Pollination Methods and Integrated Fertilizer Influenced the Pollination Rate, Fruit Development, and Quality of Cucumis melo L. under Greenhouse Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Plant Materials and Treatment
2.3. Watering Method
2.4. Pollination Rate
2.5. Determination of Yield
2.6. Determination of Post-Harvest Quality
2.6.1. Firmness and Soluble Solids Concentration
2.6.2. Determination of Sugar and Organic Acid Using HPLC
2.7. Determination of the Nutrient Content
2.8. Statistical Analysis
3. Results and Discussions
3.1. Pollination Rate
3.2. Yield
3.3. Post-Harvest Quality
3.3.1. Firmness and Soluble Solids Concentration
3.3.2. Sugar and Organic Acid
3.4. Nutrient Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sengupta, P.; Ghorai, N.; Bera, S. On the Quantification of Information Content of Flower-Insect Interaction by the Species Diversity Indices: A Case Study in Flower Visiting Hymenopterans. In Proceedings of the Zoological Society; Springer: Berlin, Germany, 2012; Volume 65, pp. 57–60. [Google Scholar]
- Robinson, W.S. Migrating Giant Honey Bees (Apis Dorsata) Congregate Annually at Stopover Site in Thailand. PLoS ONE 2012, 7, e44976. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Jusoh, M.F.; Adnan, N.; Abdul Muttalib, M.F.; Katimon, A. Performance Evaluation of Drip Irrigation System and Water Productivity (WP) of Rock Melon Grown inside Netted Rain House Shelter. IOP Conf. Ser. Earth Environ. Sci. 2020, 549, 012094. [Google Scholar] [CrossRef]
- Bennett, B.C. Twenty-Five Economically Important Plant Families. Available online: https://www.eolss.net/Sample-Chapters/C09/E6-118-03.pdf (accessed on 8 September 2020).
- Belavadi, V.V. Floral biology and pollination in Cucumis melo L., a tropical andromonoecious cucurbit. J. Asia-Pac. Entomol. 2019, 22, 215–225. [Google Scholar]
- Naik, S.; Rana, V. Spray pollination: An efficient and labour saving method for kiwifruit (Actinidia deliciosa A. Chev.) production. J. Appl. Hortic. 2013, 15, 202–206. [Google Scholar] [CrossRef]
- Hall, M.A.; Jones, J.; Rocchetti, M.; Wright, D.; Rader, R. Bee visitation and fruit quality in berries under protected cropping vary along the length of polytunnels. J. Econ. Entomol. 2020, 113, 1337–1346. [Google Scholar] [CrossRef]
- Jung, C.; Cho, S.K. Relationship between honeybee population and honey production in Korea: A historical trend analysis. J. Apic. 2015, 30, 7–12. [Google Scholar] [CrossRef]
- Porrini, C.; Caprio, E.; Tesoriero, D.; Di Prisco, G. Using honey bee as bioindicator of chemicals in Campanian agroecosystems (South Italy). Bull. Insectol. 2014, 67, 137–146. [Google Scholar]
- Pereira, C.; Barros, L.; Carvalho, A.M.; Ferreira, I.C. Use of UFLC-PDA for the analysis of organic acids in thirty-five species of food and medicinal plants. Food Anal. Methods 2013, 6, 1337–1344. [Google Scholar] [CrossRef]
- Power, E.F.; Stout, J.C. Organic dairy farming: Impacts on insect–flower interaction networks and pollination. J. Appl. Ecol. 2011, 48, 561–569. [Google Scholar] [CrossRef]
- Banaszak-Cibicka, W.; Takacs, V.; Kesy, M.; Langowska, A.; Blecharczyk, A.; Sawinska, Z.; Tryjanowski, P. Manure application improves both bumblebee flower visitation and crop yield in intensive farmland. Basic Appl. Ecol. 2019, 36, 26–33. [Google Scholar] [CrossRef]
- Negri, I.; Mavris, C.; Di Prisco, G.; Caprio, E.; Pellecchia, M. Honey bees (Apis mellifera L.) as active samplers of airborne particulate matter. PLoS ONE 2015, 10, e0132491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uzman, D.; Reineke, A.; Entling, M.H.; Leyer, I. Habitat area and connectivity support cavity-nesting bees in vineyards more than organic management. Biol. Conserv. 2020, 242, 108419. [Google Scholar] [CrossRef]
- Li, X.; Ma, W.; Shen, J.; Long, D.; Feng, Y.; Su, W.; Jiang, Y. Tolerance and response of two honeybee species Apis cerana and Apis mellifera to high temperature and relative humidity. PLoS ONE 2019, 14, e0217921. [Google Scholar] [CrossRef] [Green Version]
- Azmi, W.A.; Wan Sembok, W.Z.; Yusuf, N.; Mohd Hatta, M.F.; Salleh, A.F.; Hamzah MA, H.; Ramli, S.N. Effects of Pollination by the Indo-Malaya Stingless Bee (Hymenoptera: Apidae) on the Quality of Greenhouse-Produced Rockmelon. J. Econ. Entomol. 2019, 112, 20–24. [Google Scholar] [CrossRef]
- Klatt, B.K.; Holzschuh, A.; Westphal, C.; Clough, Y.; Smit, I.; Pawelzik, E.; Tscharntke, T. Bee pollination improves crop quality, shelf life and commercial value. Proc. R. Soc. B 2014, 281, 20132440. [Google Scholar] [CrossRef]
- Marzouk, H.A.; Kassem, H.A. Improving fruit quality, nutritional value and yield of Zaghloul dates by the application of organic and/or mineral fertilizers. Sci. Hortic. 2011, 127, 249–254. [Google Scholar] [CrossRef]
- Malik, A.A.; Chattoo, M.A.; Sheemar, G.; Rashid, R. Growth, yield and fruit quality of sweet pepper hybrid SH-SP-5 (Capsicum annuum L.) as affected by integration of inorganic fertilizers and organic manures (FYM). J. Agric. Technol. 2011, 7, 1037–1048. [Google Scholar]
- Lal, G.; Dayal, H. Effect of integrated nutrient management on yield and quality of acid lime (Citrus aurantifolia Swingle). Afr. J. Agric. Res. 2014, 9, 2985–2991. [Google Scholar]
- Chen, K.; Fijen, T.P.; Kleijn, D.; Scheper, J. Insect pollination and soil organic matter improve raspberry production independently of the effects of fertilizers. Agric. Ecosyst. Environ. 2021, 309, 107270. [Google Scholar] [CrossRef]
- Catarino, R.; Bretagnolle, V.; Perrot, T.; Vialloux, F.; Gaba, S. Bee pollination outperforms pesticides for oilseed crop production and profitability. Proc. R. Soc. B 2019, 286, 20191550. [Google Scholar] [CrossRef]
- Ghai, K.; Gupta, P.K.; Gupta, A.K. Physiochemical behavior changes during ripening in fruits of Trewia nudiflora Linn. Perspect. Sci. 2016, 8, 596–598. [Google Scholar] [CrossRef] [Green Version]
- Partap, U.; Partap, T. Pollination of apples in China. Beekeep. Dev. 2000, 54, 6–7. [Google Scholar]
- Abrol, D.P.; Gorka, A.K.; Ansari, M.J.; Al-Ghamdi, A.; Al-Kahtani, S. Impact of insect pollinators on yield and fruit quality of strawberry. Saudi J. Biol. Sci. 2019, 26, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Garratt, M.P.; Breeze, T.D.; Jenner, N.; Polce, C.; Biesmeijer, J.C.; Potts, S.G. Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agric. Ecosyst. Environ. 2014, 184, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohorecka, K.; Szczęsna, T.; Witek, M.; Miszczak, A.; Sikorski, P. The exposure of honey bees to pesticide residues in the hive environment with regard to winter colony losses. J. Apic. Sci. 2017, 61, 105. [Google Scholar] [CrossRef] [Green Version]
- Krupke, C.H.; Hunt, G.J.; Eitzer, B.D.; Andino, G.; Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 2012, 7, e29268. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Carvalheiro, L.G.; Leonhardt, S.D.; Aizen, M.A.; Blaauw, B.R.; Isaacs, R.; Winfree, R. From research to action: Enhancing crop yield through wild pollinators. Front. Ecol. Environ. 2014, 12, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.A.; Klein, P. Determination of sugars in honey by liquid chromatography. Saudi J. Biol. Sci. 2011, 18, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Buba, F.; Gidado, A.; Shugaba, A. Analysis of biochemical composition of honey samples from North-East Nigeria. Biochem. Anal. Biochem. 2013, 2, 139. [Google Scholar]
- Wheeler, M.M.; Robinson, G.E. Diet-dependent gene expression in honey bees: Honey vs. sucrose or high fructose corn syrup. Sci. Rep. 2014, 4, 5726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilic, N.; Burgut, A.; Gündesli, M.A.; Nogay, G.; Ercisli, S.; Kafkas, N.E.; Szopa, A. The Effect of Organic, Inorganic Fertilizers and Their Combinations on Fruit Quality Parameters in Strawberry. Horticulturae 2021, 7, 354. [Google Scholar] [CrossRef]
- Perkins, D.M.; Mckie, B.G.; Malmqvist, B.; Gilmour, S.G.; Reiss, J.; Woodward, G. Environmental warming and biodiversity–ecosystem functioning in freshwater microcosms: Partitioning the effects of species identity, richness and metabolism. Adv. Ecol. Res. 2010, 43, 177–209. [Google Scholar]
- Ghosh, K.; Chowdhury MA, H.; Rahman, M.H.; Bhattacherjee, S. Effect of integrated nutrient management on nutrient uptake and economics of fertilizer use in rice cv. Nerica 10. J. Bangladesh Agric. Univ. 2014, 12, 273–277. [Google Scholar] [CrossRef] [Green Version]
WAP * | 1–2 | 3–4 | 5 | 6 | 7–8 | 9–10 | 11 | |
---|---|---|---|---|---|---|---|---|
EC Rate | 0.5 | 1.0–2.0 | 2.0–2.5 | 2.5 | 2.5 | 2.5 | 3.0 | |
Volume of fertilizer (mL) | ||||||||
T1 | 100% CF | 200 | 400 | 600 | 800 | 1000 | 1000 | 800 |
- | - | - | - | - | - | - | - | |
T2 | 75% CF | 150 | 300 | 450 | 600 | 750 | 750 | 600 |
25% OF ** | 50 | 100 | 150 | 200 | 250 | 250 | 200 |
Factor | Pollination Rate (%) |
---|---|
Pollination method (PM) | |
HP | 100.00 a |
BP | 85.00 a |
NP | 2.50 b |
Mean | 62.5 |
Integrated fertilizer (IF) | |
T1 | 61.67 a |
T2 | 68.33 b |
Mean | 65.0 |
LSD of means at p ≤ 0.05 and levels of significance for a two-factor ANOVA | |
PM | 0.12 *** |
IF | 0.23 *** |
PM × IF | *** |
Pollination Method | Integrated Fertilizer | Pollination Rate (%) |
---|---|---|
HP | T1 | 100 ± 0.00 a |
T2 | 100 ± 0.00 a | |
BP | T1 | 85± 0 a |
T2 | 100 ± 0 a | |
NP | T1 | 0 ± 0 b |
T2 | 5 ± 0.28 b |
Treatments | Number of Weeks after Flower Bloom (Week) | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
HP | T1 | 10.43 ± 0.36 b | 25.38 ± 0.28 a | 39.18 ± 0.09 b | 44.88 ± 0.31 a | 46.53 ± 0.21 a | 48.13 ± 0.12 b |
T2 | 12.50 ± 0.06 a | 25.83 ± 0.09 a | 40.10 ± 0.17 a | 44.95 ± 0.15 a | 47.10 ± 0.31 a | 49.25 ± 0.22 a | |
BP | T1 | 12.58 ± 0.01 a | 25.78 ± 0.11 a | 40.50 ± 0.22 a | 44.70 ± 0.27 a | 46.83 ± 0.26 a | 51.00 ± 0.34 a |
T2 | 12.65 ± 0.03 a | 25.00 ± 0.21 a | 40.48 ± 0.04 a | 44.85 ± 0.21 a | 47.03 ± 0.29 a | 48.63 ± 0.12 b | |
NP | T1 | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c | 0.00 c |
T2 | 12.60 ± 0.25 a | 25.50 ± 0.18 a | 39.50 ± 0.27 b | 43.90 ± 0.15 b | 46.40 ± 0.20 a | 48.50 ± 0.23 b |
Factors | Fruit Diameter (cm) | Fruit Weight (kg) |
---|---|---|
Pollination method (PM) | ||
HP | 36.18 a | 1.84 a |
BP | 37.42 a | 2.07 a |
NP | 18.20 b | 0.95 b |
Mean | 30.6 | 1.62 |
Integrated fertilizer (IF) | ||
T1 | 24.27 b | 1.36 b |
T2 | 36.93 a | 1.88 a |
Mean | 30.6 | 1.62 |
LSD of means at p ≤ 0.05 and levels of significance for a two-factor ANOVA | ||
PM | 11.23 ** | 0.22 ** |
IF | 9.17 *** | 0.17 *** |
PM × IF | *** | *** |
Factors | Fruit Firmness (N) | SSC (Brix) |
---|---|---|
Pollination method (PM) | ||
HP | 9.13 b | 13.96 b |
BP | 10.31 a | 15.39 a |
NP | 9.04 b | 14.09 ab |
Mean | 9.83 | 14.48 |
Integrated fertilizer (IF) | ||
T1 | 7.77 b | 14.63 a |
T2 | 11.22 a | 14.33 a |
Mean | 9.83 | 14.48 |
LSD of means at p ≤ 0.05 and levels of significance for a two-factor ANOVA | ||
PM | 0.96 ** | 0.81 ** |
IF | 0.79 *** | 0.67 ns |
PM × IF | ** | ns |
Factor | Fructose | Glucose | Sucrose |
---|---|---|---|
mg g−1 FW | |||
Pollination method (PM) | |||
HP | 221.33 a | 255.80 a | 508.60 b |
BP | 226.58 a | 268.81 a | 597.10 a |
NP | 220.26 a | 258.75 a | 495.10 c |
Mean | 222.72 | 261.12 | 533.60 |
Integrated fertilizer (IF) | |||
T1 | 272.95 a | 305.74 a | 588.70 a |
T2 | 172.96 b | 216.51 b | 478.50 b |
Mean | 222.96 | 261.13 | 533.60 |
LSD of means at p ≤ 0.05 and levels of significance for a two-factor ANOVA | |||
PM | 14.53 ns | 15.00 ns | 9.86 *** |
IF | 11.86 *** | 12.14 *** | 11.78 *** |
PM × IF | ns | ns | *** |
Factor | Oxalic | Malic | Citric | Succinic |
---|---|---|---|---|
mg g−1 FW | ||||
Pollination method (PM) | ||||
HP | 0.99 a | 0.61 a | 0.60 a | 11.57 a |
BP | 1.03 a | 0.59 a | 0.61 a | 11.42 a |
NP | 1.04 a | 0.60 a | 0.60 a | 11.61 a |
Mean | 1.02 | 0.60 | 0.60 | 11.53 |
Integrated fertilizer (IF) | ||||
T1 | 0.87 b | 0.43 b | 0.36 b | 8.32 b |
T2 | 1.17 a | 0.78 a | 0.85 a | 14.74 a |
Mean | 1.02 | 0.60 | 0.60 | 11.53 |
LSD of means at p ≤ 0.05 and levels of significance for a two-factor ANOVA | ||||
PM | 0.08 ns | 0.03 ns | 0.04 ns | 0.82 ns |
IF | 0.06 *** | 0.02 *** | 0.03 *** | 0.67 *** |
PM × IF | ns | ns | ns | ns |
Factor | N | P | K | Ca | Mg |
---|---|---|---|---|---|
% | |||||
Pollination method (PM) | |||||
HP | 32.79 a | 11.83 a | 23.35 a | 25.54 a | 4.39 a |
BP | 32.56 a | 11.51 a | 23.50 a | 25.34 a | 4.38 a |
NP | 33.05 a | 11.38 a | 23.38 a | 25.33 a | 4.13 a |
Mean | 32.80 | 11.57 | 23.41 | 25.40 | 4.30 |
Integrated fertilizer (IF) | |||||
T1 | 36.99 a | 11.48 a | 22.30 b | 24.01 b | 4.94 a |
T2 | 28.61 b | 11.66 a | 24.52 a | 26.79 a | 3.66 b |
Mean | 32.80 | 11.57 | 23.41 | 25.40 | 4.30 |
LSD of means at p ≤ 0.05 and levels of significance for a two-factor ANOVA | |||||
PM | 1.39 ns | 0.86 ns | 0.49 ns | 1.07 ns | 0.41 ns |
IF | 1.14 *** | 0.70 ns | 0.40 *** | 0.87 *** | 0.33 *** |
PM × IF | ns | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nik Hassan, N.Z.; Sakimin, S.Z.; Jaafar, N.M.; Ibrahim, I.Z. Pollination Methods and Integrated Fertilizer Influenced the Pollination Rate, Fruit Development, and Quality of Cucumis melo L. under Greenhouse Conditions. Sustainability 2021, 13, 13300. https://doi.org/10.3390/su132313300
Nik Hassan NZ, Sakimin SZ, Jaafar NM, Ibrahim IZ. Pollination Methods and Integrated Fertilizer Influenced the Pollination Rate, Fruit Development, and Quality of Cucumis melo L. under Greenhouse Conditions. Sustainability. 2021; 13(23):13300. https://doi.org/10.3390/su132313300
Chicago/Turabian StyleNik Hassan, Nik Zuraila, Siti Zaharah Sakimin, Noraini Md Jaafar, and Illani Zuraihah Ibrahim. 2021. "Pollination Methods and Integrated Fertilizer Influenced the Pollination Rate, Fruit Development, and Quality of Cucumis melo L. under Greenhouse Conditions" Sustainability 13, no. 23: 13300. https://doi.org/10.3390/su132313300
APA StyleNik Hassan, N. Z., Sakimin, S. Z., Jaafar, N. M., & Ibrahim, I. Z. (2021). Pollination Methods and Integrated Fertilizer Influenced the Pollination Rate, Fruit Development, and Quality of Cucumis melo L. under Greenhouse Conditions. Sustainability, 13(23), 13300. https://doi.org/10.3390/su132313300