The Physical Damage of Climbing Activity on Sandstone Lichen Cover
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tessler, M.; Clark, T.A. The Impact of Bouldering on Rock-Associated Vegetation. Biol. Conserv. 2016, 204, 426–433. [Google Scholar] [CrossRef]
- Lorite, J.; Serrano, F.; Lorenzo, A.; Cañadas, E.M.; Ballesteros, M.; Peñas, J. Rock Climbing Alters Plant Species Composition, Cover, and Richness in Mediterranean Limestone Cliffs. PLoS ONE 2017, 12, e0182414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- March-Salas, M.; Moreno-Moya, M.; Palomar, G.; Tejero-Ibarra, P.; Haeuser, E.; Pertierra, L.R. An Innovative Vegetation Survey Design in Mediterranean Cliffs Shows Evidence of Higher Tolerance of Specialized Rock Plants to Rock Climbing Activity. Appl. Veg. Sci. 2018, 21, 289–297. [Google Scholar] [CrossRef]
- Schmera, D.; Rusterholz, H.-P.; Baur, A.; Baur, B. Intensity-Dependent Impact of Sport Climbing on Vascular Plants and Land Snails on Limestone Cliffs. Biol. Conserv. 2018, 224, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Strumia, S.; Buonanno, M.; Aronne, G.; Santo, A.; Santangelo, A. Monitoring of Plant Species and Communities on Coastal Cliffs: Is the Use of Unmanned Aerial Vehicles Suitable? Diversity 2020, 12, 149. [Google Scholar] [CrossRef] [Green Version]
- The Outdoor Foundation. Outdoor Participation Report; The Outdoor Foundation: Washington, DC, USA, 2018. [Google Scholar]
- Deutscher Alpenverein e.V. (DAV). Klettern in Deutschland—Zahlen, Daten & Fakten. Available online: https://www.alpenverein.de/der-dav/presse/hintergrund-info/klettern-in-deutschland-zahlen-daten-fakten_aid_31813.html (accessed on 21 August 2020).
- Deutscher Alpenverein e.V. (DAV). Sportklettern Boomt! DAV. Available online: https://www.alpenverein.de/wettkampf/klettern/wettkampf-abc/sportklettern-und-wettkaempfe-beim-dav_aid_10318.html (accessed on 5 December 2021).
- Clark, P.; Hessl, A. The Effects of Rock Climbing on Cliff-Face Vegetation. Appl. Veg. Sci. 2015, 18, 705–715. [Google Scholar] [CrossRef]
- Larson, D.W.; Matthes, U.; Kelly, P.E. Cliff Ecology: Pattern and Process in Cliff Ecosystems; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2000. [Google Scholar]
- McMillan, M.A.; Larson, D.W. Effects of Rock Climbing on the Vegetation of the Niagara Escarpment in Southern Ontario, Canada. Conserv. Biol. 2002, 16, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Kuntz, K.L.; Larson, D.W. Influences of Microhabitat Constraints and Rock-Climbing Disturbance on Cliff-Face Vegetation Communities. Conserv. Biol. 2006, 20, 821–832. [Google Scholar] [CrossRef]
- Boggess, L.M.; Walker, G.L.; Madritch, M.D. Cliff Flora of the Big South Fork National River and Recreation Area. Nat. Areas J. 2017, 37, 200. [Google Scholar] [CrossRef]
- de Castro-Arrazola, I.; March-Salas, M.; Lorite, J. Assessment of the Potential Risk of Rock-Climbing for Cliff Plant Species and Natural Protected Areas of Spain. Front. Ecol. Evol. 2021, 9, 611362. [Google Scholar] [CrossRef]
- Holzschuh, A. Does Rock Climbing Threaten Cliff Biodiversity?—A Critical Review. Biol. Conserv. 2016, 204, 153–162. [Google Scholar] [CrossRef]
- Honegger, R. The Lichen Symbiosis—What Is so Spectacular about It? Lichenol. 1998, 30, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Steinbauer, M.J.; Gohlke, A.; Mahler, C.; Schmiedinger, A.; Beierkuhnlein, C. Quantification of Wall Surface Heterogeneity and Its Influence on Species Diversity at Medieval Castles—Implications for the Environmentally Friendly Preservation of Cultural Heritage. J. Cult. Herit. 2013, 14, 219–228. [Google Scholar] [CrossRef]
- Chen, J.; Blume, H.-P.; Beyer, L. Weathering of Rocks Induced by Lichen Colonization—A Review. CATENA 2000, 39, 121–146. [Google Scholar] [CrossRef]
- Baur, B.; Fröberg, L.; Müller, S.W. Effect of Rock Climbing on the Calcicolous Lichen Community of Limestone Cliffs in the Northern Swiss Jura Mountains. Nova Hedwig. 2007, 85, 429–444. [Google Scholar] [CrossRef]
- Kelly, P.E.; Larson, D.W. Effects of Rock Climbing on Populations of Presettlement Eastern White Cedar (Thuja occidentalis) on Cliffs of the Niagara Escarpment, Canada. Conserv. Biol. 1997, 11, 1125–1132. [Google Scholar] [CrossRef]
- Nuzzo, V.A. Structure of Cliff Vegetation on Exposed Cliffs and the Effect of Rock Climbing. Can. J. Bot. 1996, 74, 607–617. [Google Scholar] [CrossRef]
- Harrison, G.R. The Impact of Rock-Climbing Disturbance on Cliff Communities of the Linville Gorge Wilderness Area; Appalachian State University: Boone, NC, USA, 2020. [Google Scholar]
- Cole, D.N.; Bayfield, N.G. Recreational Trampling of Vegetation: Standard Experimental Procedures. Biol. Conserv. 1993, 63, 209–215. [Google Scholar] [CrossRef]
- Kılıç, A.; Atiş, C.D.; Teymen, A.; Karahan, O.; Özcan, F.; Bilim, C.; Özdemira, M. The Influence of Aggregate Type on the Strength and Abrasion Resistance of High Strength Concrete. Cem. Concr. Compos. 2008, 30, 290–296. [Google Scholar] [CrossRef]
- Adams, M.D.; Zaniewski, K. Effects of Recreational Rock Climbing and Environmental Variation on a Sandstone Cliff-Face Lichen Community. Botany 2012, 90, 253–259. [Google Scholar] [CrossRef]
- Reding, J. Rock Climbing or Lichen Climbing? How Rock Climbing Impacts Bryophyte and Lichen Communities Within the Red River Gorge; The Ohio State University: Columbus, OH, USA, 2019; Available online: https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1562584961670604&disposition=inline (accessed on 5 December 2021).
- Muggeo, V.M.R. Interval Estimation for the Breakpoint in Segmented Regression: A Smoothed Score-Based Approach. Aust. New Zealand J. Stat. 2017, 59, 311–322. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2021. Available online: https://www.R-project.org/ (accessed on 5 December 2021).
- Boggess, L.M.; Georgia, R.H.; Bishop, G. Impacts of Rock Climbing on Cliff Vegetation: A Methods Review and Best Practices. Appl. Veg. Sci. 2021, 24, e12583. [Google Scholar] [CrossRef]
- Hill, R.; Pickering, C. Differences in Resistance of Three Subtropical Vegetation Types to Experimental Trampling. J. Environ. Manag. 2009, 90, 1305–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, J. The Influence of Rock Climbing Chalk on Cliff Plant Communities; Antioch New England Graduate School: Keene, NH, USA, 2005. [Google Scholar]
- Hepenstrick, D.; Bergamini, A.; Holderegger, R. The Distribution of Climbing Chalk on Climbed Boulders and Its Impact on Rock-dwelling Fern and Moss Species. Ecol. Evol. 2020, 10, 11362–11371. [Google Scholar] [CrossRef] [PubMed]
- Noé, F.; Quaine, F.; Martin, L. Influence of Steep Gradient Supporting Walls in Rock Climbing: Biomechanical Analysis. Gait Posture 2001, 13, 86–94. [Google Scholar] [CrossRef]
- Hale, J.; O’Connell, A.; Lewis, R.; Carré, M.J.; Rongong, J.A. An Evaluation of Shoe Tread Parameters Using FEM. Tribol. Int. 2021, 153, 106570. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, L.; Yan, F.; Xiang, X.; Tang, Y.; Zhang, L.; Liu, J.; Qiu, L. Determination of Normal Skin Elasticity by Using Real-Time Shear Wave Elastography: Normal Skin Elasticity on Real-Time Shear Wave Elastography. J. Ultrasound Med. 2018, 37, 2507–2516. [Google Scholar] [CrossRef] [Green Version]
- Farris, M.A. The Effects of Rock Climbing on the Vegetation of Three Minnesota Cliff Systems. Can. J. Bot. 1998, 76, 1981–1990. [Google Scholar] [CrossRef]
Lichen Cover Unclimbed | Lichen Cover Climbed | Change in Lichen Cover | ||||
---|---|---|---|---|---|---|
Relative | Total [cm²] | Relative | Total [cm²] | Relative | Total [cm²] | |
FH1 | 84.9% | 339.5 | 70.1% | 280.3 | −14.8% | −59.2 |
FH2 | 94.8% | 379.1 | 82.1% | 328.3 | −12.7% | −50.8 |
HH | 74.3% | 297.3 | 75.4% | 301.4 | 1.0% | 4.1 |
CHF | 94.6% | 378.4 | 85.3% | 341.1 | −9.3% | −37.3 |
FH1 | FH2 | HH | CHF | |
---|---|---|---|---|
Breakpoint estimate | 50.0 ± 11.7 | 58.1 ± 11.6 | - | 100.0 ± 38.5 |
Slope before breakpoint | −0.195 ± 0.055 | −0.116 ± 0.024 | - | −0.061 ± 0.027 |
Slope after breakpoint | −0.012 ± 0.003 | −0.014 ± 0.002 | - | −0.003 ± 0.003 |
AIC null model | 87.4 | 83.9 | 54.2 | 72.9 |
AIC linear model | 71.8 | 59.8 | 56.1 | 60.0 |
AIC segmented model | 50.6 | 43.3 | 54.5 | 45.9 |
p-value segmented model | 0.005 | <0.001 | Non-significant | 0.046 |
R2 linear model | 0.72 | 0.85 | - | 0.66 |
R2 segmented model | 0.95 | 0.96 | - | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schweizer, A.-M.; Höschler, L.; Steinbauer, M.J. The Physical Damage of Climbing Activity on Sandstone Lichen Cover. Sustainability 2021, 13, 13590. https://doi.org/10.3390/su132413590
Schweizer A-M, Höschler L, Steinbauer MJ. The Physical Damage of Climbing Activity on Sandstone Lichen Cover. Sustainability. 2021; 13(24):13590. https://doi.org/10.3390/su132413590
Chicago/Turabian StyleSchweizer, Anne-Maria, Lucas Höschler, and Manuel J. Steinbauer. 2021. "The Physical Damage of Climbing Activity on Sandstone Lichen Cover" Sustainability 13, no. 24: 13590. https://doi.org/10.3390/su132413590
APA StyleSchweizer, A.-M., Höschler, L., & Steinbauer, M. J. (2021). The Physical Damage of Climbing Activity on Sandstone Lichen Cover. Sustainability, 13(24), 13590. https://doi.org/10.3390/su132413590