huang, W.; Lepor, H.; Wu, X.-R.; Chen, L.C.; Tang, M.-S. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells. Proc. Natl. Acad. Sci. USA 2018, 115, E1560–E1569. [Google Scholar] [CrossRef] [Green Version]
- E Novotny, T.; Hardin, S.N.; Hovda, L.R.; Novotny, D.J.; McLean, M.K.; Khan, S. Tobacco and cigarette butt consumption in humans and animals. Tob. Control 2011, 20, i17–i20. [Google Scholar] [CrossRef]
- Martínez-Sánchez, J.M.; Ballbè, M.; Pérez-Ortuño, R.; Fu, M.; Sureda, X.; Pascual, J.A.; Peruga, A.; Fernández, E. Secondhand exposure to aerosol from electronic cigarettes: Pilot study of assessment of tobacco-specific nitrosamine (NNAL) in urine. Gac. Sanit. 2018, 33, 575–578. [Google Scholar] [CrossRef]
- Hulzebos, C.V.; Walhof, C.; De Vries, T.W. Accidental ingestion of cigarettes by children. Ned. Tijdschr. Voor Geneeskd. 1998, 142, 2569–2571. [Google Scholar]
- Smolinske, S.; Spoerke, D.; Spiller, S.; Wruk, K.; Kulig, K.; Rumackt, B. Cigarette and Nicotine Chewing Gum Toxicity in Children. Hum. Toxicol. 1988, 7, 27–31. [Google Scholar] [CrossRef]
- Gill, H.; Rogers, K.; Rehman, B.; Moynihan, J.; Bergey, E.A. Cigarette butts may have low toxicity to soil-dwelling invertebrates: Evidence from a land snail. Sci. Total Environ. 2018, 628–629, 556–561. [Google Scholar] [CrossRef]
- Morley, S.; Slaughter, J.; Smith, P.R. Death from Ingestion of E-Liquid. J. Emerg. Med. 2017, 53, 862–864. [Google Scholar] [CrossRef]
- Noble, M.J.; Longstreet, B.; Hendrickson, R.G.; Gerona, R. Unintentional Pediatric Ingestion of Electronic Cigarette Nicotine Refill Liquid Necessitating Intubation. Ann. Emerg. Med. 2017, 69, 94–97. [Google Scholar] [CrossRef]
- Normandin, P.A.; Benotti, S.A. Pediatric Emergency Update: Lethality of Liquid Nicotine in E-Cigarettes. J. Emerg. Nurs. 2015, 41, 357–359. [Google Scholar] [CrossRef]
- Seo, A.D.; Kim, D.C.; Yu, H.J.; Kang, M.J. Accidental ingestion of E-cigarette liquid nicotine in a 15-month-old child: An infant mortality case of nicotine intoxication. Korean J. Pediatr. 2016, 59, 490–493. [Google Scholar] [CrossRef]
- Boleda, M.R.; Galceran, M.T.; Ventura, F. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environ. Pollut. 2011, 159, 1584–1591. [Google Scholar] [CrossRef]
- Alonso, S.G.; Valcárcel, Y.; Montero, J.; Catalá, M. Nicotine occurrence in bottled mineral water: Analysis of 10 brands of water in Spain. Sci. Total Environ. 2012, 416, 527–531. [Google Scholar] [CrossRef]
- Bekele, T.T.; Ashall, F.O. Investigation on Toxicity of Leachate of Cigarette Butts Collected from Addis Ababa on Swiss Albino Mice. Niger. J. Health Biomed. Sci. 2019, 3, 21–30. [Google Scholar]
- Begum, A.N.; Aguilar, J.S.; Hong, Y. Aqueous cigarette tar extracts disrupt corticogenesis from human embryonic stem cells in vitro. Environ. Res. 2017, 158, 194–202. [Google Scholar] [CrossRef]
- Max, W.; Sung, H.-Y.; Shi, Y.; Stark, B. The Cost of Smoking in California. Nicotine Tob. Res. 2015, 18, 1222–1229. [Google Scholar] [CrossRef] [Green Version]
- Kotz, D.; Kastaun, S. Do people know that cigarette filters are mainly composed of synthetic material? A representative survey of the German population (the DEBRA study). Tob. Control 2021, 30, 345–347. [Google Scholar] [CrossRef]
- Patel, M.; Cuccia, A.F.; Folger, S.; Benson, A.F.; Vallone, D.; Novotny, T.E. Support for cigarette filter waste policies among US adults. Tob. Control 2021. [Google Scholar] [CrossRef]
- Smith, E.A.; Novotny, T.E. Whose butt is it? tobacco industry research about smokers and cigarette butt waste. Tob. Control 2011, 20, i2–i9. [Google Scholar] [CrossRef]
- Schneider, J.E.; Peterson, N.A.; Kiss, N.; Ebeid, O.; Doyle, A.S. Tobacco litter costs and public policy: A framework and methodology for considering the use of fees to offset abatement costs. Tob. Control 2011, 20, i36–i41. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.E.; Scheibling, C.M.; Peterson, N.A.; Granados, P.S.; Fulton, L.; Novotny, T.E. Online Simulation Model to Estimate the Total Costs of Tobacco Product Waste in Large U.S. Cities. Int. J. Environ. Res. Public Health 2020, 17, 4705. [Google Scholar] [CrossRef]
- Witkowski, J. Holding Cigarette Manufacturers and Smokers Liable for Toxic Butts: Potential Litigation-Related Causes of Action for Environmental Injuries/Harm and Waste Cleanup. Tulane Environ. Law J. 2014, 28, 1–36. [Google Scholar]
- Newman, S.; Watkins, E.; Farmer, A.; ten Brink, P.; Schweitzer, J.-P. The Economics of Marine Litter. In Marine Anthropogenic Litter; Bergmann, M., Gutow, L., Klages, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 367–394. ISBN 978-3-319-16509-7. [Google Scholar]
- Beaumont, N.J.; Aanesen, M.; Austen, M.C.; Börger, T.; Clark, J.R.; Cole, M.; Hooper, T.; Lindeque, P.K.; Pascoe, C.; Wyles, K.J. Global ecological, social and economic impacts of marine plastic. Mar. Pollut. Bull. 2019, 142, 189–195. [Google Scholar] [CrossRef]
- Komatz, K. Fire Prevention 52: Cigarette Butts. Available online: https://www.nps.gov/articles/p52-cigarette-butts.htm (accessed on 12 February 2021).
- Leistikow, B.N.; Martin, D.C.; Milano, C.E. Fire Injuries, Disasters, and Costs from Cigarettes and Cigarette Lights: A Global Overview. Prev. Med. 2000, 31, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Bade, R.; White, J.M.; Tscharke, B.J.; Ghetia, M.; Abdelaziz, A.; Gerber, C. Anabasine-based measurement of cigarette consumption using wastewater analysis. Drug Test. Anal. 2020, 12, 1393–1398. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beutel, M.W.; Harmon, T.C.; Novotny, T.E.; Mock, J.; Gilmore, M.E.; Hart, S.C.; Traina, S.; Duttagupta, S.; Brooks, A.; Jerde, C.L.; et al. A Review of Environmental Pollution from the Use and Disposal of Cigarettes and Electronic Cigarettes: Contaminants, Sources, and Impacts. Sustainability 2021, 13, 12994. https://doi.org/10.3390/su132312994
Beutel MW, Harmon TC, Novotny TE, Mock J, Gilmore ME, Hart SC, Traina S, Duttagupta S, Brooks A, Jerde CL, et al. A Review of Environmental Pollution from the Use and Disposal of Cigarettes and Electronic Cigarettes: Contaminants, Sources, and Impacts. Sustainability. 2021; 13(23):12994. https://doi.org/10.3390/su132312994
Chicago/Turabian StyleBeutel, Marc W., Thomas C. Harmon, Thomas E. Novotny, Jeremiah Mock, Michelle E. Gilmore, Stephen C. Hart, Samuel Traina, Srimanti Duttagupta, Andrew Brooks, Christopher L. Jerde, and et al. 2021. "A Review of Environmental Pollution from the Use and Disposal of Cigarettes and Electronic Cigarettes: Contaminants, Sources, and Impacts" Sustainability 13, no. 23: 12994. https://doi.org/10.3390/su132312994
APA StyleBeutel, M. W., Harmon, T. C., Novotny, T. E., Mock, J., Gilmore, M. E., Hart, S. C., Traina, S., Duttagupta, S., Brooks, A., Jerde, C. L., Hoh, E., Van De Werfhorst, L. C., Butsic, V., Wartenberg, A. C., & Holden, P. A. (2021). A Review of Environmental Pollution from the Use and Disposal of Cigarettes and Electronic Cigarettes: Contaminants, Sources, and Impacts. Sustainability, 13(23), 12994. https://doi.org/10.3390/su132312994