An Integrated Framework of Green Stormwater Infrastructure Planning—A Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Overview of the Planning Articles Reviewed
3.2. Objective Formulation
3.3. Type/Scenario Evaluation
3.4. Quantity/Scale Determination
3.5. Site Selection
4. Discussion
4.1. Facility Aspect
4.1.1. Objective Formulation
4.1.2. Type/Scenario Evaluation
4.1.3. Quantity/Scale Determination
- Models should contain sufficient ecological and hydrological processes and their interactions. The continuity and heterogeneity of ecological and hydrological processes should be comprehensively revealed through site monitoring, laboratory experiments, or numerical simulation methods [102], as well as the multi-scale and multi-variable simulations, to comprehensively identify eco-hydrological processes in a changing environment. To clarify the migration and transformation of rules and the evolution characteristics of variables in the SPAC interface, and to explore the spatiotemporal distribution of key eco-hydrological variables, it is helpful to comprehensively analyze eco-hydrological evolution characteristics and driving mechanisms. However, this means more parameters and variations, increasing the complexity of the model, and therefore, the trade-off should be considered.
- The selected processes need to be simulated as accurately as possible. Appropriate equations should be selected based on the conditions of planning areas to improve the accuracy of the selected parameters, and the redundancy or overlap of parameters should be observed. Models should be combined with local, social, economic, and environmental conditions because future research on coupling models is not so much to obtain a number of ESs, generally provided by the GSI, that can be used directly in all planning areas, but a way to encourage planners to adjust the models and re-simulate them to identify a balanced response between ecological and hydrological processes for each planning. Meanwhile, improving the resolution of the model simulation as much as possible is significant, then the number of ESs provided by GSI can be identified locally. Furthermore, the coupling study of hydro-ecological models is affected by inherent data uncertainty, and ignoring the uncertainty will lead to errors in model parameters, unreliable predictions, and vicious management decision making [103]. The sources of uncertainty can be roughly divided into uncertainties related to model input, model structure, parameters, and observations used for model calibration [104]. It is estimated that the sources of uncertainty in complex models are still in the initial stage, and more experimental research and summary can be conducted to reduce the uncertainty.
- The basic framework, theoretical system, and technical methods of eco-hydrology should be improved. The mismatch of spatial and temporal scales between eco-hydrological processes is always a challenge for coupling research. Theoretically, the small-scale simulation is closer to the actual situation, but the current small-scale research conclusions are difficult to be extended to watersheds or other large-scale systems [105]. Hydrological models usually use a daily scale, while ecological models usually use an hourly scale, and downscaling or upscaling approaches can be used to achieve the dynamic calculation of exchange variables and scale conversion among modules.
- The response of eco-hydrological mechanisms to global changes, such as climate change and human impact, should be considered. Interfaces with socio-economic models and climate change models should be constructed in eco-hydrological coupling models, so as to identify the necessary response mechanisms of eco-hydrological processes under the common influence of climate change and urbanization.
4.1.4. Site Selection
4.2. The Ecosystem Aspect
4.2.1. Ecosystem Resilience
4.2.2. Quantitative Assessment of Ecosystem Resilience
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhakal, K.P.; Chevalier, L.R. Implementing Low Impact Development in Urban Landscapes: A Policy Perspective. In World Environmental and Water Resources Congress 2015: Floods, Droughts, and Ecosystems, Austin, USA; Karvazy, K., Chevalier, L.R., Eds.; American Society of Civil Engineers: New York, NY, USA, 2015. [Google Scholar]
- Kim, J.-H.; Kim, H.Y.; Demarie, F. Facilitators and Barrier s of Applying Low Impact Development Practices in Urban Development. Water Resour. Manag. 2017, 31, 3795–3808. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Bichai, F.; Ashbolt, N. Public health and water quality management in low-exposure stormwater schemes: A critical review of regulatory frameworks and path forward. Sustain. Cities Soc. 2017, 28, 453–465. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Efstathiou, M.N.; Cracknell, A.P. On the scaling effect in global surface air temperature anomalies. Atmospheric Chem. Phys. Discuss. 2013, 13, 5243–5253. [Google Scholar] [CrossRef] [Green Version]
- Karamouz, M.; Hosseinpour, A.; Nazif, S. Improvement of Urban Drainage System Performance under Climate Change Impact: Case Study. J. Hydrol. Eng. 2010, 16, 395–412. [Google Scholar] [CrossRef]
- Dong, X.; Guo, H.; Zeng, S. Enhancing future resilience in urban drainage system: Green versus grey infrastructure. Water Res. 2017, 124, 280–289. [Google Scholar] [CrossRef]
- Sohn, W.; Kim, J.-H.; Li, M.-H.; Brown, R. The influence of climate on the effectiveness of low impact development: A systematic review. J. Environ. Manag. 2019, 236, 365–379. [Google Scholar] [CrossRef]
- Akhter, F.; Hewa, G.A.; Ahammed, F.; Myers, B.; Argue, J.R. Performance Evaluation of Stormwater Management Systems and Its Impact on Development Costing. Water 2020, 12, 375. [Google Scholar] [CrossRef] [Green Version]
- Akther, M.; He, J.; Chu, A.; Huang, J.; Van Duin, B. A Review of Green Roof Applications for Managing Urban Stormwater in Different Climatic Zones. Sustainability 2018, 10, 2864. [Google Scholar] [CrossRef] [Green Version]
- Conley, G.; Beck, N.; Riihimaki, C.A.; Tanner, M. Quantifying clogging patterns of infiltration systems to improve urban stormwater pollution reduction estimates. Water Res. X 2020, 7, 100049. [Google Scholar] [CrossRef]
- Sanicola, O. Using Permeable Pavements to Reduce the Environmental Impacts of Urbanisation. Int. J. Geomate 2018, 14, 159–166. [Google Scholar] [CrossRef]
- Qin, H.-P.; Li, Z.-X.; Fu, G.T. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.P.; Santelmann, M.V.; Vache, K.B.; Hulse, D.W. Modeling the impact of development policies and climate on sub-urban watershed hydrology near Portland, Oregon. Landsc. Urban Plan. 2021, 214, 104133. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Son, C.H.; Hyun, K.H.; Kim, D.; Baek, J.I.; Ban, Y.U. Development and Application of a Low Impact Development (LID)-Based District Unit Planning Model. Sustainability 2017, 9, 145. [Google Scholar] [CrossRef] [Green Version]
- EPA. What Is Green Infrastructure? Available online: http://www2.epa.gov/greeninfrastructure/what-green-infrastructure (accessed on 17 June 2021).
- Matsler, M.; Meerow, S.; Mell, I.C.; Pavao-Zuckerman, M.A. A ‘green’ chameleon: Exploring the many disciplinary definitions, goals, and forms of “green infrastructure”. Landscape Urban Plan. 2021, 214, 104145. [Google Scholar] [CrossRef]
- Flynn, C.D.; Davidson, C.I. Adapting the social-ecological system framework for urban stormwater management: The case of green infrastructure adoption. Ecol. Soc. 2016, 21, 19. [Google Scholar] [CrossRef] [Green Version]
- Prudencio, L.; Null, S. Stormwater management and ecosystem services: A review. Environ. Res. Lett. 2018, 13, 033002. [Google Scholar] [CrossRef]
- Guerrero, J.; Alam, T.; Mahmoud, A.; Jones, K.D.; Ernest, A. Decision-Support System for LID Footprint Planning and Urban Runoff Mitigation in the Lower Rio Grande Valley of South Texas. Sustainability 2020, 12, 3152. [Google Scholar] [CrossRef] [Green Version]
- Bautista, D.; Peña-Guzmán, C. Simulating the Hydrological Impact of Green Roof Use and an Increase in Green Areas in an Urban Catchment with i-Tree: A Case Study with the Town of Fontibón in Bogotá, Colombia. Resources 2019, 8, 68. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Ryu, J.H. Decision-Making of LID-BMPs for Adaptive Water Management at the Boise River Watershed in a Changing Global Environment. Water 2020, 12, 2436. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Virga, G.; Licata, M.; Leto, C.; La Bella, S. Constructed Wetlands as Sustainable Technology for the Treatment and Reuse of the First-Flush Stormwater in Agriculture—A Case Study in Sicily (Italy). Water 2020, 12, 2542. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Martinez-Izquierdo, L.; Langemeyer, J.; Baró, F.; McPhearson, T. Interactive spatial planning of urban green infrastructure—Retrofitting green roofs where ecosystem services are most needed in Oslo. Ecosyst. Serv. 2021, 50, 101314. [Google Scholar] [CrossRef]
- Jessup, K.; Parker, S.S.; Randall, J.M.; Cohen, B.S.; Roderick-Jones, R.; Ganguly, S.; Sourial, J. Planting Stormwater Solutions: A methodology for siting nature-based solutions for pollution capture, habitat enhancement, and multiple health benefits. Urban For. Urban Green. 2021, 64, 127300. [Google Scholar] [CrossRef]
- Hale, R.; Swearer, S.E.; Sievers, M.; Coleman, R. Balancing biodiversity outcomes and pollution management in urban stormwater treatment wetlands. J. Environ. Manag. 2019, 233, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Darnthamrongkul, W.; Mozingo, L.A. Toward sustainable stormwater management: Understanding public appreciation and recognition of urban Low Impact Development (LID) in the San Francisco Bay Area. J. Environ. Manag. 2021, 300, 113716. [Google Scholar] [CrossRef] [PubMed]
- Cortinovis, C.; Geneletti, D. Ecosystem services in urban plans: What is there, and what is still needed for better decisions. Land Use Policy 2018, 70, 298–312. [Google Scholar] [CrossRef]
- Albert, C.; Galler, C.; Hermes, J.; Neuendorf, F.; von Haaren, C.; Lovett, A. Applying ecosystem services indicators in landscape planning and management: The ES-in-Planning framework. Ecol. Indic. 2016, 61, 100–113. [Google Scholar] [CrossRef]
- Salata, S.; Giaimo, C.; Barbieri, C.A.; Garnero, G. The utilization of ecosystem services mapping in land use planning: The experience of LIFE SAM4CP project. J. Environ. Plan. Manag. 2020, 63, 523–545. [Google Scholar] [CrossRef] [Green Version]
- Koc, K.; Ekmekcioğlu, Ö.; Özger, M. An integrated framework for the comprehensive evaluation of low impact development strategies. J. Environ. Manag. 2021, 294, 113023. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, L.; Zhang, M.; Shen, Z.Y. Prioritizing sponge city sites in rapidly urbanizing watersheds using multi-criteria decision model. Environ. Sci. Pollut. Res. 2021, 28, 63377–63390. [Google Scholar] [CrossRef]
- Li, N.; Qin, C.; Du, P. Optimization of China Sponge City Design: The Case of Lincang Technology Innovation Park. Water 2018, 10, 1189. [Google Scholar] [CrossRef] [Green Version]
- Shao, H.; Song, P.; Mu, B.; Tian, G.; Chen, Q.; He, R.; Kim, G. Assessing city-scale green roof development potential using Unmanned Aerial Vehicle (UAV) imagery. Urban For. Urban Green. 2021, 57, 126954. [Google Scholar] [CrossRef]
- Sochacka, B.A.; Bos, J.J.; Dobbie, M.F. Contextualising landscape perceptions: The role of urban landscape, ecosystem and water system in formation of mental models of a stormwater wetland in Brisbane. Landsc. Ecol. 2021, 36, 2599–2617. [Google Scholar] [CrossRef]
- Chambers, J.C.; Allen, C.R.; Cushman, S.A. Operationalizing Ecological Resilience Concepts for Managing Species and Ecosystems at Risk. Front. Ecol. Evol. 2019, 7, 241. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.X.; Jackson, N. A review of measuring ecosystem resilience to disturbance. Environ. Res. Lett. 2021, 16, 053008. [Google Scholar] [CrossRef]
- Jaiswal, D.; Pandey, U.; Mishra, V.; Pandey, J. Integrating resilience with functional ecosystem measures: A novel paradigm for management decisions under multiple-stressor interplay in freshwater ecosystems. Glob. Chang. Biol. 2021, 27, 3699–3717. [Google Scholar] [CrossRef] [PubMed]
- Alikhani, J.; Nietch, C.; Jacobs, S.; Shuster, B.; Massoudieh, A. Modeling and Design Scenario Analysis of Long-Term Monitored Bioretention System for Rainfall-Runoff Reduction to Combined Sewer in Cincinnati, OH. J. Sustain. Water Built Environ. 2020, 6, 04019016. [Google Scholar] [CrossRef]
- Zhang, L.; Oyake, Y.; Morimoto, Y.; Niwa, H.; Shibata, S. Rainwater storage/infiltration function of rain gardens for management of urban storm runoff in Japan. Landsc. Ecol. Eng. 2019, 15, 421–435. [Google Scholar] [CrossRef]
- Zhang, Q.Q.; Miao, L.P.; Wang, X.K.; Liu, D.D.; Zhu, L.; Zhou, B.; Sun, J.C.; Liu, J.T. The capacity of greening roof to reduce stormwater runoff and pollution. Landsc. Urban Plan. 2015, 144, 142–150. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Zou, Y.C.; Lounsbury, A.W.; Wang, C.; Wang, R.R. Green roofs for stormwater runoff retention: A global quantitative synthesis of the performance. Resour. Conserv. Recycl. 2021, 170, 105577. [Google Scholar] [CrossRef]
- Flores, P.D.; Maniquiz, M.C.; Tobio, J.A.S.; Kim, L.-H. Evaluation on the Hydrologic Effects after Applying an Infiltration Trench and a Tree Box Filter as Low Impact Development (LID) Techniques. J. Korean Soc. Water Environ. 2015, 31, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, L.; Mark, O.; Mikkelsen, P.S.; Arnbjerg-Nielsen, K.; Wong, T.; Binning, P.J. Determining the extent of groundwater interference on the performance of infiltration trenches. J. Hydrol. 2015, 529, 1360–1372. [Google Scholar] [CrossRef] [Green Version]
- Tirpak, R.A.; Winston, R.J.; Feliciano, M.; Dorsey, J.D.; Epps, T.H. Impacts of permeable interlocking concrete pavement on the runoff hydrograph: Volume reduction, peak flow mitigation, and extension of lag times. Hydrol. Process. 2021, 35, e14167. [Google Scholar] [CrossRef]
- Fu, X.R.; Liu, J.H.; Shao, W.W.; Mei, C.; Wang, D.; Yan, W.C. Evaluation of Permeable Brick Pavement on the Reduction of Stormwater Runoff Using a Coupled Hydrological Model. Water 2020, 12, 2821. [Google Scholar] [CrossRef]
- Mahmoud, A.; Alam, T.; Sanchez, A.; Guerrero, J.; Oraby, T.; Ibrahim, E.; Jones, K.D. Stormwater Runoff Quality and Quantity from Permeable and Traditional Pavements in Semiarid South Texas. J. Environ. Eng. 2020, 146, 05020001. [Google Scholar] [CrossRef]
- Jennings, A.A.; Adeel, A.A.; Hopkins, A.; Litofsky, A.L.; Wellstead, S.W. Rain Barrel–Urban Garden Stormwater Management Performance. J. Environ. Eng. 2013, 139, 757–765. [Google Scholar] [CrossRef]
- Oberascher, M.; Zischg, J.; Palermo, S.A.; Kinzel, C.; Rauch, W.; Sitzenfrei, R. Smart Rain Barrels: Advanced LID Management Through Measurement and Control. In Proceedings of the 11th International Conference on Urban Drainage Modelling (UDM), Palermo, Italy, 23–26 September 2018; Mannina, G., Ed.; Springer International Publishing Aggewerbestrasse 11: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. J. Environ. Manag. 2013, 119, 151–161. [Google Scholar] [CrossRef]
- Winston, R.J.; Powell, J.T.; Hunt, W.F. Retrofitting a grass swale with rock check dams: Hydrologic impacts. Urban Water J. 2019, 16, 404–411. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.Y.; Shi, Z.N.; Zhang, D.W.; Li, S.M. Performance and potential on TSS removal of grassed swales in simulated rainfall events. Desalin. Water Treat. 2018, 119, 160–165. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Kyung-Ho, K. Evaluating the Capability of Grass Swale for the Rainfall Runoff Reduction from an Urban Parking Lot, Seoul, Korea. Int. J. Environ. Res. Public Health 2018, 15, 537. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.Q.; Lawluvy, Y.; Shi, Y.; Yap, P.S. Low Impact Development (LID) Practices: A Review on Recent Developments, Challenges and Prospects. Water Air Soil Pollut. 2021, 232, 1–36. [Google Scholar] [CrossRef]
- Huang, J.; Yu, Z.B.; Qin, Y.H.; Wang, L.; Huang, Y.Y.; Huang, Y.M. A case in subtropical climate city: Assessing the bioretention hydraulic performance on storm in response to poor permeability soil. J. Environ. Manag. 2021, 293, 112952. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Wang, Z.L.; Zhou, S.Q.; Tan, S.K. Long-term performance of bioretention systems in storm runoff management under climate change and life-cycle condition. Sustain. Cities Soc. 2021, 65, 102598. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Ren, S.H.; He, Y.F.; Wang, X.C.; Bai, X.X.; Wang, J.X.; Dzakpasu, M. Bioretention cell incorporating Fe-biochar and saturated zones for enhanced stormwater runoff treatment. Chemosphere 2019, 237, 124424. [Google Scholar] [CrossRef]
- Li, Y.Q.; Zhang, Y.; Yu, H.; Han, Y.; Zuo, J.N. Enhancing nitrate removal from urban stormwater in an inverted bioretention system. Ecol. Eng. 2021, 170, 106315. [Google Scholar] [CrossRef]
- Xiong, J.Q.; Zhu, J.G.; Li, G.H.; Yang, Y.; An, S.X.; Liu, C.K.; Wang, J.X. Purification effect of bioretention with improved filler on runoff pollution under low temperature conditions. J. Environ. Manag. 2021, 295, 113065. [Google Scholar] [CrossRef]
- Kohlsmith, E.; Morse, J.; Poor, C.; Law, J. Stormwater Treatment Effectiveness of Established Lined Bioretention Facilities in Portland, Oregon. J. Sustain. Water Built Environ. 2021, 7, 05021002. [Google Scholar] [CrossRef]
- Woodruff, S.C.; BenDor, T.K. Ecosystem services in urban planning: Comparative paradigms and guidelines for high quality plans. Landsc. Urban Plan. 2016, 152, 90–100. [Google Scholar] [CrossRef]
- Albert, C.; Aronson, J.; Fürst, C.; Opdam, P. Integrating ecosystem services in landscape planning: Requirements, approaches, and impacts. Landsc. Ecol. 2014, 29, 1277–1285. [Google Scholar] [CrossRef]
- Mascarenhas, A.; Ramos, T.; Haase, D.; Santos, R. Integration of ecosystem services in spatial planning: A survey on regional planners’ views. Landsc. Ecol. 2014, 29, 1287–1300. [Google Scholar] [CrossRef]
- Peña, L.; De Manuel, B.F.; Méndez-Fernández, L.; Viota, M.; Ametzaga-Arregi, I.; Onaindia, M. Co-Creation of Knowledge for Ecosystem Services Approach to Spatial Planning in the Basque Country. Sustainability 2020, 12, 5287. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D.; Hedlund, K. Synthesizing multiple ecosystem service assessments for urban planning: A review of approaches, and recommendations. Landsc. Urban Plan. 2021, 213, 104129. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D. A framework to explore the effects of urban planning decisions on regulating ecosystem services in cities. Ecosyst. Serv. 2019, 38, 100946. [Google Scholar] [CrossRef]
- Bennett, E.M.; Chaplin-Kramer, R. Science for the sustainable use of ecosystem services. F1000Research 2016, 5, 2622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geneletti, D. Reasons and options for integrating ecosystem services in strategic environmental assessment of spatial planning. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2011, 7, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Chen, L.; Zhao, B.; Zhang, Q.; Cai, Y. Green stormwater infrastructure eco-planning and development on the regional scale: A case study of Shanghai Lingang New City, East China. Front. Earth Sci. 2015, 10, 366–377. [Google Scholar] [CrossRef]
- Technical Guidance on Implementing the Stormwater Runoff Requirements for Federal Projects under Section 438 of the Energy Independence and Security Act. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/eisa-438.pdf (accessed on 1 July 2021).
- Technical Guide for Sponge City Construction. Available online: http://appendix.changchun.gov.cn/32fgw/uploads/soft/161220/17_1409416801.pdf (accessed on 20 September 2021).
- Roggero, M. Social dilemmas, policy instruments, and climate adaptation measures: The case of green roofs. Mitig. Adapt. Strat. Glob. Chang. 2020, 25, 625–642. [Google Scholar] [CrossRef]
- Hua, P.; Yang, W.Y.; Qi, X.C.; Jiang, S.S.; Xie, J.Q.; Gu, X.Y.; Li, H.H.; Zhang, J.; Krebs, P. Evaluating the effect of urban flooding reduction strategies in response to design rainfall and low impact development. J. Clean. Prod. 2020, 242, 118515. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Tsihrintzis, V.A.; Baltas, E. A robust approach for comparing conventional and sustainable flood mitigation measures in urban basins. J. Environ. Manag. 2020, 269, 110822. [Google Scholar] [CrossRef]
- Liang, C.M.; Zhang, X.; Xu, J.; Pan, G.Y.; Wang, Y. An integrated framework to select resilient and sustainable sponge city design schemes for robust decision making. Ecol. Indic. 2020, 119, 106810. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; Owusu, E.K.; Parn, E.; Edwards, D.J. Review of application of analytic hierarchy process (AHP) in construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar] [CrossRef]
- Men, H.; Lu, H.; Jiang, W.J.; Xu, D. Mathematical Optimization Method of Low-Impact Development Layout in the Sponge City. Math. Probl. Eng. 2020, 2020, 6734081. [Google Scholar] [CrossRef]
- Raei, E.; Alizadeh, M.R.; Nikoo, M.R.; Adamowski, J. Multi-objective decision-making for green infrastructure planning (LID-BMPs) in urban storm water management under uncertainty. J. Hydrol. 2019, 579, 124091. [Google Scholar] [CrossRef]
- Scott, R.L.; Cable, W.L.; Hultine, K.R. The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resour. Res. 2008, 44, W02440. [Google Scholar] [CrossRef]
- Nocco, M.A.; Rouse, S.E.; Balster, N.J. Vegetation type alters water and nitrogen budgets in a controlled, replicated experiment on residential-sized rain gardens planted with prairie, shrub, and turfgrass. Urban Ecosyst. 2016, 19, 1665–1691. [Google Scholar] [CrossRef]
- Jarden, K.M.; Jefferson, A.J.; Grieser, J.M. Assessing the effects of catchment-scale urban green infrastructure retrofits on hydrograph characteristics. Hydrol. Process. 2016, 30, 1536–1550. [Google Scholar] [CrossRef]
- Bach, P.M.; Kuller, M.; Deletic, A. A spatial planning-support system for generating decentralised urban stormwater management schemes. Sci. Total Environ. 2020, 726, 138282. [Google Scholar] [CrossRef]
- Logan, J. Using a Spreadsheet to Model Rain Barrel Efficiency and Cost Benefit for Homeowners. HortTechnology 2014, 24, 156–158. [Google Scholar] [CrossRef]
- Robertson, J.; Fletcher, T.; Danger, A.; Szota, C. Identifying critical inundation thresholds to maintain vegetation cover in stormwater treatment wetlands. Ecol. Eng. 2018, 116, 80–86. [Google Scholar] [CrossRef]
- Marshall, A.M.; Link, T.E.; Flerchinger, G.N.; Nicolsky, D.J.; Lucash, M.S. Ecohydrological modelling in a deciduous boreal forest: Model evaluation for application in non-stationary climates. Hydrol. Process. 2021, 35, e14251. [Google Scholar] [CrossRef]
- Cristiano, E.; Deidda, R.; Viola, F. EHSMu: A New Ecohydrological Streamflow Model to Estimate Runoff in Urban Areas. Water Resour. Manag. 2020, 34, 4865–4879. [Google Scholar] [CrossRef]
- Silva, L.C.R.; Lambers, H. Soil-plant-atmosphere interactions: Structure, function, and predictive scaling for climate change mitigation. Plant Soil 2021, 461, 5–27. [Google Scholar] [CrossRef]
- Yu, Q.; Xu, S.H.; Wang, J.; Lee, X.H. Influence of leaf water potential on diurnal changes in CO2 and water vapour fluxes. Boundary-Layer Meteorol. 2007, 124, 161–181. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Zheng, Y.; Yang, D.; Wu, F.; Tian, Y.; Han, F.; Gao, B.; Li, H.; Zhang, Y. Novel hybrid coupling of ecohydrology and socioeconomy at river basin scale: A watershed system model for the Heihe River basin. Environ. Model. Softw. 2021, 141, 105058. [Google Scholar] [CrossRef]
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; Dirmeyer, P.A.; Houser, P.R.; Niu, G.; et al. The Common Land Model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1024. [Google Scholar] [CrossRef] [Green Version]
- van Dam, J.; Feddes, R. Numerical simulation of infiltration, evaporation and shallow groundwater levels with the Richards equation. J. Hydrol. 2000, 233, 72–85. [Google Scholar] [CrossRef]
- Farquhar, G.D.; Von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Collatz, G.; Ribas-Carbo, M.; Berry, J.A. Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants. Aust. J. Plant Biol. 1992, 19, 519–538. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.Y.; Mu, X.M.; Zuo, Q.T.; Zhou, Y.J.; Zhao, G.J. A review of the ecohydrology discipline: Progress, challenges, and future directions in China. J. Geogr. Sci. 2021, 31, 1085–1101. [Google Scholar] [CrossRef]
- McMillan, H.K. A review of hydrologic signatures and their applications. Wiley Interdiscip. Rev. Water 2021, 8, e1499. [Google Scholar] [CrossRef]
- Renard, B.; Kavetski, D.; Kuczera, G.; Thyer, M.; Franks, S.W. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resour. Res. 2010, 46, 05521. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, G.R. Biogeochemical cycle and its hydrological coupling processes and associative controlling mechanism in a watershed. Acta Geogr. Sin. 2018, 73, 1381–1393. [Google Scholar] [CrossRef]
- Passeport, E.; Vidon, P.; Forshay, K.J.; Harris, L.; Kaushal, S.S.; Kellogg, D.Q.; Lazar, J.; Mayer, P.M.; Stander, E.K. Ecological Engineering Practices for the Reduction of Excess Nitrogen in Human-Influenced Landscapes: A Guide for Watershed Managers. Environ. Manag. 2013, 51, 392–413. [Google Scholar] [CrossRef]
- Dagenais, D.; Thomas, I.; Paquette, S. Siting green stormwater infrastructure in a neighbourhood to maximise secondary benefits: Lessons learned from a pilot project. Landsc. Res. 2017, 42, 195–210. [Google Scholar] [CrossRef]
- Taylor, J.; Hanumappa, M.; Miller, L.; Shane, B.; Richardson, M. Facilitating Multifunctional Green Infrastructure Planning in Washington, DC through a Tableau Interface. Sustainability 2021, 13, 8390. [Google Scholar] [CrossRef]
- Martin-Mikle, C.J.; de Beurs, K.M.; Julian, J.P.; Mayer, P.M. Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landsc. Urban Plan. 2015, 140, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Uyttenhove, P.; Van Eetvelde, V. Planning green infrastructure to mitigate urban surface water flooding risk—A methodology to identify priority areas applied in the city of Ghent. Landsc. Urban Plan. 2020, 194, 103703. [Google Scholar] [CrossRef]
- Langemeyer, J.; Wedgwood, D.; McPhearson, T.; Baró, F.; Madsen, A.L.; Barton, D.N. Creating urban green infrastructure where it is needed—A spatial ecosystem service-based decision analysis of green roofs in Barcelona. Sci. Total Environ. 2020, 707, 135487. [Google Scholar] [CrossRef]
- Song, J.Y.; Chung, E.-S. A Multi-Criteria Decision Analysis System for Prioritizing Sites and Types of Low Impact Development Practices: Case of Korea. Water 2017, 9, 291. [Google Scholar] [CrossRef] [Green Version]
- Foomani, M.S.; Malekmohammadi, B. Site selection of sustainable urban drainage systems using fuzzy logic and multi-criteria decision-making. Water Environ. J. 2020, 34, 584–599. [Google Scholar] [CrossRef]
- Steiner, F.; Brooks, K. Ecological planning: A review. Environ. Manag. 1981, 5, 495–505. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.; Walker, B.; Anderies, J.M.; Abel, N. From Metaphor to Measurement: Resilience of What to What? Ecosystems 2001, 4, 765–781. [Google Scholar] [CrossRef]
- Brand, F.S.; Jax, K. Focusing the Meaning(s) of Resilience: Resilience as a Descriptive Concept and a Boundary Object. Ecol. Soc. 2007, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Fraccascia, L.; Giannoccaro, I.; Albino, V. Resilience of Complex Systems: State of the Art and Directions for Future Research. Complexity 2018, 2018, 3421529. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B.R. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef]
- Ahern, J. Urban landscape sustainability and resilience: The promise and challenges of integrating ecology with urban planning and design. Landsc. Ecol. 2012, 28, 1203–1212. [Google Scholar] [CrossRef]
- Fu, Y.J.; Shi, X.Y.; He, J.; Yuan, Y.; Qu, L.L. Identification and optimization strategy of county ecological security pattern: A case study in the Loess Plateau, China. Ecol. Indic. 2020, 112, 106030. [Google Scholar] [CrossRef]
- Burton, C.G. A Validation of Metrics for Community Resilience to Natural Hazards and Disasters Using the Recovery from Hurricane Katrina as a Case Study. Ann. Assoc. Am. Geogr. 2015, 105, 67–86. [Google Scholar] [CrossRef]
- Liu, Z.M.; Xiu, C.L.; Song, W. Landscape-Based Assessment of Urban Resilience and Its Evolution: A Case Study of the Central City of Shenyang. Sustainability 2019, 11, 2964. [Google Scholar] [CrossRef] [Green Version]
Main Function | Runoff Reduction Rate (%) | Implementation Cost (USD/m2) [40] | Annual Maintenance Cost (USD/m2) [40] | |
---|---|---|---|---|
Bioretention (BR) | Infiltration Retention Purification | 50 [41] >60 [42] | 109–227 | 6 |
Green roof (GR) | Retention | 77.2 [43] 62.2 [44] | Extensive: 112; Semi-intensive: 147; Intensive: 409 | Extensive: 4.84; Semi-intensive: 8.78; Intensive: 6.37 |
Infiltration trench (IT) | Infiltration | 33–61 [45] 16–70 [46] | 97–149 | 4.54 |
Permeable pavement (PP) | Infiltration | 43 [47] 4.2–10.5 [48] 80 [49] | 53–81 | 0.91 |
Rain barrel (RB) | Retention | 7.4 [50] 18–40 [51] 2–12 [52] | 1.91 | 0.02 |
Vegetative swale (VS) | Transportation Infiltration | 17 [53] 5.11–13.46 [54] 40–75 [55] | 0.20 | 0.01 |
Function | Performance (%) | Reference | Location |
---|---|---|---|
Runoff reduction | 50 | [41] | Cincinnati, USA |
>60 | [42] | Kyoto, Japan | |
16.1–99.8 | [56] | Nanning, China | |
75 | [57] | Guangzhou, China | |
Pollutant removal | COD: 94.6; TP: 93.7 | [58] | Xian, China |
NO−3-N: 73.8–100; Ammonium: 80.5–97.4 | [59] | Beijing, China | |
Nitrate nitrogen: 70–90; TN: 75–90; TN: 90; ammonia nitrogen: 80; COD: 25–50 | [60] | Xian, China | |
TSS: 94; Ammonia: 85; total copper: 59; total zinc: 80 | [61] | Potland, USA |
Social | Economic | Environmental |
---|---|---|
Aesthetic | Initial investment cost | Runoff volume reduction |
Community resistance | Operational cost | Peak runoff reduction |
Employment probability | Operational feasibility | Time-to-peak delay |
Social acceptability | Implementation cost | Removal of TSS, COD, TN, TP, etc. |
Maintenance cost | Annual runoff volume control | |
Runoff duration time | ||
Impact on flora and fauna | ||
Greenhouse gas emission | ||
Groundwater recharge | ||
Rainwater usage |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Wang, L. An Integrated Framework of Green Stormwater Infrastructure Planning—A Review. Sustainability 2021, 13, 13942. https://doi.org/10.3390/su132413942
Lu G, Wang L. An Integrated Framework of Green Stormwater Infrastructure Planning—A Review. Sustainability. 2021; 13(24):13942. https://doi.org/10.3390/su132413942
Chicago/Turabian StyleLu, Gang, and Lin Wang. 2021. "An Integrated Framework of Green Stormwater Infrastructure Planning—A Review" Sustainability 13, no. 24: 13942. https://doi.org/10.3390/su132413942
APA StyleLu, G., & Wang, L. (2021). An Integrated Framework of Green Stormwater Infrastructure Planning—A Review. Sustainability, 13(24), 13942. https://doi.org/10.3390/su132413942