Use of Wearable Devices to Study Physical Activity in Early Childhood Education
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Subjects
2.3. Procedure and Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Center for Disease Control and Prevention. How Much Physical Activity Do Children Need? 2011. Available online: https://www.cdc.gov/physicalactivity/basics/pdfs/FrameworkGraphicV9.pdf (accessed on 15 December 2021).
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2018. Available online: https://health.gov/sites/default/files/2019-09/Physical_Activity_Guidelines_2nd_edition.pdf (accessed on 15 December 2021).
- Department of Health, Physical Activity, Health Improvement and Protection. Start Active, Stay Active a Report on Physical Activity for Health from the Four Home Countries’ Chief Medical Officers. 2011. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/830943/withdrawn_dh_128210.pdf (accessed on 15 December 2021).
- Education and Culture of European Commission. EU Physical Activity Guidelines. 2008. Available online: https://www.efdn.org/wp-content/uploads/2016/07/eu-physical-activity-guidelines-european-commission.pdf (accessed on 15 December 2021).
- World Health Organization (WHO). Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children under 5 Years of Age. 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/311664/9789241550536-eng.pdf?sequence=1&isAllowed=y (accessed on 15 December 2021).
- National Association for Sport and Physical Education. Active Start: A Statement of Physical Activity Guidelines for Children from Birth to Age 5, 2nd ed.; National Association for Sport and Physical Education: Reston, VA, USA, 2014. Available online: https://www.columbus.gov/uploadedFiles/Public_Health/Content_Editors/Planning_and_Performance/Healthy_Children_Healthy_Weights/NASPE%20Active%20Start.pdf (accessed on 15 December 2021).
- Cardon, G.; de Bourdeaudhuij, I. Comparison of pedometer and accelerometer measures of physical activity in preschool children. Pediatr. Exerc. Sci. 2007, 19, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, C.; Tanaka, S. Daily physical activity in Japanese preschool children evaluated by triaxial accelerometry: The relationship between period of engagement in moderate-to-vigorous physical activity and daily step counts. J. Physiol. Anthropol. 2009, 28, 283–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, L.B.; Mota, J.; di Pietro, L. Update on the global pandemic of physical inactivity. Lancet 2016, 388, 1255–1256. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M.; on behalf of SBRN Terminology Consensus Proyect Participants. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [Green Version]
- Calahorro, F.; Torres-Luque, G.; López-Fernández, I.; Carnero, E.A. Niveles de actividad física y acelerometría: Recomendaciones y patrones de movimiento en escolares. Cuad. Psicol. Deporte 2014, 14, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Wijtzes, A.I.; Verloigne, M.; Mouton, A.; Cloes, M.; de Ridder, K.A.; Cardon, G.; Seghers, J. Results from Belgium’s 2016 report card on physical activity for children and youth. J. Phys. Act. Health 2016, 13, S95–S103. [Google Scholar] [CrossRef] [Green Version]
- Diouf, A.; Thiam, M.; Idohou-Dossou, N.; Diongue, O.; Mégné, N.; Diallo, K.; Sembène, P.M.; Wade, S. Physical Activity Level and Sedentary Behaviors among Public School Children in Dakar (Senegal) Measured by PAQ-C and Accelerometer: Preliminary Results. Int. J. Environ. Res. Public Health 2016, 13, 998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyszyńska, J.; Matłosz, P.; Szybisty, A.; Lenik, P.; Dereń, K.; Mazur, A.; Herbert, J. Obesity and Body Composition in Preschool Children with Different Levels of Actigraphy-Derived Physical Activity—A Cross-Sectional Study. J. Clin. Med. 2020, 9, 1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, E.; Mei, H.; Xiu, L.; Svensson, V.; Xiong, Y.; Marcus, C.; Jianduan, Z.; Hagströmer, M. Physical activity in young children and their parents—An early STOPP Sweden-China comparison study. Sci. Rep. 2016, 6, 29595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, S.; Honegger, K.; Mason, M. Daily physical activity among toddlers: Hip and wrist accelerometer assessments. Int. J. Environ. Res. Public Health 2019, 16, 4244. [Google Scholar] [CrossRef] [Green Version]
- Carson, V.; Lee, E.-Y.; Hewitt, L.; Jennings, C.; Hunter, S.; Kuzik, N.; Stearns, J.A.; Powley, S.; Poitras, V.J.; Gray, C.; et al. Systematic review of the relationships between physical activity and health indicators in the early years (0–4 years). BMC Public Health 2017, 5, 854. [Google Scholar] [CrossRef]
- Best, J.R. Effects of physical activity on children’s executive function: Contributions of experimental research on aerobic exercise. Dev. Rev. 2010, 30, 331–351. [Google Scholar] [CrossRef]
- Tsukamoto, H.; Suga, T.; Takenaka, S.; Tanaka, D.; Takeuchi, T.; Hamaoka, T.; Isaka, T.; Hashimoto, T. Greater impact of acute high-intensity interval exercise on post-exercise executive function compared to moderate-intensity continuous exercise. Physiol. Behav. 2016, 155, 224–230. [Google Scholar] [CrossRef]
- Legislación Consolidada. Ley Orgánica 2/2006, de 3 de Mayo, de Educación. Boletín Of. Estado 2006, 106, 1–112. [Google Scholar]
- Decreto 149/2009, de 12 de mayo, por el que se regulan los centros que imparten el primer ciclo de la educación infantil. Boletín Of. Junta Andal. 2009, 92, 7–17. Available online: https://www.juntadeandalucia.es/boja/2009/92/1 (accessed on 1 December 2021).
- Gauthier, A.P.; Laurence, M.; Thirkill, L.; Dorman, S.C. Examining School-Based Pedometer Step Counts Among Children in Grades 3 to 6 Using Different Timetables. J. School Health 2012, 82, 311–317. [Google Scholar] [CrossRef]
- Martínez-Gómez, D.; Veiga, O.L.; Zapatera, B.; Gómez-Martínez, S.; Martínez, D.; Marcos, A. Physical Activity During High School Recess in Spanish Adolescents: The AFINOS Study. J. Phys. Act. Health 2013, 11, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.R.; Davis, M.G.; Robinson, T.N.; Stone, E.J.; McKenzie, T.L.; Young, J.C. Promoting physical activity in children and youth: A leadership role for schools: A scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism (Physical Activity Committee) in collaboration with the Councils on Cardiovascular Disease in the Young and Cardiovascular Nursing. Circulation 2006, 114, 1214–1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, J.R.; Pfeiffer, K.A.; Dowda, M.; Pate, R.R. In-school and Out-of-school Physical Activity in Preschool Children. J. Phys. Act. Health 2016, 13, 606–610. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, J.A.; Watson, K.; Baranowski, T.; Nicklas, T.A.; Uscanga, D.K.; Hanfling, M.J. The walking school bus and children’s physical activity: A pilot cluster randomized controlled trial. Pediatrics 2011, 128, e537–e544. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.A.; Steel, C.; Bejarano, C.M.; Beauchamp, M.T.; Davis, A.M.; Sallis, J.F.; Kerner, J.; Brownson, R.; Zimmerman, S. Walking School Bus Programs: Implementation Factors, Implementation Outcomes, and Student Outcomes, 2017–2018. Prev. Chronic Dis. 2020, 17, 1–16. [Google Scholar] [CrossRef]
- Price, K.; Bird, S.R.; Lythgo, N.; Raj, I.S.; Wong, J.Y.L.; Lynch, C. Validation of the Fitbit One, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. J. Med. Eng. Technol. 2017, 41, 208–215. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sánchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef] [PubMed]
- Sperlich, B.; Holmberg, H.C. Wearable, yes, ¿but able…? It is time for evidence-based marketing claims! Br. J. Sport. Med. 2017, 51, 1240. [Google Scholar] [CrossRef]
- Böhm, B.; Karwiese, S.D.; Böhm, H.; Oberhoffer, R. Effects of Mobile Health Including Wearable Activity Trackers to Increase Physical Activity Outcomes Among Healthy Children and Adolescents: Systematic Review. JMIR Mhealth Uhealth 2019, 7, e8298. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Quesada, G.; Puga-González, E.; Muñoz-Galiano, I.M. Efecto de la utilización de pulseras inteligentes para el incremento de la actividad física en adolescentes de un entorno rural: Estudio Piloto. J. Underrepresent. Minority Prog. 2021, 3, 10–16. [Google Scholar] [CrossRef]
- Alsubheen, S.A.; George, A.M.; Baker, A.; Rohr, L.E.; Basset, F.A. Accuracy of the vivofit activity tracker. J. Med. Eng. Technol. 2016, 40, 298–306. [Google Scholar] [CrossRef] [PubMed]
- El-Amrawy, F.; Nounou, M.I. ¿Are currently available wearable devices for activity tracking and heart rate monitoring accurate, precise, and medically beneficial? Healthc. Inform. Res. 2015, 21, 315–320. [Google Scholar] [CrossRef]
- Müller, J.; Hoch, A.-M.; Zoller, V.; Oberhoffer, R. Feasibility of Physical Activity Assessment with Wearable Devices in Children Aged 4–10 Years—A Pilot Study. Front. Pediatr. 2018, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Wahl, Y.; Düking, P.; Droszez, A.; Wahl, P.; Mester, J. Criterion-validity of commercially available physical activity tracker to estimate step count, covered distance and energy expenditure during sports conditions. Front. Physiol. 2017, 8, 725. [Google Scholar] [CrossRef]
- Jacobsen, R.M.; Ginde, S.; Mussatto, K.; Neubauer, J.; Earing, M.; Danduran, M. Can a Home-based Cardiac Physical Activity Program Improve the Physical Function Quality of Life in Children with Fontan Circulation? Congenit. Heart Dis. 2016, 11, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Trabazo, L.; Barcala-Furelos, R.; Peixoto-Pino, L.; Rico-Díaz, J. Physical activity in the recess of childhood education: A pilot study using Garmin Vivofit Jr wristbands. J. Human Sport Exerc. 2020, 16, 1–10. [Google Scholar] [CrossRef]
- Schoeppe, S.; Salmon, J.; Williams, S.L.; Power, D.; Alley, S.; Rebar, A.L.; Hayman, M.; Duncan, M.J.; Vandelanotte, C. Effects of an Activity Tracker and App Intervention to Increase Physical Activity in Whole Families—The Step It Up Family Feasibility Study. Int. J. Environ. Res. Public Health 2020, 17, 7655. [Google Scholar] [CrossRef]
- Linke, D.; Link, D.; Weber, H.; Lames, M. Decline in match running performance in football is affected by an increase in game interruptions. J. Sports Sci. Med. 2018, 17, 662–667. [Google Scholar] [PubMed]
- Doncaster, G.; Page, R.; White, P.; Svenson, R.; Twist, C. Analysis of physical demands during youth soccer match-play: Considerations of sampling method and epoch length. Res. Q. Exerc. Sport 2019, 1669766, 326–334. [Google Scholar] [CrossRef]
- Ly, A.; Verhagen, J.; Wagenmakers, E.J. Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. J. Mathl. Psych. 2016, 72, 19–32. [Google Scholar] [CrossRef]
- Wagenmakers, E.J.; Marsman, M.; Jamil, T.; Ly, A.; Verhagen, J.; Love, J.; Selker, R.; Gronau, Q.F.; Smira, M.; Epskamp, S.; et al. Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychon. Bull. Rev. 2018, 25, 35–57. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.D.; Wagenmakers, E.J. Bayesian Data Analysis for Cognitive Science: A Practical Course, 1st ed.; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCullough, A.K.; Duch, H.; Garber, C.E. Interactive dyadic physical activity and spatial proximity patterns in 2-year-olds and their parents. Children 2018, 5, 167. [Google Scholar] [CrossRef] [Green Version]
- Hnatiuk, J.A.; Ridgers, N.D.; Salmon, J.; Hesketh, K.D. Maternal correlates of young children’s physical activity across periods of the day. J. Sci. Med. Sport 2017, 20, 178–183. [Google Scholar] [CrossRef]
- Torres-Luque, G.; Calahorro, F.; López-Fernández, I.; Nikolaidis, P.T. Análisis de la distribución de la práctica de actividad física en alumnos de educación infantil. Cuad. Psicol. Deporte 2015, 16, 261–268. [Google Scholar]
- Vale, S.; Trost, S.; Ruiz, J.J.; Rêgo, C.; Moreira, P.; Mota, J. Physical activity guidelines and preschooler’s obesity status. Int. J. Obes. 2013, 37, 1352–1355. [Google Scholar] [CrossRef] [Green Version]
- Dlugonski, D.; DuBose, K.D.; Rider, P. Accelerometer-measured patterns of shared physical Aactivity Aamong mother-young child dyads. J. Phys. Act. Health 2017, 14, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Santaliestra-Pasías, A.M.; Dios, J.E.L.; Sprengeler, O.; Hebestreit, A.; de Henauw, S.; Eiben, G.; Felso, R.; Lauria, F.; Tornaritis, M.; Veidebaum, T.; et al. Food and beverage intakes according to physical activity levels in European children: The IDEFICS (Identification and prevention of Dietary and lifestyle induced health EFfects In Children and infantS) study. Public Health Nutr. 2018, 21, 1717–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstabel, K.; Veidebaum, T.; Verbestel, V.; Moreno, L.A.; Bammann, K.; Tornaritis, M.; Eiben, G.; Molnár, D.; Siani, A.; Sprengeler, O.; et al. Objectively measured physical activity in European children: The IDEFICS study. Int. J. Obesity 2014, 38, S135–S143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Tuyckom, C.; Scheerder, J. A multilevel analysis of social stratification patterns of leisure-time physical activity among Europeans. Sci. Sport. 2010, 25, 304–311. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Physical Activity Factsheets for the 28 European Union Member States of the WHO European Region. 2018. Available online: https://www.euro.who.int/__data/assets/pdf_file/0005/382334/28fs-physical-activity-euro-rep-eng.pdf?ua=1 (accessed on 15 December 2021).
- Hinkley, T.; Salmon, J.; Okely, A.D.; Crawford, D.; Hesketh, K. Preschoolers’ Physical Activity, Screen Time, and Compliance with Recommendations. Med. Sci. Sport. Exer. 2012, 44, 458–465. [Google Scholar] [CrossRef]
- Beets, M.W.; Bornstein, D.; Dowda, M.; Pate, R.R. Compliance with National Guidelines for Physical Activity in U.S. Preschoolers: Measurement and Interpretation. Pediatrics 2011, 127, 658–664. [Google Scholar] [CrossRef] [Green Version]
- Soini, A.; Tammelin, T.; Sääkslahti, A.; Watt, A.; Villberg, J.; Kettunen, T.; Mehtälä, A.; Poskiparta, M. Seasonal and daily variation in physical activity among three-year-old Finnish preschool children. Early Child Dev. Care 2013, 184, 589–601. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Galiano, I.M.; Connor, J.D.; Gómez-Ruano, M.A.; Torres-Luque, G. Influence of the Parental Educational Level on Physical Activity in Schoolchildren. Sustainability 2020, 12, 3920. [Google Scholar] [CrossRef]
- Garriguet, D.; Colley, R.C. Daily patterns of physical activity among Canadians. Health Rep. 2012, 23, 27–32. [Google Scholar]
- Miguel-Berges, M.; Santaliestra-Pasias, A.; Mouratidou, T.; de Miguel-Etayo, P.; Androutsos, O.; de Craemer, M.; Galcheva, S.; Koletzko, B.; Kulaga, Z.; Manios, Y.; et al. Combined Longitudinal Effect of Physical Activity and Screen Time on Food and Beverage Consumption in European Preschool Children: The ToyBox-Study. Nutrients 2019, 11, 1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, R.M.; Sommer, E.C.; Tracy, D.; Banda, J.A.; Economos, C.D.; JaKa, M.M.; Evenson, K.R.; Buchowski, M.S.; Barkin, S.L. Novel patterns of physical activity in a large sample of preschool-aged children. BMC Public Health 2018, 18, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.A.; Hinkley, T.; Okely, A.D.; Salmon, J. Tracking Physical Activity and Sedentary Behavior in Childhood. Am. J. Prev. Med. 2013, 44, 651–658. [Google Scholar] [CrossRef]
- Martínez-Gómez, D.; Ruiz, J.R.; Gómez-Martínez, S.; Chillón, P.; Rey-López, J.P.; Díaz, L.E.; Castillo, R.; Veiga, O.L.; Marcos, A.; AVENA Study Group. Active commuting to school and cognitive performance in adolescents: The AVENA study. Arch. Pediatr. Adolesc. Med. 2011, 165, 300. [Google Scholar] [CrossRef] [Green Version]
- McDonald, N.C.; Steiner, R.L.; Lee, C.; Rhoulac-Smith, T.; Zhu, X.; Yang, Y. Impact of the safe routes to school program on walking and bicycling. J. Am. Plann. Assoc. 2014, 80, 153–167. [Google Scholar] [CrossRef]
- Foweather, L.; Knowles, Z.; Ridgers, N.D.; O’Dwyer, M.V.; Foulkes, J.D.; Stratton, G. Fundamental movement skills in relation to weekday and weekend physical activity in preschool children. J. Sci. Med. Sport 2015, 18, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Vale, S.; Silva, P.; Santos, R.; Soares-Miranda, L.; Mota, J. Compliance with physical activity guidelines in preschool children. J. Sport. Sci. 2010, 28, 603–608. [Google Scholar] [CrossRef]
- Aibar, A.; Bois, J.E.; Zaragoza Casterad, J.; Generelo, E.; Paillard, T.; Fairclough, S. Weekday and weekend physical activity patterns of French and Spanish adolescents. Eur. J. Sport Sci. 2013, 14, 500–509. [Google Scholar] [CrossRef]
- Ramirez-Rico, E.; Hilland, T.A.; Foweather, L.; Fernández-Garcia, E.; Fairclough, S.J. Weekday and weekend patterns of physical activity and sedentary time among Liverpool and Madrid youth. Eur. J. Sport Sci. 2013, 14, 287–293. [Google Scholar] [CrossRef]
- Hesketh, K.R.; McMinn, A.M.; Ekelund, U.; Sharp, S.J.; Collings, P.J.; Harvey, N.C.; Godfrey, K.M.; Inskip, H.M.; Cooper, C.; van Sluijs, E.M.F. Objectively measured physical activity in four-year-old British children: A cross-sectional analysis of activity patterns segmented across the day. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Dwyer, M.; Fairclough, S.J.; Ridgers, N.D.; Knowles, Z.R.; Foweather, L.; Stratton, G. Patterns of Objectively Measured Moderate-to-Vigorous Physical Activity in Preschool Children. J. Phys. Act. Health 2014, 11, 1233–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.E.; Stodden, D.F.; Gao, Z. Young Children’s Energy Expenditure and Moderate-to-vigorous Physical Activity on Weekdays and Weekends. J. Phys. Act. Health 2016, 13, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Dowda, M.; Brown, W.H.; McIver, K.L.; Pfeiffer, K.A.; O’Neill, J.R.; Addy, C.L.; Pate, R.R. Policies and Characteristics of the Preschool Environment and Physical Activity of Young Children. Pediatrics 2009, 123, e261–e266. [Google Scholar] [CrossRef] [Green Version]
- Calahorro-Cañada, F.; Torres-Luque, G.; López-Fernandez, I.; Carnero, E.A. Análisis fraccionado de la actividad física desarrollada en escolares. Rev. Psicol. Deporte 2015, 24, 373–379. [Google Scholar]
- Ridgers, N.D.; Saint-Maurice, P.F.; Welk, G.J.; Siahpush, M.; Huberty, J. Differences in Physical Activity During School Recess. J. School Health 2011, 81, 545–551. [Google Scholar] [CrossRef]
- Blaes, A.; Ridgers, N.D.; Aucouturier, J.; van Praagh, E.; Berthoin, S.; Baquet, G. Effects of a playground marking intervention on school recess physical activity in French children. Prev. Med. 2013, 57, 580–584. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; SzaboReed, A.N. Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Med. Sci. Sport. Exer. 2016, 48, 1197–1222. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Timperio, A.; Brown, H.; Best, K.; Hesketh, K.D. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Benzing, V.; Kamer, M. Classroom-Based Physical Activity Breaks and Children’s Attention: Cognitive Engagement Works! Front. Psychol. 2016, 7, 1474. [Google Scholar] [CrossRef] [Green Version]
- Riley, N.; Lubans, D.R.; Holmes, K.; Morgan, P.J. Findings from the EASY Minds Cluster Randomized Controlled Trial: Evaluation of a Physical Activity Integration Program for Mathematics in Primary Schools. J. Phys. Act. Health 2016, 13, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Kidokoro, T.; Shimizu, Y.; Edamoto, K.; Annear, M. Classroom Standing Desks and Time-Series Variation in Sedentary Behavior and Physical Activity among Primary School Children. Int. J. Env. Res. Public Health 2019, 16, 1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Quesada, G. Proyecto de actividad física y alimentación. ¡La patrulla al rescate de los alimentos perdidos! In Etapa Infantil y Motricidad. Estrategias para su Desarrollo en Educación Física, 1st ed.; Torres-Luque, G., Hernández-García, R., Eds.; Wanceulen Editorial: Seville, Spain, 2019; pp. 111–130. [Google Scholar]
Variable | Total (n = 63) | Boys (n = 33) | Girls (n = 30) | p | error % | Bayes Factor | δ |
---|---|---|---|---|---|---|---|
Weight (kg) | 14.18 ± 1.86 | 14.18 ± 1.61 | 14.18 ± 2.15 | 1.000 | 0.00 | BF01 = 3.827 | −0.006 |
Height (m) | 0.90 ± 0.09 | 0.90 ± 0.09 | 0.90 ± 0.08 | 0.961 | 0.00 | BF01 = 3.858 | 0.010 |
BMI (kg/m2) | 18.19 ± 7.57 | 18.50 ± 9.78 | 17.84 ± 3.91 | 0.739 | 0.00 | BF01 = 3.629 | 0.071 |
Week MVPA (min/day) | 57.95 ± 20.68 | 59.91 ± 21.92 | 55.80 ± 19.35 | 0.435 | 10−4 | BF01 = 2.992 | 0.166 |
Week steps/day | 5907.39 ± 2244.35 | 6220.59 ± 2445.65 | 5562.87 ± 1984.95 | 0.249 | 0.00 | BF01 = 2.193 | 0.250 |
AR Week 60 min/day (%) | 96.58 ± 34.46 | 99.85 ± 36.54 | 92.99 ± 32.25 | 0.435 | 10−4 | BF01 = 2.992 | 0.161 |
AR Week 120 min/day (%) | 48.29 ± 17.23 | 49.92 ± 18.27 | 46.50 ± 16.13 | 0.435 | 10−4 | BF01 = 2.992 | 0.171 |
AR Week 13,000 steps/day (%) | 45.44 ± 17.26 | 47.85 ± 18.81 | 42.79 ± 15.27 | 0.249 | 0.00 | BF01 = 2.193 | 0.253 |
Monday to Friday MVPA (min/day) | 57.87 ± 18.66 | 58.98 ± 19.12 | 56.65 ± 18.38 | 0.624 | 0.00 | BF01 = 3.505 | 0.101 |
Monday to Friday steps/day | 5878.66 ± 2036.07 | 6093.30 ± 2087.90 | 5642.55 ± 1985.59 | 0.385 | 10−4 | BF01 = 2.810 | 0.187 |
AR Monday to Friday 60 min/day (%) | 96.45 ± 31.10 | 98.30 ± 31.87 | 94.41 ± 30.63 | 0.624 | 0.00 | BF01 = 3.505 | 0.107 |
AR Monday to Friday 120 min/day (%) | 48.22 ± 15.55 | 49.15 ± 15.94 | 47.21 ± 15.32 | 0.624 | 0.00 | BF01 = 3.505 | 0.105 |
AR Monday to Friday 13,000 steps/day (%) | 45.22 ± 15.66 | 46.87 ± 16.06 | 43.40 ± 15.27 | 0.385 | 10−4 | BF01 = 2.810 | 0.176 |
Weekend MVPA (min/day) | 60.06 ± 32.10 | 64.17 ± 34.81 | 55.52 ± 28.73 | 0.297 | 0.00 | BF01 = 2.407 | 0.225 |
Weekend steps/day | 6175.25 ± 3454.78 | 6743.14 ± 3868.37 | 5548.62 ± 2869.36 | 0.180 | 0.01 | BF01 = 1.771 | 0.295 |
AR Weekend 60 min/day (%) | 100.10 ± 53.49 | 106.95 ± 58.01 | 92.53 ± 47.89 | 0.297 | 0.00 | BF01 = 2.407 | 0.224 |
AR Weekend 120 min/day (%) | 50.05 ± 26.75 | 53.48 ± 29.00 | 46.26 ± 23.94 | 0.297 | 0.00 | BF01 = 2.407 | 0.218 |
AR Weekend 13,000 steps/day (%) | 47.50 ± 26.58 | 51.87 ± 29.76 | 42.68 ± 22.07 | 0.180 | 0.01 | BF01 = 1.771 | 0.287 |
School Time MVPA (min/day) | 17.54 ± 6.38 | 18.57 ± 7.08 | 16.40 ± 5.40 | 0.179 | 0.00 | BF01 = 1.790 | 0.284 |
School Time steps/day | 1701.72 ± 646.96 | 1836.55 ± 725.66 | 1553.41 ± 519.96 | 0.083 | 0.01 | BF01 = 1.058 | 0.376 |
AR School Time 60 min/day (%) | 29.23 ± 10.63 | 30.95 ± 11.79 | 27.33 ± 9.00 | 0.179 | 0.00 | BF01 = 1.790 | 0.282 |
AR School Time 120 min/day (%) | 14.61 ± 5.31 | 15.47 ± 5.90 | 13.67 ± 4.50 | 0.179 | 0.00 | BF01 = 1.790 | 0.284 |
AR School Time 13,000 steps/day (%) | 13.09 ± 4.98 | 14.13 ± 5.58 | 11.95 ± 4.00 | 0.083 | 0.01 | BF01 = 1.058 | 0.370 |
Out-of-School Time MVPA (min/day) | 40.33 ± 15.45 | 40.41 ± 13.79 | 40.25 ± 17.34 | 0.967 | 0.00 | BF01 = 3.883 | 0.009 |
Out-of-School Time steps/day | 4166.22 ± 1705.79 | 4256.75 ± 1538.54 | 4066.63 ± 1894.52 | 0.662 | 0.00 | BF01 = 3.581 | 0.090 |
AR Out-of-School Time 60 min/day (%) | 67.22 ± 25.75 | 67.35 ± 22.99 | 67.08 ± 28.89 | 0.967 | 0.00 | BF01 = 3.883 | 0.007 |
AR Out-of-School Time 120 min/day (%) | 33.61 ± 12.88 | 33.68 ± 11.49 | 33.54 ± 14.45 | 0.967 | 0.00 | BF01 = 3.883 | 0.010 |
AR Out-of-School Time 13,000 steps/day (%) | 32.05 ± 13.12 | 32.74 ± 11.83 | 31.28 ± 14.57 | 0.662 | 0.00 | BF01 = 3.581 | 0.093 |
Variable | Monday to Friday | Weekend | p | Error % | Bayes Factor | δ |
---|---|---|---|---|---|---|
MVPA (min/day) | 58.37 ± 18.72 | 60.06 ± 32.10 | 0.604 | 10−5 | BF01 = 6.264 | −0.063 |
Steps/day | 5940.67 ± 2036.16 | 6175.25 ± 3454.78 | 0.501 | 10−5 | BF01 = 5.733 | −0.082 |
Recommendations 60 min/day (%) | 97.29 ± 31.20 | 100.10 ± 53.49 | 0.604 | 10−5 | BF01 = 6.264 | −0.062 |
Recommendations 120 min/day (%) | 48.64 ± 15.60 | 50.05 ± 26.75 | 0.604 | 10−5 | BF01 = 6.264 | −0.062 |
Recommendations 13,000 steps/day (%) | 45.70 ± 15.66 | 47.50 ± 26.58 | 0.501 | 10−5 | BF01 = 5.733 | −0.081 |
Variable | School Time | Out-of-School Time | p | Error % | Bayes Factor | δ |
---|---|---|---|---|---|---|
MVPA (min/day) | 17.54 ± 6.38 | 40.33 ± 15.45 | 0.001 | 10−21 | 1015 | −1.537 |
Steps/day | 1701.72 ± 646.96 | 4166.22 ± 1705.79 | 0.001 | 10−21 | 1015 | −1.502 |
Recommendations 60 min/day (%) | 29.23 ± 10.63 | 67.22 ± 25.75 | 0.001 | 10−21 | 1015 | −1.543 |
Recommendations 120 min/day (%) | 14.61 ± 5.31 | 33.61 ± 12.88 | 0.001 | 10−21 | 1015 | −1.533 |
Recommendations 13,000 steps/day (%) | 13.09 ± 4.98 | 32.05 ± 13.12 | 0.001 | 10−21 | 1015 | −1.467 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Quesada, G.; Bahamonde-Pérez, C.; Giménez-Egido, J.M.; Torres-Luque, G. Use of Wearable Devices to Study Physical Activity in Early Childhood Education. Sustainability 2021, 13, 13998. https://doi.org/10.3390/su132413998
Díaz-Quesada G, Bahamonde-Pérez C, Giménez-Egido JM, Torres-Luque G. Use of Wearable Devices to Study Physical Activity in Early Childhood Education. Sustainability. 2021; 13(24):13998. https://doi.org/10.3390/su132413998
Chicago/Turabian StyleDíaz-Quesada, Gema, Cecilia Bahamonde-Pérez, José María Giménez-Egido, and Gema Torres-Luque. 2021. "Use of Wearable Devices to Study Physical Activity in Early Childhood Education" Sustainability 13, no. 24: 13998. https://doi.org/10.3390/su132413998
APA StyleDíaz-Quesada, G., Bahamonde-Pérez, C., Giménez-Egido, J. M., & Torres-Luque, G. (2021). Use of Wearable Devices to Study Physical Activity in Early Childhood Education. Sustainability, 13(24), 13998. https://doi.org/10.3390/su132413998