Subjective and Objective Insecurity in Spanish Cities
Abstract
:1. Introduction
2. Objective and Hypothesis
3. Method and Materials
3.1. HJ-Biplot Analysis
- A.
- Sample: economic and sociodemographic data from Spain’s provincial capitals (2017, 2018, 2019).
- B.
- Sources: Spain’s National Statistics Institute (INE), Ministry of the Interior (MI), and Ministry of Territorial Policy and Civil Service (MPTFP).
- C.
- Study settings and variables:
- ○
- Settings: Spain’s provincial capitals: Albacete, Alicante, Almería, Ávila, Badajoz, Bilbao, Burgos, Cáceres, Cádiz, Castellón de la Plana, Ciudad Real, Córdoba, A Coruña, Cuenca, San Sebastián, Girona, Granada, Guadalajara, Huelva, Huesca, Jaén, León, Lleida, Logroño, Lugo, Málaga, Murcia, Ourense, Oviedo, Palencia, Palma de Mallorca, Las Palmas de Gran Canaria, Pamplona, Pontevedra, Salamanca, Santa Cruz de Tenerife, Santander, Segovia, Sevilla, Soria, Tarragona, Teruel, Toledo, Valencia, Valladolid, Vitoria-Gasteiz, Zamora, Zaragoza, Madrid, Barcelona, Ceuta, and Melilla.
- ○
- Economic and sociodemographic variables: The selection of these variables was conditioned by the data available in the official statistics in Spain. The data for the cities of Huesca, Segovia, Soria, and Teruel for some indicators (*) are based on figures for 2016, in the absence of more recent data.
- 1.
- POBLACION: Number of inhabitants residing in the provincial capitals. Source: INE, Municipal Register, 2019.
- 2.
- DENSIDAD: Quotient of number of inhabitants and total square kilometers pertaining to the provincial capital. Source: INE, Municipal Register, 2019/INE, Urban Indicators, 2017.
- 3.
- CRIMI: Rate of criminal offenses. Sources: MI, Criminality Assessment Report, 2019.
- 4.
- SUPURB: Urban land area, km2.
- 5.
- OCUHOTELERA: Number of hotel bed occupancies estimated for tourist spots in August 2018. Sources: INE, Survey of Hotel Occupancy, 2018.
- 6.
- PAROCAPIT (*): Unemployment rate in provincial capitals. Source: INE, Urban Indicators, Economically Active Population Survey, 2018.
- 7.
- ABANESCOLAR: Percentage of individuals under 34 that do not study, and who left school at the legal school-leaving age or under, among the total number of individuals of that age group in the province. Source: INE, Economically Active Population Survey, 2019.
- 8.
- MAYOR65: Proportion of individuals older than 65. Source: INE, Continuous Municipal Register, 2019.
- 9.
- EDADMEDIAN (*): Mean age of the population in years. Source: INE, Urban Indicators, 2017.
- 10.
- PROPEXTRAN1-EU: Proportion of non-native residents in Spain originating from non-EU countries. Source: INE, Municipal Register, 2019.
- 11.
- PROPEXTRAN2-EU: Proportion of non-native residents in Spain originating from EU countries. Source: INE, Municipal Register, 2019.
- 12.
- TAMHOG (*): Average size of dwellings. Source: INE, Urban Indicators, 2017.
- 13.
- HOGARUNIPER (*): Proportion of single occupancy dwellings versus total number of dwellings. Source: INE, Urban Indicators, 2017.
- 14.
- TASAPOL: Rate of police officers/population: Number of police officers per 100,000 inhabitants. Source: MPTFP, 2018.
- 15.
- RENMEDIAHOG (*): Average annual household income. Source: INE, Urban Indicators, 2017.
- D.
- Method: the HJ-Biplot statistical method was applied to the socio-economic and demographic variables described above. HJ-Biplot [43] has several advantages over the more traditional JK-Biplot and GH-Biplot methods, which maintain the same representative quality for the matrix rows and columns [44,45].
- The direction of the vectors shows where column indicator variability increases, approximating the length of the vector to the standard deviation of the socioeconomic or sociodemographic variables.
- The angle cosine formed between two vectors shows the correlation between variables. The acute angles indicate a positive correlation, and the right and obtuse angles a null and negative correlation, respectively.
3.2. Analysis Compared to Survey Data
- Total number of people surveyed for the sample: 3904
- Distribution: 15 survey points among Spain’s provincial capitals.
- Provincial capitals that provided data: Madrid, Sevilla, Zaragoza, Pamplona, Salamanca, Badajoz, San Sebastián, and Tarragona. The cities represented in this article provide the following subsamples: Tarragona (N = 352), San Sebastián (N = 351), Badajoz (N = 351), and Madrid (N = 704).
- Sample error and level of confidence: the sample error is 5.2% for Tarragona, San Sebastián, and Badajoz, and 3.7% for Madrid, for a confidence level of 95%.
- Field survey in three successive waves (June 2018, January and June 2019).
- Analysis variable: “scale of security” used in the questionnaire to obtain data on the feeling of insecurity among those surveyed in each of the provincial capitals: P7a. “If TOTALLY insecure is 0 and TOTALLY secure is 5, which value represents your feeling?” This variable was recoded as barely secure or not at all secure (0–1), neither secure no insecure (2–3), and quite secure and totally secure (4–5).
4. Results
4.1. Analysis of Impact and Collaboration, Plane 2–3
- ○
- People over the age of 65;
- ○
- Single-occupancy households;
- ○
- Average age of the population.
4.2. Impact and Collaboration Analysis, Plane 1–2
- -
- the proportion of people over 65;
- -
- the number of single occupancy households (in this case linked to senior citizens);
- -
- mean age of the population.
5. Cluster Analysis and Discussion
- ○
- proportion of foreign residents (EU and non-EU);
- ○
- number of inhabitants;
- ○
- population density;
- ○
- urban land area;
- ○
- mean annual household income;
- ○
- hotel occupancy rate;
- ○
- single-person households.
- ○
- unemployment rate;
- ○
- school dropout rate;
- ○
- number of police officers;
- ○
- household size.
- ○
- Inhabitants of big cities are anonymous citizens.
- ○
- This anonymity favors criminal activity.
- ○
- There is a greater probability of being a victim of crime in urban areas than in rural areas.
- ○
- Population density is a strong determinant of crime.
- ○
- proportion of foreign residents (EU and non-EU);
- ○
- number of inhabitants;
- ○
- population density;
- ○
- urban land area;
- ○
- unemployment rate;
- ○
- school dropout rate;
- ○
- size of dwelling;
- ○
- hotel occupancy rate;
- ○
- number of police officers.
- ○
- average age of population;
- ○
- single-person households;
- ○
- household income.
- proportion of citizens over 65;
- average age of the population.
- proportion of one-person households;
- mean annual household income;
- hotel occupancy rate.
- proportion of foreign residents (EU and non-EU);
- population density;
- urban land area;
- unemployment rate;
- school dropout rate;
- size of dwelling;
- number of police officers.
- unemployment rate;
- school dropout rate;
- medium household size;
- number of police officers.
- proportion of foreign residents (EU and non-EU)
- population density;
- urban land area;
- proportion of people over 65;
- average age of population;
- proportion of single-person households;
- mean annual household income;
- hotel occupancy.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rader, N.E.; Cossman, J.S.; Porter, J.R. Fear of Crime and Vulnerability: Using a National Sample of Americans to Examine Two Competing Paradigms. J. Crim. Justice 2012, 40, 134–141. [Google Scholar] [CrossRef]
- Ruijsbroek, A.; Droomers, M.; Groenewegen, P.P.; Hardyns, W.; Stronks, K. Social Safety, Self-Rated General Health and Physical Activity: Changes in Area Crime, Area Safety Feelings and the Role of Social Cohesion. Health Place 2015, 31, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Hanslmaier, M.; Peter, A.; Kaiser, B. Vulnerability and Fear of Crime among Elderly Citizens: What Roles Do Neighborhood and Health Play? J. Hous. Built Environ. J. 2018, 33, 575–590. [Google Scholar] [CrossRef]
- Dowler, K. Media Consumption and Public Attitudes toward Crime and Justice: The Relationship between Fear of Crime, Punitive Attitudes, and Perceived Police Effectiveness. J. Crim. Justice Pop. Cult. 2000, 7, 109–126. [Google Scholar]
- Hicks, S.; Brown, S. Perceptions of Risk: A Review of the Effects of Individual and Community-Level Variables on Perceptions of Risk. Int. Rev. Vict. 2013, 19, 249–267. [Google Scholar] [CrossRef]
- Intravia, J.; Wolff, K.T.; Paez, R.; Gibbs, B.R. Investigating the Relationship between Social Media Consumption and Fear of Crime: A Partial Analysis of Mostly Young Adults. Comput. Hum. Behav. 2017, 77, 158–168. [Google Scholar] [CrossRef]
- Ferretti, F.; Pozza, A.; Coluccia, A. Urban Safety: A Re-Reading of the Sense of Unsafety through Individual and Ecological Dimensions. Eur. J. Criminol. 2019, 16, 188–209. [Google Scholar] [CrossRef]
- Vauclair, C.-M.; Bratanova, B. Income Inequality and Fear of Crime across the European Region. Eur. J. Criminol. 2017, 14, 221–241. [Google Scholar] [CrossRef] [Green Version]
- Piqueras, J.A.; Salvador, M.D.C.; Soto-Sanz, V.; Mira, F.; Pérez-González, J.-C. Strengths against Psychopathology in Adolescents: Ratifying the Robust Buffer Role of Trait Emotional Intelligence. Int. J. Environ. Res. Public Health 2020, 17, 804. [Google Scholar] [CrossRef] [Green Version]
- Petrides, K.V.; Mikolajczak, M.; Mavroveli, S.; Sanchez-Ruiz, M.-J.; Furnham, A.; Pérez-González, J.-C. Developments in trait emotional intelligence research. Emot. Rev. 2016, 8, 335–341. [Google Scholar] [CrossRef]
- Dammert, L.; Malone, M.F.T. Does It Take a Village? Policing Strategies and Fear of Crime in Latin America. Lat. Am. Politi-Soc. 2006, 48, 27–51. [Google Scholar] [CrossRef]
- Dammert, L. The Relationship between Confidence and Insecurity: The Chile Case. Rev. Crim. 2014, 56, 189–207. [Google Scholar]
- Medina Ariza, J. Inseguridad Ciudadana, Miedo Al Delito y Policía En España. Rev. Electrónica de Cienc. Penal Y Criminol. 2003, 3, 12. [Google Scholar]
- Díez Ripollés, J. Algunos Rasgos de La Delincuencia En España a Comienzos Del Siglo XXI. Rev. Española Investig. Criminológica REIC 2006, 4, 1–19. [Google Scholar] [CrossRef]
- Serrano Gómez, A.; González Vázquez, C. Tendencias de La Criminalidad y Percepción Social de La Inseguridad Ciudadana En España y La Unión Europea; Edisofer: Madrid, Spain, 2007. [Google Scholar]
- Hernando Sanz, F. La Seguridad En Las Ciudades: El Nuevo Enfoque de La Geoprevención. Scr. Nova. Rev. Electrónica Geogr. Y Ciencas Soc. 2008, 12, 10. [Google Scholar]
- Valera, S.; Guàrdia, J. Perceived Insecurity and Fear of Crime in a City with Low-Crime Rates. J. Environ. Psychol. 2014, 38, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Brichis, C.S. Un Modelo de Seguridad Propio Para Canarias. Ph.D. Thesis, Universidad de Palmas de Gran Canarias, Palmas, Spain, 2014. [Google Scholar]
- Navarro Ardoy, L.; Caro Cabrera, M. ¿ Por Quién Doblan Las Preocupaciones? El Delito como Problema Personal y Social en España. Anu. del Confl. Soc. 2015, 5, 341–365. [Google Scholar]
- Ruiz Chasco, S. Más Allá de La Inseguridad Ciudadana: La Estigmatización Territorial de Las Clases Populares. Una Aproximación a Partir de Una Barrio “En Disputa”. Scr. Nov. 2019, 23, 1–32. [Google Scholar] [CrossRef] [Green Version]
- López Escudero, E. Seguridad y Diseño Urbano En Los Nuevos Crecimientos de Madrid. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2015. [Google Scholar]
- Obando Morales-Bermúdez, N.; Ruiz Chipa, C. Determinantes Socioeconómicos de La Delincuencia: Una Primera Aproximación Al Problema a Nivel Nacional; Consorcio de Investigación Económica y Social: Lima, Perú, 2007. [Google Scholar]
- Del Pilar Quicios García, M.; Huesca González, A.M.; Ocejo, P.G. Educational Strategies to Generate Security for Displaced People in Spain. Rev. Esp. Educ. Comp. 2020, 35, 92–110. [Google Scholar] [CrossRef]
- Jackson, J. Experience and Expression: Social and Cultural Significance in the Fear of Crime. Br. J. Criminol. 2004, 44, 946–966. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J. Validating New Measures of the Fear of Crime. Int. J. Soc. Res. Methodol. Theory Pract. 2005, 8, 297–315. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J. Revisiting Risk Sensitivity in the Fear of Crime. J. Res. Crime Delinq. 2011, 48, 513–537. [Google Scholar] [CrossRef] [Green Version]
- Tandogan, O.; Ilhan, B.S. Fear of Crime in Public Spaces: From the View of Women Living in Cities. Procedia Eng. 2016, 161, 2011–2018. [Google Scholar] [CrossRef] [Green Version]
- Castro-Toledo, F.J.; Perea-García, J.O.; Bautista-Ortuño, R.; Mitkidis, P. Influence of Environmental Variables on Fear of Crime: Comparing Self-Report Data with Physiological Measures in an Experimental Design. J. Exp. Criminol. 2017, 13, 537–545. [Google Scholar] [CrossRef]
- Krulichová, E. The Relationship between Fear of Crime and Risk Perception across Europe. Criminol. Crim. Justice 2019, 19, 197–214. [Google Scholar] [CrossRef]
- Buil-Gil, D.; Moretti, A.; Shlomo, N.; Medina, J. Worry about Crime in Europe: A Model-Based Small Area Estimation from the European Social Survey. Eur. J. Criminol. 2021, 18, 274–298. [Google Scholar] [CrossRef] [Green Version]
- Huesca González, A.M.; Ortega Alonso, E. La Percepción de La Inseguridad En Madrid; Universidad Pontificia Comillas, Ed.; Biblioteca Comillas, Ciencias Sociales: Madrid, Spain, 2007. [Google Scholar]
- Chataway, M.L. Sense of Place and Feelings of Safety: Examining Young Adults’ Experiences of Their Local Environment Using Mobile Surveys. City Community 2020, 19, 656–675. [Google Scholar] [CrossRef]
- Chataway, M.L.; Hart, T.C. (Re)Assessing Contemporary “Fear of Crime” Measures within an Australian Context. J. Environ. Psychol. 2016, 47, 195–203. [Google Scholar] [CrossRef]
- Allik, M.; Kearns, A. “There Goes the Fear”: Feelings of Safety at Home and in the Neighborhood: The Role of Personal, Social, and Service Factors. J. Community Psychol. 2017, 45, 543–563. [Google Scholar] [CrossRef]
- Solymosi, R.; Bowers, K.; Fujiyama, T. Mapping Fear of Crime as a Context-Dependent Everyday Experience That Varies in Space and Time. Leg. Criminol. Psychol. 2015, 20, 193–211. [Google Scholar] [CrossRef]
- Huesca González, A.M.; Grimaldo Santamaría, R.O. El estudio de la inseguridad subjetiva: Principales componentes. In Comprender el Presente, Imaginar el Futuro: Nuevas y Viejas Brechas Sociales; Martínez Paricio, J., Moreno Carrillo, J.M., Eds.; Corisco Edizione: Roma, Italy, 2018; pp. 611–623. [Google Scholar]
- Thomé, H.I. Victimización y Cultura de La Seguridad Ciudadana En Europa. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2004. [Google Scholar]
- Muratori, M.; Zubieta, E. La Inseguridad Subjetiva Como Mediadora Del Bienestar Social y Clima Emocional. Psicodebate 2016, 16, 95. [Google Scholar] [CrossRef] [Green Version]
- Huesca González, A.M. El sentimiento de inseguridad ante la amenaza de la covid-19. In La Vida Cotidiana en Tiempos de la COVID. Una Antropología de una Pandemia; del Campo Tejedor, A., Ed.; Los libros de la Catarata: Madrid, Spain, 2021; pp. 171–185. [Google Scholar]
- Pérez-González, J.C.; Sanchez-Ruiz, M.-J. Trait emotional intelligence anchored within the big five, big two and big one frameworks. Personal. Individ. Differ. 2014, 65, 53–58. [Google Scholar] [CrossRef]
- Wells, L.E.; Weisheit, R.A. Patterns of Rural and Urban Crime: A County-Level Comparison. Crim. Justice Rev. 2004, 29, 1–22. [Google Scholar] [CrossRef]
- Echazarra, A. La Delincuencia En Los Barrios. Percepciones y Reacciones; Obra Social La Caixa: Barcelona, Spain, 2014. [Google Scholar]
- Galindo-Villardón, P. Una Alternativa de Representación Simultánea: HJ-Biplot—Dialnet. Quad. d’Estadística Sist. Inform. I Investig. Oper. 1986, 10, 13–23. [Google Scholar]
- Gabriel, K.R. The Biplot Graphic Display of Matrices with Application to Principal Component Analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- Gabriel, K.R.; Odoroff, C.L. Biplots in Biomedical Research. Stat. Med. 1990, 9, 469–485. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Gómez, M.J. Contribuciones Al Análisis Multivariante Directo Del Gradiente Mediante Estudio Combinado de Configuraciones Espaciales. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 1995. [Google Scholar]
- Martín-Rodríguez, J. Contribuciones a La Integración de Subespacios Desde Una Perspectiva Biplot. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 1996. [Google Scholar]
- Blázquez, A. Análisis Biplot Basado En Modelos Lineales Generalizados. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 1998. [Google Scholar]
- Gauch, H.G. Model Selection and Validation for Yield Trials with Interaction. Biometrics 1988, 44, 705–715. [Google Scholar] [CrossRef]
- Amaro Martín, I.R. Manova Biplot Para Diseños Con Varios Factores, Basado En Modelos Lineales Generales Multivariantes. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2001. [Google Scholar]
- Nieto-Librero, A.-B. Versión Inferencial de Los Métodos Biplot Basada En Remuestreo Bootstrap y Su Aplicación a Tablas de Tres Vías. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2015. [Google Scholar] [CrossRef]
- Hernandez Sanchez, J.C. Biplot Logístico Para Datos Nominales y Ordinales. Ph.D. Thesis, Universidad de Salamanca, Salamanca, Spain, 2016. [Google Scholar] [CrossRef]
- Díaz-Faes, A.A.; González-Albo, B.; Galindo, M.P.; Bordons, M. HJ-Biplot Como Herramienta de Inspección de Matrices de Datos Bibliométricos. Rev. Esp. Doc. Cient. 2013, 36, e001. [Google Scholar] [CrossRef] [Green Version]
- Galindo, M.P.; Cuadras, C.M. Una Extensión Del Método Biplot y Su Relación Con Otras Técnicas. In Publicaciones Bioestad. Y Biomatemática; Universidad de Barcelona: Barcelona, Spain, 1986. [Google Scholar]
- Vicente-Villardón, J.L. MultBiplot: Un Paquete Para Análisis Multivariante Usando Biplots; Departamento de Estadística. Universidad de Salamanca: Salamanca, Spain, 2020. [Google Scholar]
- Tarling, R.; Dennis, R. Socio-Economic Determinants of Crime Rates: Modelling Local Area Police-Recorded Crime. Howard J. Crime Justice 2016, 55, 207–225. [Google Scholar] [CrossRef]
- Pérez-González, J.C.; Saklofske, D.H.; Mavroveli, S. Editorial: Trait Emotional Intelligence: Foundations, Assessment, and Education. Front. Psychol. 2020, 11, 608. [Google Scholar] [CrossRef] [PubMed]
- Di Fabio, A.; Tsuda, A. The Psychology of Harmony and Harmonization: Advancing the Perspectives for the Psychology of Sustainability and Sustainable Development. Sustainability 2018, 10, 4726. [Google Scholar] [CrossRef] [Green Version]
Column | Variable | Axis1 | Axis2 | Axis3 |
---|---|---|---|---|
1 | PROPEXTRA1(-UE) | 174 | 488 | 789 |
2 | PROPEXTRA2 (UE) | 176 | 202 | 630 |
3 | CRIMI | 324 | 766 | 767 |
4 | POBLACIÓN | 586 | 715 | 855 |
5 | DENSIDAD | 401 | 473 | 495 |
6 | SUPURB | 591 | 723 | 827 |
7 | PAROCAPIT | 335 | 553 | 820 |
8 | ABANESCOLAR | 339 | 657 | 680 |
9 | MAYOR65 | 221 | 875 | 881 |
10 | EDADMEDIAN | 123 | 859 | 876 |
11 | TAMHOG | 279 | 705 | 729 |
12 | HOGARUNIPER | 179 | 651 | 651 |
13 | RENTAMEDIAHOG | 360 | 440 | 514 |
14 | OCUHOTELERA | 641 | 798 | 880 |
15 | TASAPOL | 31 | 34 | 52 |
Propextra1(-UE) | Propextra2(UE) | Crimi | Población | Densidad | Supurb | Parocapit | Abanescolar | |
---|---|---|---|---|---|---|---|---|
clúster | mean | mean | mean | mean | mean | mean | mean | mean |
1 | 12.10 | 4.76 | 9.99 | 2,451,444 | 10,649.19 | 85.39 | 10.68 | 29.55 |
2 | 9.94 | 4.43 | 6.12 | 334,816 | 2697.40 | 13.74 | 16.86 | 37.93 |
3 | 5.13 | 2.53 | 3.65 | 171,622 | 2248.75 | 6.81 | 12.17 | 30.37 |
4 | 4.17 | 1.40 | 4.18 | 188,738 | 1105.15 | 4.87 | 20.81 | 42.04 |
MAYOR65 | EDADMEDIAN | TAMHOG | HOGARUNIPER | RENTAMEDIAHOG | OCUHOTELERA | TASAPOL | ||
clúster | mean | mean | mean | mean | mean | mean | mean | |
1 | 21.05 | 44.00 | 2.00 | 31.50 | 39,038 | 82,094 | 101.08 | |
2 | 17.74 | 42.44 | 2.78 | 29.00 | 30,848 | 13,049 | 122.89 | |
3 | 22.50 | 46.35 | 2.13 | 30.91 | 31,483 | 3529 | 120.78 | |
4 | 16.53 | 42.29 | 2.93 | 27.07 | 28,752 | 3324 | 156.92 |
Clúster 1 | Clúster 2 | Clúster 3 | Clúster 4 | ||
---|---|---|---|---|---|
% Verticals Jhi² value | Madrid | Tarragona | San Sebastián | Badajoz | |
Total | 3904 | 742 | 352 | 351 | 351 |
P7A_2_2 | 3865 | 730 | 350 | 351 | 349 |
Barely secure, not at all secure | 13.3 | 14.0 0.27 | 19.1 9.09 | 10.5 1.97 | 11.5 0.86 |
Neither secure nor insecure | 35.4 | 37.9 1.29 | 36.9 0.20 | 29.9 3.03 | 35.2 0.00 |
Quite or totally secure | 51.3 | 48.1 1.46 | 44.0 3.62 | 59.5 4.67 | 53.3 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huesca González, A.M.; Grimaldo-Santamaría, R.-O.; Quicios García, M.d.P. Subjective and Objective Insecurity in Spanish Cities. Sustainability 2021, 13, 13309. https://doi.org/10.3390/su132313309
Huesca González AM, Grimaldo-Santamaría R-O, Quicios García MdP. Subjective and Objective Insecurity in Spanish Cities. Sustainability. 2021; 13(23):13309. https://doi.org/10.3390/su132313309
Chicago/Turabian StyleHuesca González, Ana María, Rolando-Oscar Grimaldo-Santamaría, and María del Pilar Quicios García. 2021. "Subjective and Objective Insecurity in Spanish Cities" Sustainability 13, no. 23: 13309. https://doi.org/10.3390/su132313309
APA StyleHuesca González, A. M., Grimaldo-Santamaría, R. -O., & Quicios García, M. d. P. (2021). Subjective and Objective Insecurity in Spanish Cities. Sustainability, 13(23), 13309. https://doi.org/10.3390/su132313309