Life Cycle Assessment of Biocement: An Emerging Sustainable Solution?
Abstract
:1. Introduction
1.1. Process of Biocementation
1.2. Cost of Biocementation
2. Materials and Methods
- All the reaction efficiencies are 100% and all of the provided calcium source is converted into calcium carbonate.
- The effect of the metabolic rate of different pathways of MICP has not been considered.
- Waste products generated by the MICP process have been included in the analysis. However, treatment and recycling of these products is not considered.
- Production of laboratory grade calcium carbonate through the carbonation process were based on the cradle-to-gate assessment conducted by Mattila, et al. [54].
3. Results and Discussions
4. Conclusions
- Microbially induced calcium carbonate produced using carbonic anhydrase producing bacteria is the most environmentally sustainable route for engineered MICP applications followed by methanogens (methane oxidation) and then cyanobacteria (photosynthesis).
- The most widely used metabolic route for engineered MICP via ureolytic pathway has poor sustainability due to high carbon footprint and embodied energy of the supplied urea, as well as the eutrophication potential of ammonium waste produced during the MICP reaction.
- The sustainability of engineered MICP via ureolytic and other routes can improve significantly via utilisation of naturally found nutrient sources, recycled wastes for the source of microbial nutrients and cementation reagents as well as by the utilisation of commercial grade chemicals compared to lab grade chemicals.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, J.K.; Santamarina, J.C. Biological Considerations in Geotechnical Engineering. J. Geotech. Geoenviron. Eng 2005, 131, 1222–1233. [Google Scholar] [CrossRef] [Green Version]
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef] [Green Version]
- Dejong, J.T.; Soga, K.; Kavazanjian, E.; Burns, S.; van Paassen, L.A.; Qabany, A.A.; Aydilek, A.; Bang, S.S.; Burbank, M.; Caslake, L.F.; et al. Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges. Géotechnique 2013, 63, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Achal, V.; Reddy, M.S. In search of a sustainable binder in Building Materials. Ann. Proc. Ind. Natl. Acad. Eng. 2010, VII, 41–51. [Google Scholar]
- Jongvivatsakul, P.; Janprasit, K.; Nuaklong, P.; Pungrasmi, W.; Likitlersuang, S. Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Constr. Build. Mater. 2019, 212, 737–744. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Q.; Li, Z.; Ashour, A.; Han, B. Bacterial technology-enabled cementitious composites: A review. Compos. Struct. 2019, 225, 111170. [Google Scholar] [CrossRef]
- Mondal, S.; Ghosh, A. Review on microbial induced calcite precipitation mechanisms leading to bacterial selection for microbial concrete. Constr. Build. Mater. 2019, 225, 67–75. [Google Scholar] [CrossRef]
- Van Paassen, L.A.; Daza, C.M.; Staal, M.; Sorokin, D.Y.; van der Zon, W.; van Loosdrecht, M.C.M. Potential soil reinforcement by biological denitrification. Ecol. Eng. 2010, 36, 168–175. [Google Scholar] [CrossRef]
- Whiffin, V.S.; van Paassen, L.A.; Harkes, M.P. Microbial Carbonate Precipitation as a Soil Improvement Technique. Geomicrobiol. J. 2007, 24, 417–423. [Google Scholar] [CrossRef]
- Van Paassen, L.A.; Ghose, R.; van der Linden, T.J.M.; van der Star, W.R.L.; van Loosdrecht, M.C.M. Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment. J. Geotech. Geoenviron. Eng. 2010, 136, 1721–1728. [Google Scholar] [CrossRef]
- De Jong, J.T.; Martinez, B.C.; Ginn, T.R.; Hunt, C.; Major, D.; Tanyu, B.F. Development of a Scaled Repeated Five-Spot Treatment Model for Examining Microbial Induced Calcite Precipitation Feasibility in Field Applications. Geotech. Test. J. 2014, 37, 424–435. [Google Scholar]
- Dhami, N.K.; Mukherjee, A.; Reddy, M.S. Applicability of bacterial biocementation in sustainable construction materials. Asia-Pac. J. Chem. Eng. 2016, 11, 795–802. [Google Scholar] [CrossRef]
- Castro-Alonso, M.J.; Montañez-Hernandez, L.E.; Sanchez-Muñoz, M.A.; Macias Franco, M.R.; Narayanasamy, R.; Balagurusamy, N. Microbially Induced Calcium Carbonate Precipitation (MICP) and Its Potential in Bioconcrete: Microbiological and Molecular Concepts. Front. Mater. 2019, 6, 126. [Google Scholar] [CrossRef]
- Hamdan, N.; Kavazanjian, E.; Rittmann, B.E.; Karatas, I. Carbonate Mineral Precipitation for Soil Improvement Through Microbial Denitrification. Geomicrobiol. J. 2017, 34, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Vijay, K.; Murmu, M. Self-repairing of concrete cracks by using bacteria and basalt fiber. SN Appl. Sci. 2019, 1, 1344. [Google Scholar] [CrossRef] [Green Version]
- Guinée, J.B.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life Cycle Assessment: Past, Present, and Future. Environ. Sci. Technol. 2011, 45, 90–96. [Google Scholar] [CrossRef]
- Buyle, M.; Braet, J.; Audenaert, A. Life cycle assessment in the construction sector: A review. Renew. Sustain. Energy Rev. 2013, 26, 379–388. [Google Scholar] [CrossRef]
- Takano, A.; Winter, S.; Hughes, M.; Linkosalmi, L. Comparison of life cycle assessment databases: A case study on building assessment. Build. Environ. 2014, 79, 20–30. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Iribarren, D.; Marvuglia, A.; Hild, P.; Guiton, M.; Popovici, E.; Benetto, E. Life cycle assessment and data envelopment analysis approach for the selection of building components according to their environmental impact efficiency: A case study for external walls. J. Clean. Prod. 2015, 87, 707–716. [Google Scholar] [CrossRef]
- Feiz, R.; Ammenberg, J.; Baas, L.; Eklund, M.; Helgstrand, A.; Marshall, R. Improving the CO2 performance of cement, part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry. J. Clean. Prod. 2015, 98, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Vieira, D.R.; Calmon, J.L.; Coelho, F.Z. Life cycle assessment (LCA) applied to the manufacturing of common and ecological concrete: A review. Constr. Build. Mater. 2016, 124, 656–666. [Google Scholar] [CrossRef]
- Gäbel, K.; Forsberg, P.; Tillman, A.-M. The design and building of a lifecycle-based process model for simulating environmental performance, product performance and cost in cement manufacturing. J. Clean. Prod. 2004, 12, 77–93. [Google Scholar] [CrossRef] [Green Version]
- da Silva, T.R.; de Azevedo, A.R.G.; Cecchin, D.; Marvila, M.T.; Amran, M.; Fediuk, R.; Vatin, N.; Karelina, M.; Klyuev, S.; Szelag, M. Application of Plastic Wastes in Construction Materials: A Review Using the Concept of Life-Cycle Assessment in the Context of Recent Research for Future Perspectives. Materials 2021, 14, 3549. [Google Scholar] [CrossRef]
- Suer, P.; Hallberg, N.; Carlsson, C.; Bendz, D.; Holm, G. Biogrouting compared to jet grouting: Environmental (LCA) and economical assessment. J. Environ. Sci. Heal. Part A 2009, 44, 346–353. [Google Scholar] [CrossRef]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Dokat, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. The ecoinvent database: Overview and methodological framework. Int. J. Life Cycle Assess. 2005, 10, 3–9. [Google Scholar] [CrossRef]
- Nemecek, N.; Kägi, T.; Althaus, H.J.; Hischier, R.; Osses, M. Urea Ammonium Nitrate, at Regional Storehouse. Ecoinvent Database Version 2.2. 2007. Available online: https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-version-2/ (accessed on 9 October 2021).
- Hischier, R.; Ossés, M.; Primas, A.; Kunst, H. Calcium Chloride, CaCl2 at Regional Storage. Ecoinvent Database Version 2.2. 2007. Available online: https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-version-2/ (accessed on 9 October 2021).
- van Paassen, L.A.; Harkes, M.P.; van Zwieten, G.A.; can der Zon, W.H.; van der Star, W.R.L.; van Loosdrecht, M.C.M. Scale up of BioGrout: A biological ground reinforcement method. In Proceedings of the 17th International Conference on Soil Mechanics and Geotehcnial Engineering, Alecandrina, Egypt, 5–9 October 2009; Hamza, M., Shahien, M., El-Mossallamy, Y., Eds.; IOS Press: Alecandrina, Egypt, 2009; pp. 2328–2333. [Google Scholar]
- Porter, H.; Dhami, N.K.; Mukherjee, A. Synergistic chemical and microbial cementation for stabilization of aggregates. Cem. Concr. Compos. 2017, 83, 160–170. [Google Scholar] [CrossRef]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Dhami, N.K.; Reddy, M.S.; Mukherjee, A. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol 2013, 4, 314. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Dittrich, M. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review. Front. Bioeng. Biotechnol. 2016, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- van Paassen, L.A. Bio-Mediated Ground Improvement: From Laboratory Experiment to Pilot Applications. In Proceedings of the Geo-Frontiers 2011: Advances in Geotechnical Engineering, Dallas, TX, USA, 13–16 March 2011; Han J., A.D.E., Ed.; American Society of Civil Engineers: Dallas, TX, USA, 2011; pp. 4099–4108. [Google Scholar]
- Rodriguez-Navarro, C.; Rodriguez-Gallego, M.; Ben Chekroun, K.; Gonzalez-Muñoz, M.T. Conservation of Ornamental Stone by Myxococcus xanthus-Induced Carbonate Biomineralization. Appl. Environ. Microbiol. 2003, 69, 2182–2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Muñoz, M.T.; Rodriguez-Navarro, C.; Martínez-Ruiz, F.; Arias, J.M.; Merroun, M.L.; Rodriguez-Gallego, M. Bacterial biomineralization: New insights from Myxococcus-induced mineral precipitation. Geol. Soc. Lond. Spéc. Publ. 2010, 336, 31–50. [Google Scholar] [CrossRef]
- Chekroun, K.B.; Rodríguez-Navarro, C.; González-Muñoz, M.T.; Arias, J.M.; Cultrone, G.; Rodríguez-Gallego, M. Precipitation and Growth Morphology of Calcium Carbonate Induced by Myxococcus Xanthus: Implications for Recognition of Bacterial Carbonates. J. Sediment. Res. 2004, 74, 868–876. [Google Scholar] [CrossRef]
- Ganendra, G.; De Muynck, W.; Ho, A.; Arvaniti, E.C.; Hosseinkhani, B.; Ramos, J.A.; Rahier, H.; Boon, N. Formate Oxidation-Driven Calcium Carbonate Precipitation by Methylocystis parvus OBBP. Appl. Environ. Microbiol. 2014, 80, 4659–4667. [Google Scholar] [CrossRef] [Green Version]
- Whittenbury, R.; Phillips, K.C.; Wilkinson, J.F. Enrichment, Isolation and Some Properties of Methane-utilizing Bacteria. Microbiology 1970, 61, 205–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, G.; Dhami, N.K.; Goyal, S.; Mukherjee, A.; Reddy, M.S. Utilization of carbon dioxide as an alternative to urea in biocementation. Constr. Build. Mater. 2016, 123, 527–533. [Google Scholar] [CrossRef]
- Dhami, N.K.; Mukherjee, A.; Reddy, M.S. Micrographical, minerological and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria. Ecol. Eng. 2016, 94, 443–454. [Google Scholar] [CrossRef]
- Dittrich, M.; Müller, B.; Mavrocordatos, D.; Wehrli, B. Induced Calcite Precipitation by Cyanobacterium Synechococcus. Acta Hydrochim. Hydrobiol. 2003, 31, 162–169. [Google Scholar] [CrossRef]
- De Muynck, W.; De Belie, N.; Verstraete, W. Microbial carbonate precipitation in construction materials: A review. Ecol. Eng. 2010, 36, 118–136. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Reddy, M.S. ORIGINAL RESEARCH: Biocalcification by Sporosarcina pasteurii using corn steep liquor as the nutrient source. Ind. Biotechnol. 2010, 6, 170–174. [Google Scholar] [CrossRef]
- Achal, V.; Mukherjee, A.; Basu, P.C.; Reddy, M.S. Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J. Ind. Microbiol. Biotechnol. 2009, 36, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.G.; Chu, J.; Brown, R.C.; Wang, K.; Wen, Z. Sustainable Biocement Production via Microbially Induced Calcium Carbonate Precipitation: Use of Limestone and Acetic Acid Derived from Pyrolysis of Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2017, 5, 5183–5190. [Google Scholar] [CrossRef]
- Althaus, H.J.; Kunst, H. Acetic Acid, at Plant. Ecoinvent Database Version 2.2. 2007. Available online: https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-version-2/ (accessed on 9 October 2021).
- Choi, S.-G.; Wu, S.; Chu, J. Biocementation for Sand Using an Eggshell as Calcium Source. J. Geotech. Geoenviron. Eng. 2016, 142. [Google Scholar] [CrossRef]
- Morini, A.A.; Ribeiro, M.J.; Hotza, D. Early-stage materials selection based on embodied energy and carbon footprint. Mater. Des. 2019, 178, 107861. [Google Scholar] [CrossRef]
- Emami, N.; Heinonen, J.; Marteinsson, B.; Säynäjoki, A.; Junnonen, J.-M.; Laine, J.; Junnila, S. A Life Cycle Assessment of Two Residential Buildings Using Two Different LCA Database-Software Combinations: Recognizing Uniformities and Inconsistencies. Buildings 2019, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Säynäjoki, A.; Heinonen, J.; Junnila, S.; Horvath, A. Can life-cycle assessment produce reliable policy guidelines in the building sector? Environ. Res. Lett. 2017, 12, 013001. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Rocamora, A.; Solís-Guzmán, J.; Marrero, M. LCA databases focused on construction materials: A review. Renew. Sustain. Energy Rev. 2016, 58, 565–573. [Google Scholar] [CrossRef]
- Yu, M.; Wiedmann, T. Implementing hybrid LCA routines in an input–output virtual laboratory. J. Econ. Struct. 2018, 7, 33. [Google Scholar] [CrossRef]
- Mattila, H.-P.; Hudd, H.; Zevenhoven, R. Cradle-to-gate life cycle assessment of precipitated calcium carbonate production from steel converter slag. J. Clean. Prod. 2014, 84, 611–618. [Google Scholar] [CrossRef]
- Chemsupply Chemsupply Online Catlogue. Available online: https://www.chemsupply.com.au/ (accessed on 9 October 2021).
- MERCK Sigma-Aldrich Australia. Available online: http://www.sigmaaldrich.com/australia.html (accessed on 9 October 2021).
- Southern-Biological Chemicals. Available online: https://www.southernbiological.com/ (accessed on 9 October 2021).
- ICIS Indicative Chemical Prices A—Z. Available online: https://www.icis.com/chemicals/channel-info-chemicals-a-z/ (accessed on 20 June 2021).
- Hischier, R.; Chudacoff, M.; Jungbluth, N. Calcium Chloride Produced through the Hypochlorination of Allyl Chloride. Ecoinvent Database Version 2.2. 2007. Available online: https://ecoinvent.org/the-ecoinvent-database/data-releases/ecoinvent-version-2/ (accessed on 9 October 2021).
Metabolic Type | Pathway | Bacteria Type | Chemical Reactions |
---|---|---|---|
Heterotrophic | Urea hydrolysis [3,10,29,31,34] | Ureolytic bacteria (Bacillus pasteurii) | (a) Urea + H2O → 2NH3 + CO2 (b) NH3 + H2O → NH4+ + OH− (c) OH− + CO2 → HCO3− (d) Ca2+ + HCO3− → CaCO3 + H2O |
Denitrification [8,14] | Denitrifying bacteria (Pseudomonas denitrificans) | (a) NO3− + 1.25 CH2O → 0.5N2 + 1.25CO2 + 0.75H2O + OH− (b) Ca2+ + CO2 + 2OH− → CaCO3 + H2O | |
Ammonification [35,36,37] | Myxobacteria (Myxococcus xanthus) | (a) Amino acid + O2 → NH3 + CO2 + H2O (b) NH3 + H2O → NH4+ + OH− (c) OH− + CO2 → HCO3− (d) Ca2+ + HCO3− → CaCO3 + H2O | |
Methane Oxidation [38,39] | Methanogens (Methylocystis parvus) | (a) Methane + SO42− → HS− + HCO3− + H2O (b) Ca2+ + HCO3− → CaCO3 + H2O (c) H+ + HS− → H2S | |
Autotrophic | Carbonic Anhydrase [40,41] | (Bacillus Megaterium) | Ca2+ + 2HCO3− → CaCO3 + HCO3− + H+ →CaCO3 + CO2 + H2O |
Photosynthesis [33,42] | Cyanobacteria (Synechocuccus) | CO2 + H2O + 2HCO3 + Ca2+ → CH2O + CaCO3 + O2 + H2O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Porter, H.; Mukherjee, A.; Tuladhar, R.; Dhami, N.K. Life Cycle Assessment of Biocement: An Emerging Sustainable Solution? Sustainability 2021, 13, 13878. https://doi.org/10.3390/su132413878
Porter H, Mukherjee A, Tuladhar R, Dhami NK. Life Cycle Assessment of Biocement: An Emerging Sustainable Solution? Sustainability. 2021; 13(24):13878. https://doi.org/10.3390/su132413878
Chicago/Turabian StylePorter, Hannah, Abhijit Mukherjee, Rabin Tuladhar, and Navdeep Kaur Dhami. 2021. "Life Cycle Assessment of Biocement: An Emerging Sustainable Solution?" Sustainability 13, no. 24: 13878. https://doi.org/10.3390/su132413878
APA StylePorter, H., Mukherjee, A., Tuladhar, R., & Dhami, N. K. (2021). Life Cycle Assessment of Biocement: An Emerging Sustainable Solution? Sustainability, 13(24), 13878. https://doi.org/10.3390/su132413878