Blockchain-Based Wine Supply Chain for the Industry Advancement
Abstract
:1. Introduction
2. Literature Review
2.1. Blockchain Technology—General Description
2.2. Public and Private Blockchains
2.3. Blockchain Application in Supply Chain
- Consensus and distributed trust among farmers regarding crucial rights;
- Security in terms of safety of the data;
- Provenance that ensures safe sure transactions and avoids fraudulent data;
- Trust among actors that are part of a ledger within buyer–seller relationships.
- Consumer’s feedback by means of the use of simple apps;
- Customizing a reading system for customers and launching a strong commercial message;
- Reliability of information that, not being centralized, is globally available, thus allowing to protect the image of each winery that can, therefore, protect its product from fakes on the market (fight against counterfeiting);
- Automated mechanisms that allow to eliminate intermediaries, reduce waste, and increase production efficiency.
3. Materials and Methods
4. Results and Discussion
4.1. Description of the Model and Simulation “Wine Roads”
- Grapes are allocated randomly on the map (Figure 3).
- Farmers collect the grape and provide the processor with it (Figure 5a).
- The processor company produces the final product. The wine quality chart in Figure 4 demonstrates in details the information about the production process. With the red line, the availability of the grapes is shown. When the processor company starts to produce the wine, the quantity of available grapes decreases and increases the quantity of produced wines. With the orange line, the low-quality wine is expressed and with the green line the high-quality wine. The gray area shows the accumulative quantity of all produced wines.
4.2. Discussions about Outputs of the Model and Simulation “Wine Roads”
4.3. Overall Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mollet, B.; Rowland, I. Functional foods: At the frontier between food and pharma. Curr. Opin. Biotechnol. 2002, 13, 483–485. [Google Scholar] [CrossRef]
- Young, Y. Functional foods and the European consumer. In Functional Foods. II. Claims and Evidence; Buttriss, J., Saltmarsh, M., Eds.; The Royal Society of Chemistry: London, UK, 2000. [Google Scholar]
- D’Alessandro, A.; Zolla, L. We are what we eat: Food safety and proteomics. J. Proteome Res. 2012, 11, 26–36. [Google Scholar] [CrossRef]
- WHO. Food Safety: Key Facts 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety#:~:text=An%20estimated%20600%20million%20%E2%80%93%20almost,healthy%20life%20years%20(DALYs) (accessed on 23 September 2021).
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health. BioMed Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharff, R.L. Economic burden from health losses due to foodborne illness in the united states. J. Food Prot. 2012, 75, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Astill, J.; Fraser, E.; Dara, R.; Sharif, S. Detecting and Predicting Emerging Disease in Poultry with the Implementation of New Technologies and Big Data: A Focus on Avian Influenza Virus. Front. Vet. Sci. 2018, 5, 263. [Google Scholar] [CrossRef] [PubMed]
- Esteki, M.; Regueiro, J.; Simal-Gándara, J. Tackling fraudsters with global strategies to expose fraud in the food chain. Compr. Rev. Food Sci. Food Saf. 2019, 18, 425–440. [Google Scholar] [CrossRef] [Green Version]
- Saberi, S.; Kouhizadeh, M.; Sarkis, J.; Shen, L. Blockchain technology and its relationships to sustainable supply chain management. Int. J. Prod. Res. 2019, 57, 2117–2135. [Google Scholar] [CrossRef] [Green Version]
- Kshetri, N.; Loukoianova, E. Blockchain adoption in supply chain networks in asia. IT Prof. 2019, 21, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Martins-Lopes, P.; Gomes, S. Olive oil traceability through DNA markers. Olive Consum. Health 2012, 211–224. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-84895403310&origin=inward&txGid=eec05861da4577b2b9a6f86bcf458732 (accessed on 23 September 2021).
- Camin, F.; Boner, M.; Bontempo, L.; Fauhl-Hassek, C.; Kelly, S.D.; Riedl, J.; Rossmann, A. Stable isotope techniques for verifying the declared geographical origin of food in legal cases. Trends Food Sci. Technol. 2017, 61, 176–187. [Google Scholar] [CrossRef]
- Durante, C.; Bertacchini, L.; Cocchi, M.; Manzini, D.; Marchetti, A.; Rossi, M.C.; Sighinolfi, S.; Tassi, L. Development of 87Sr/86Sr maps as targeted strategy to support wine quality. Food Chem. 2018, 255, 139–146. [Google Scholar] [CrossRef]
- Hill, G.N.; Beresford, R.M.; Evans, K.J. Tools for accurate assessment of botrytis bunch rot (Botrytis cinerea) on wine grapes. N. Z. Plant Prot. 2010, 63, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Arribas, M.V.; Polo, M.C. Wine Chemistry and Biochemistry; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Yin, S.; Liu, L.; Hou, J. A multivariate statistical combination forecasting method for product quality evaluation. Inf. Sci. 2016, 355–356, 229–236. [Google Scholar] [CrossRef]
- Fotakis, C.; Kokkotou, K.; Zoumpoulakis, P.; Zervou, M. NMR metabolite fingerprinting in grape derived products: An overview. Food Res. Int. 2013, 54, 1184–1194. [Google Scholar] [CrossRef]
- Fernández-Novales, J.; Sánchez, M.; López, M.; Garcúa-Mesa, J.; Ramúrez, P. Feasibility of using a miniature fiber optic UV-VIS-NIR spectrometer to assess total polyphenol index, color intensity and volumic mass in red wine fermentations. J. Food Process. Eng. 2011, 34, 1028–1045. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, B. Research progress of four sulfur compounds related to red wine flavor. Sci. Agric. Sin. 2020, 53, 1029–1045. [Google Scholar] [CrossRef]
- Exposito, I.; Cuinas, I.; Gay-Fernandez, J.A. Efficient traceability solutions in the wine production by RFID and WSN. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 3539–3542. [Google Scholar]
- Galvez, J.F.; Mejuto, J.C.; Simal-Gandara, J. Future challenges on the use of blockchain for food traceability analysis. TrAC Trends Anal. Chem. 2018, 107, 222–232. [Google Scholar] [CrossRef]
- Shahid, A.; Almogren, A.S.; Javaid, N.; Al-Zahrani, F.A.; Zuair, M.; Alam, M. Blockchain-Based Agri-Food Supply Chain: A Complete Solution. IEEE Access 2020, 8, 69230–69243. [Google Scholar] [CrossRef]
- Tian, F. A supply chain traceability system for food safety based on HACCP, blockchain & internet of things. In Proceedings of the 14th International Conference on Services Systems and Services Management (ICSSSM 2017), Dalian, China, 16–18 June 2017. [Google Scholar] [CrossRef]
- Aiello, G.; Enea, M.; Muriana, C. The expected value of the traceability information. Eur. J. Oper. Res. 2015, 244, 176–186. [Google Scholar] [CrossRef]
- Beaman, R.; Cellinese, N. Mass digitization of scientific collections: New opportunities to transform the use of biological specimens and underwrite biodiversity science. ZooKeys 2012, 209, 7–17. [Google Scholar] [CrossRef]
- Adamashvili, N.; Fiore, M.; Contò, F.; La Sala, P. Ecosystem for Successful Agriculture. Collaborative Approach as a Driver for Agricultural Development. Eur. Countrys. 2020, 12, 242–256. [Google Scholar] [CrossRef]
- Caro, M.P.; Ali, M.S.; Vecchio, M.; Giaffreda, R. Blockchain-based traceability in agri-food supply chain management: A practical implementation. In Proceedings of the 2018 IoT Vertical and Topical Summit on Agriculture-Tuscany (IOT Tuscany), Tuscany, Italy, 8–9 May 2018; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Huck, C.W.; Pezzei, C.K.; Huck-Pezzei, V.A. An industry perspective of food fraud. Curr. Opin. Food Sci. 2016, 10, 32–37. [Google Scholar] [CrossRef]
- Alketbi, A.; Nasir, Q.; Talib, M.A. Blockchain for government services-use cases, security benefits and challenges. In Proceedings of the 2018 15th Learning and Technology Conference (L and T), Jeddah, Saudi Arabia, 25–26 February 2018; pp. 112–119. [Google Scholar] [CrossRef]
- Meroni, G.; Plebani, P. Combining artifact-driven monitoring with blockchain: Analysis and solutions. In Advanced Information Systems Engineering Workshops; CAiSE 2018; Lecture Notes in Business Information Processing; Matulevičius, R., Dijkman, R., Eds.; Springer: Cham, Switzerland, 2018; p. 316. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, M. Big Data in U.S. Agriculture, Congressional Research Service. 2016. Available online: https://sgp.fas.org/crs/misc/R44331.pdf (accessed on 23 September 2021).
- Raikwar, M.; Gligoroski, D.; Kralevska, K. SoK of Used Cryptography in Blockchain. IEEE Access 2019, 7, 148550–148575. [Google Scholar] [CrossRef]
- Condos, J.; Sorrell, W.H.; Donegan, S.L. Blockchain Technology: Opportunities and Risks. 2016. Available online: https://legislature.vermont.gov/assets/Legislative-Reports/blockchain-technology-report-final.pdf (accessed on 23 September 2021).
- Smith, J.; Tennison, J.; Wells, P.; Fawcett, J.; Harrison, S. Applying blockchain technology in global data infrastructure. Open Data Inst. 2016. Available online: https://theodi.org/article/applying-blockchain-technology-in-global-data-infrastructure-2/ (accessed on 23 September 2021).
- Caseau, Y.; Soudoplatoff, S. The Blockchain, or Distributed Trust. Fond. Pour L’innovation Polit. 2016. Available online: https://oiipdf.com/yves-caseau-and-serge-soudoplatoff-the-blockchain-or-distributed-trust (accessed on 23 September 2021).
- Hon, W.K.; Palfreyman, J.; Tegart, M. Distributed Ledger Technology and Cybersecurity: Improving Information Security in the Financial Sector; Technical Report; European Union Agency For Network and Information Security: Heraklion, Greece, 2016.
- Anderberg, A.; Andonova, E.; Bellia, M.; Calès, L.; Inamorato dos Santos, A.; Kounelis, I.; Nai Fovino, I.; Petracco Giudici, M.; Papanagiotou, E.; Sobolewski, M.; et al. Blockchain Now and Tomorrow: Assessing Multidimensional Impacts of Distributed Ledger Technologies; Report EUR 29813 EN; Nascimento, S., Pólvora, A., Eds.; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-08977-3. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, L. A design of digital rights management mechanism based on blockchain technology. In Blockchain–ICBC 2018; Chen, S., Wang, H., Zhang, L.J., Eds.; ICBC 2018; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10974. [Google Scholar] [CrossRef]
- Zhang, K.; Jacobsen, H. Towards dependable, scalable, and pervasive distributed ledgers with blockchains. In Proceedings of the International Conference on Distributed Computing Systems, Vienna, Austria, 2–5 July 2018; pp. 1337–1346. [Google Scholar] [CrossRef]
- Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On blockchain and its integration with IoT. challenges and opportunities. Future Gener. Comput. Syst. 2018, 88, 173–190. [Google Scholar] [CrossRef]
- Haber, S.; Stornetta, W.S. How to time-stamp a digital document. J. Cryptol. 1991, 3, 99–111. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf. (accessed on 23 September 2021).
- Zhao, G.; Liu, S.; Lopez, C.; Lu, H.; Elgueta, S.; Chen, H.; Boshkoska, B.M. Blockchain technology in agri-food value chain management: A synthesis of applications, challenges and future research directions. Comput. Ind. 2019, 109, 83–99. [Google Scholar] [CrossRef]
- Kamble, S.S.; Gunasekaran, A.; Sharma, R. Modeling the blockchain enabled traceability in agriculture supply chain. Int. J. Inf. Manag. 2020, 52, 101967. [Google Scholar] [CrossRef]
- Malik, S.; Kanhere, S.S.; Jurdak, R. ProductChain: Scalable blockchain framework to support provenance in supply chains. In Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 1–3 November 2018. [Google Scholar] [CrossRef]
- Gourisetti, S.N.G.; Mylrea, M.; Patangia, H. Evaluation and demonstration of blockchain applicability framework. IEEE Trans. Eng. Manag. 2020, 67, 1142–1156. [Google Scholar] [CrossRef]
- Kennedy, J. $1.4bn Investment in Blockchain Start-Ups in Last 9 Months, Says PwC Expert. 2016. Available online: https://www.siliconrepublic.com/start-ups/blockchain-pwc-investment (accessed on 23 September 2021).
- Okada, H.; Yamasaki, S.; Bracamonte, V. Proposed classification of blockchains based on authority and incentive dimensions. In Proceedings of the International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Korea, 19–22 February 2017; pp. 593–597. [Google Scholar] [CrossRef]
- Fabiano, N. Internet of things and blockchain: Legal issues and privacy. the challenge for a privacy standard. In Proceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, UK, 21–23 June 2017; pp. 727–734. [Google Scholar] [CrossRef]
- Hebert, C.; Di Cerbo, F. Secure blockchain in the enterprise: A methodology. Pervasive Mob. Comput. 2019, 59, 101038. [Google Scholar] [CrossRef]
- Chaudhry, N.; Yousaf, M.M. Consensus algorithms in blockchain: Comparative analysis, challenges and opportunities. In Proceedings of the 2018 International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 19–21 December 2018; pp. 54–63. [Google Scholar] [CrossRef]
- Desai, H.; Kantarcioglu, M.; Kagal, L. A hybrid blockchain architecture for privacy-enabled and accountable auctions. In Proceedings of the 2019 2nd IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 34–43. [Google Scholar] [CrossRef]
- Regulation (EU). 2018/1807 of the European Parliament and of the Council of 14 November 2018 on a Framework for the Free Flow of Non-Personal Data in the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32018R1807 (accessed on 23 September 2021).
- Sheldon, M.D. A primer for information technology general control considerations on a private and permissioned blockchain audit. Curr. Issues Audit. 2019, 13, A15–A29. [Google Scholar] [CrossRef] [Green Version]
- Terzi, S.; Zacharaki, A.; Nizamis, A.; Votis, K.; Ioannidis, D.; Tzovaras, D.; Stamelos, I. Transforming the supply-chain management and industry logistics with blockchain smart contracts. In Proceedings of the 23rd Pan-Hellenic Conference on Informatics (PCI’19); Association for Computing Machinery: New York, NY, USA, 2019; pp. 9–14. [Google Scholar] [CrossRef]
- Malik, S.; Dedeoglu, V.; Kanhere, S.S.; Jurdak, R. TrustChain: Trust management in blockchain and iot supported supply chains. In Proceedings of the 2019 2nd IEEE International Conference on Blockchain (Blockchain), Atlanta, GA, USA, 14–17 July 2019; pp. 184–193. [Google Scholar] [CrossRef] [Green Version]
- Gemeliarana, I.G.A.K.; Sari, R.F. Evaluation of proof of work (POW) blockchains security network on selfish mining. In Proceedings of the 2018 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 21–22 November 2018; pp. 126–130. [Google Scholar] [CrossRef]
- Yao, Z.; Pan, H.; Si, X.; Zhu, W. Decentralized access control encryption in public blockchain. In Blockchain and Trustworthy Systems; Zheng, Z., Dai, H.N., Tang, M., Chen, X., Eds.; BlockSys 2019; Communications in Computer and Information Science; Springer: Singapore, 2019; Volume 1156. [Google Scholar] [CrossRef]
- Falazi, G.; Khinchi, V.; Breitenbücher, U.; Leymann, F. Transactional properties of permissioned blockchains. SICS Softw. Intensive Cyber-Phys. Syst. 2020, 35, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Buterin, V. On Public and Private Blockchains. 2015. Available online: https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/ (accessed on 1 December 2020).
- Zheng, Z.; Xie, S.; Hongning, D.; Xiangping, C.; Huaimin, W. An overview of blockchain technology: Architecture, consensus, and future trands. In Proceedings of the IEEE 6th international congress on Big Data, Honolulu, HI, USA, 25–30 June 2017; pp. 557–564. [Google Scholar] [CrossRef]
- El Bilali, H.; Bottalico, F.; Ottomano Palmisano, G.; Capone, R. Information and Communication Technologies for Smart and Sustainable Agriculture. In 30th Scientific-Experts Conference of Agriculture and Food Industry; Brka, M., Omanović-Mikličanin, E., Karić, L., Falan, V., Toroman, A., Eds.; AgriConf 2019; IFMBE Proceedings; Springer: Cham, Switzerland, 2020; Volume 78. [Google Scholar] [CrossRef]
- Lin, W.; Huang, X.; Fang, X.; Wang, V.; Hua, Y.; Wang, J.; Yin, H.; Yi, D.; Yau, L. Blockchain Technology in Current Agricultural Systems: From Techniques to Applications. IEEE Access 2020, 8, 143920–143937. [Google Scholar] [CrossRef]
- Jabir, B.; Falih, N. Digital agriculture in morocco, opportunities and challenges. In Proceedings of the 6th International Conference on Optimization and Applications (ICOA 2020), Beni Mellal, Morocco, 20–21 April 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Ciruela-Lorenzo, A.M.; Del-Aguila-Obra, A.R.; Padilla-Meléndez, A.; Plaza-Angulo, J.J. Digitalization of Agri-Cooperatives in the Smart Agriculture Context. Proposal of a Digital Diagnosis Tool. Sustainability 2020, 12, 1325. [Google Scholar] [CrossRef] [Green Version]
- Jennath, H.S.; Adarsh, S.; Anoop, V.S. Distributed IoT and Applications: A Survey. In Integrated Intelligent Computing, Communication and Security; Krishna, A., Srikantaiah, K., Naveena, C., Eds.; Studies in Computational Intelligence; Springer: Singapore, 2019; Volume 771. [Google Scholar] [CrossRef]
- Gorshkova, N.V.; Kusmartseva, J.V. Financial Aspects of the Digital Economy Development in the Agricultural Sector. In Competitive Russia: Foresight Model of Economic and Legal Development in the Digital Age; Inshakova, A., Inshakova, E., Eds.; CRFMELD 2019; Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2019; Volume 110. [Google Scholar] [CrossRef]
- Demestichas, K.; Peppes, N.; Alexakis, T.; Adamopoulou, E. Blockchain in Agriculture Traceability Systems: A Review. Appl. Sci. 2020, 10, 4113. [Google Scholar] [CrossRef]
- Song, L.; Wang, X.; Merveille, N. Research on Blockchain for Sustainable E-Agriculture. In Proceedings of the IEEE Technology & Engineering Management Conference (TEMSCON), Novi, MI, USA, 3–6 June 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Fernandez, A.; Waghmare, A.; Tripathi, S. Agricultural Supply Chain using Blockchain. In Proceedings of International Conference on Intelligent Manufacturing and Automation; Lecture Notes in Mechanical Engineering; Vasudevan, H., Kottur, V., Raina, A., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Katsikouli, P.; Wilde, A.S.; Dragoni, N.; Høgh-Jensen, H. On the Benefits and Challenges of Blockchains for Managing Food Supply Chains. J. Sci. Food Agric. 2020, 101, 2175–2181. [Google Scholar] [CrossRef] [PubMed]
- Caballero, R.; Rivera, B. Blockchain: An Alternative to Enable Traceability in the Agricultural Supply Chain in Panama. In Proceedings of the 7th International Engineering, Sciences and Technology Conference (IESTEC), Panama, Panama, 9–11 October 2019; pp. 46–51. [Google Scholar] [CrossRef]
- Bermeo-Almeida, O.; Cardenas-Rodriguez, M.; Samaniego-Cobo, T.; Ferruzola-Gómez, E.; Cabezas-Cabezas, R.; Bazán-Vera, W. Blockchain in Agriculture: A Systematic Literature Review. In Technologies and Innovation. CITI 2018. Communications in Computer and Information Science; Valencia-García, R., Alcaraz-Mármol, G., Del Cioppo-Morstadt, J., Vera-Lucio, N., Bucaram-Leverone, M., Eds.; Springer: Cham, Switzerland, 2018; Volume 883. [Google Scholar] [CrossRef]
- European Parliament and of the Council. European Parliament Regulation (EC) No 178/2002; Official Journal of the European Union: Brussels, Belgium, 2002; pp. 1–24.
- Mirabelli, G.; Solina, V. Blockchain and Agricultural Supply Chains Traceability: Research Trends and Future Challenges. Procedia Manuf. 2020, 42, 414–421. [Google Scholar] [CrossRef]
- Pouliot, S.; Sumner, D.A. Traceability, recalls, industry reputation and product safety. Eur. Rev. Agric. Econ. 2013, 40, 121–142. [Google Scholar] [CrossRef]
- Dave, D.; Parikh, S.; Patel, R.; Doshi, N. A Survey on Blockchain Technology and its Proposed Solutions. Procedia Comput. Sci. 2019, 160, 740–745. [Google Scholar] [CrossRef]
- Umamaheswari, S.; Sreeram, S.; Kritika, N.; Jyothi Prasanth, D.R. BIoT: Blockchain Based IoT for Agriculture. In Proceedings of the 1th International Conference on Advanced Computing (ICoAC), Chennai, India, 2019; pp. 324–327. [Google Scholar] [CrossRef]
- Tian, F. An agri-food supply chain traceability system for China based on RFID & Blockchain technology. In Proceedings of the 13th International Conference on Service Systems and Service Management (ICSSSM), Kunming, China, 24–26 June 2016; pp. 1–6. [Google Scholar]
- Khan, P.W.; Byun, Y.; Park, N. IoT-Blockchain Enabled Optimized Provenance System for Food Industry 4.0 using Advanced Deep Learning. Sensors 2020, 20, 2990. [Google Scholar] [CrossRef]
- FAO; International Telecommunication Union. E-agriculture in Action: Blockchain for Agriculture, Opportunity and Challenges; FAO: Bangok, Thailand, 2019. [Google Scholar]
- Yang, H.; Xiong, S.; Frimpong, S.A.; Zhang, M. A Consortium Blockchain-Based Agricultural Machinery Scheduling System. Sensors 2020, 20, 2643. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Silvestri, R.; Contò, F.; Pellegrini, G. Understanding the relationship between green approach and marketing innovations tools in the wine sector. J. Clean. Prod. 2017, 142, 4085–4091. [Google Scholar] [CrossRef]
- Fiore, M.; Alaimo, L.S.; Chkhartishvili, N. The Amazing Bond among Wine Consumption, Health and Hedonistic Well-being. Br. Food J. 2019, 122, 2707–2723. [Google Scholar] [CrossRef]
- Contò, F.; Santini, C.; La Sala, P.; Fiore, M. Reducing Information Gap and Increasing Market Orientation in the Agribusiness Sector: Some Evidences from Apulia Region. Recent Pat. Food Nutr. Agric. 2016, 8, 48–54. [Google Scholar] [CrossRef]
- Fiore, M. Direct Selling in the Wine Sector: Lessons from Cellars in Italy’s Apulia Region. Br. Food J. 2016, 118, 1946–1959. [Google Scholar] [CrossRef]
- Valmori, I. Enology: La Blockchain Pubblica e Gratuita a Garanzia Del Vino. AgroNotizie–Le Novità Per L’agricoltura 2018. Available online: https://agronotizie.imagelinenetwork.com/agricoltura-economia-politica/2018/04/19/enology-la-blockchain-pubblica-e-gratuita-a-garanzia-del-vino/58387 (accessed on 23 September 2021).
- Burgers, C.; Brugman, B.C.; Boeynaems, A. Systematic literature reviews: Four applications for interdisciplinary research. J. Pragmat. 2019, 145, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Recker, J. Scientific Research in Information System. In A Beginner’s Guide; Springer: Berlin, Germany, 2013. [Google Scholar]
- Stake, R.E. The Art of Case Study Research; Sage: Thousand Oaks, CA, USA, 1995. [Google Scholar]
- Yin, R.K. Case Study Research: Design and Methods, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2003. [Google Scholar]
- Miles, M.B.; Huberman, A.M. Qualitative Data Analysis: An Expanded Source Book, 2nd ed.; Sage: Thousand Oaks, CA, USA, 1994. [Google Scholar]
- Patton, M. Qualitative Evaluation and Research Methods, 2nd ed.; SAGE Publications, Inc.: Newbury Park, CA, USA, 1990. [Google Scholar]
- Eisenhardt, K.M. Better stories and better constructs: The case for rigor and comparative logic. Acad. Manag. Rev. 1991, 16, 620–627. [Google Scholar] [CrossRef]
- Baxter, P.; Jack, S. Qualitative case study methodology: Study design and implementation for novice researchers. Qual. Rep. 2008, 13, 544–559. [Google Scholar] [CrossRef]
- Ketokivi, M.; Choi, T. Renaissance of case research as a scientific method. J. Oper. Manag. 2014, 32, 232–240. [Google Scholar] [CrossRef]
- Pagell, M.; Wu, Z. Building a more complete theory of sustainable supply chain management using case studies of 10 exemplars. J. Supply Chain. Manag. 2009, 45, 37–56. [Google Scholar] [CrossRef]
- Eisenhardt, K.M. Building theories from case study research. Acad. Manag. Rev. 1989, 14, 532–550. [Google Scholar] [CrossRef]
- Sabz Ali Pour, F.; Tatar, U.; Gheorghe, A. Agent-Based Model of Sand Supply Governance Employing Blockchain Technology. In Proceedings of the SpringSim’18: 2018 Spring Simulation Multiconference, Baltimore, MD, USA, 15–18 April 2018. [Google Scholar]
- Crooks, A.T.; Heppenstall, A. Introduction to Agent-Based Modeling. In Agent-Based Models of Geographical Systems; Heppenstall, A., Crooks, A.T., See, L.M., Batty, M., Eds.; Springer: New York, NY, USA, 2012; pp. 85–108. [Google Scholar]
- Crooks, A.; Heppenstall, A.J.; Malleson, N. Agent-Based Modeling. In Comprehensive Geographic Information Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 218–243. [Google Scholar] [CrossRef]
- Schieritz, N.; GroBler, A. Emergent structures in supply chains—A study integrating agent-based and system dynamics modeling. In Proceedings of the 36th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 6–9 January 2003; p. 9. [Google Scholar] [CrossRef]
- Taillandier, P.; Grignard, A.; Marilleau, N.; Philippon, D.; Huynh, Q.N.; Gaudou, B.; Drogoul, A. Participatory Modeling and Simulation with the GAMA platform. J. Artif. Soc. Soc. Simul. 2019, 22, 3. [Google Scholar] [CrossRef]
- Taillandier, P.; Gaudou, B.; Grignard, A.; Huynh, Q.N.; Marilleau, N.; Caillou, P.; Philippon, D.; Drogoul, A. Building, composing and experimenting complex spatial models with the GAMA platform. Geoinformatica 2019, 23, 299–322. [Google Scholar] [CrossRef] [Green Version]
- Grignard, A.; Drogoul, A. Agent-based visualization: A real-time visualization tool applied both to data and simulation outputs. In Proceedings of the AAAI-17 Workshop on Human-Machine Collaborative Learning, San Francisco, CA, USA, 4 February 2017; pp. 670–675. [Google Scholar]
- Hackett, R. Walmart and 9 Food Giants Team Up on IBM Blockchain Plans. Fortune 2017. Available online: https://fortune.com/2017/08/22/walmart-blockchain-ibm-food-nestle-unilever-tyson-dole/ (accessed on 23 September 2021).
- Westerkamp, M.; Victor, F.; Küpper, A. Tracing manufacturing processes using blockchain-based token compositions. Digit. Commun. Netw. 2020, 6, 167–176. [Google Scholar] [CrossRef]
- FAO. Aquaculture Development. 1. Good Aquaculture Feed Manufacturing Practice. 2001. Available online: http://www.fao.org/3/y1453e00.htm#Contents (accessed on 23 September 2021).
- Collier, E. Food Product Recall Procedure. 2019. Available online: https://www.highspeedtraining.co.uk/hub/product-recall-template/ (accessed on 23 September 2021).
- Guo, M.; Liu, X.J.; Zhang, W. Using blockchain technology in human food chain provenance. In WIT Transactions on the Built Environment; WIT Press: Ashurst Lodge, UK, 2018; Volume 179, pp. 391–396. [Google Scholar] [CrossRef] [Green Version]
- Rana, R.L.; Tricase, C.; De Cesare, L. Blockchain technology for a sustainable agri-food supply chain. Br. Food J. 2021, 123, 3471–3485. [Google Scholar] [CrossRef]
To Read | To Send Transaction | To Participate in Consensus Process | The Mechanism | Other Characteristics | |
---|---|---|---|---|---|
Public “fully decentralized” | anyone | anyone | anyone | PoW (Proof of Work), PoS (Proof of Stake) | Secured by crypto economics; the degree of influence is proportional to the quantity of economic resources |
Consortium “partially decentralized” | Anyone/pre-defined nodes | pre-defined nodes | pre-defined nodes | The majority have to sign every block | |
Private “fully private” | Anyone/restricted | centralized | centralized | Likely applications include database management, auditing, etc. internal to a single company |
Advantages | Disadvantages | |
---|---|---|
Public “fully decentralized” | Protects users from developers’ influence; Trust of the system (blockchain) Censorship resistance Network effect; Immutability nearly impossible to tamper | Can reduce the block time till 15 s (Ethereum) instead of 2 h (Bitcoin), but still it is more than in the cases of private or consortium blockchains |
Consortium “partially decentralized” | Easy changes, revert transaction, modify balances; The validators are known; Cheap transactions; Nodes can be trusted to be very well-connected; | Immutability could be tampered |
Private “fully private” | Easy changes, revert transaction, modify balances; The validators are known; Cheap transactions; Nodes can be trusted to be very well-connected; Greater level of privacy if read permissions are restricted. | Immutability could be tampered In some cases, in order to efficiently work the BC, some heterogeneous assets from different industries need to be on the same database, which is difficult to happen in private BCs. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adamashvili, N.; State, R.; Tricase, C.; Fiore, M. Blockchain-Based Wine Supply Chain for the Industry Advancement. Sustainability 2021, 13, 13070. https://doi.org/10.3390/su132313070
Adamashvili N, State R, Tricase C, Fiore M. Blockchain-Based Wine Supply Chain for the Industry Advancement. Sustainability. 2021; 13(23):13070. https://doi.org/10.3390/su132313070
Chicago/Turabian StyleAdamashvili, Nino, Radu State, Caterina Tricase, and Mariantonietta Fiore. 2021. "Blockchain-Based Wine Supply Chain for the Industry Advancement" Sustainability 13, no. 23: 13070. https://doi.org/10.3390/su132313070
APA StyleAdamashvili, N., State, R., Tricase, C., & Fiore, M. (2021). Blockchain-Based Wine Supply Chain for the Industry Advancement. Sustainability, 13(23), 13070. https://doi.org/10.3390/su132313070