Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Data Description
2.1.1. Study Area
2.1.2. NDVI Data
2.1.3. Climate Data
2.1.4. Land Cover Data
2.2. Methods
2.2.1. Pre-Processing of the Data
2.2.2. Linear Regression Analysis
2.2.3. Vegetation Types Analysis
2.2.4. NDVI and Key Meteorological Factors Correlation Analysis
3. Results
3.1. Characteristics of Trends in Vegetation Dynamics from 1982 to 2015
3.2. Trend Dynamics Per Vegetation Type
3.3. Climate Variability Trends from 1982 to 2015
3.4. Correlation between NDVI and Climate Variability
3.5. Residual Analysis
4. Discussions
4.1. Analysis of Vegetation Trend Dynamics
4.2. Climate Variability Trends
4.3. Correlation between Temperature, Precipitation and NDVI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The NDVI-Precipitation and NDVI-Temperature Spearman Correlations
References
- Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Collatz, G.J.; Denning, A.S.; Mooney, H.A.; Nobre, C.A.; et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPhaden, M.J. Genesis and Evolution of the 1997-98 El Nino. Science 1999, 283, 950–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, S.J. El Niño, climate change, and Southern African climate. Environmetrics 2001, 12, 327–345. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.; Eastman, J. NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. Int. J. Remote Sens. 2001, 22, 1847–1860. [Google Scholar]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.-J.; Naidoo, M.; Garland, R.M.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 085004. [Google Scholar] [CrossRef]
- Fer, I.; Tietjen, B.; Jeltsch, F.; Wolff, C. The influence of El Niño–Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario. Biogeosciences 2017, 14, 4355–4374. [Google Scholar] [CrossRef] [Green Version]
- Stige, L.C.; Stave, J.; Chan, K.-S.; Ciannelli, L.; Pettorelli, N.; Glantz, M.; Herren, H.R.; Stenseth, N.C. The effect of climate variation on agro-pastoral production in Africa. Proc. Natl. Acad. Sci. USA 2006, 103, 3049–3053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maidment, R.I.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.P.; Stein, T.H.M.; Nkonde, E.; Senkunda, S.; et al. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef]
- Ogutu, J.O.; Piepho, H.; Dublin, H.T.; Bhola, N.; Reid, R.S. El Niño-Southern Oscillation, rainfall, temperature and Normalized Difference Vegetation Index fluctuations in the Mara-Serengeti ecosystem. Afr. J. Ecol. 2008, 46, 132–143. [Google Scholar] [CrossRef]
- Thomson, M.C.; Abayomi, K.; Barnston, A.G.; Levy, M.; Dilley, M. El Niño and drought in southern Africa. Lancet 2003, 361, 437–438. [Google Scholar] [CrossRef]
- Ndayisaba, F.; Guo, H.; Bao, A.; Guo, H.; Karamage, F.; Kayiranga, A. Understanding the Spatial Temporal Vegetation Dynamics in Rwanda. Remote. Sens. 2016, 8, 129. [Google Scholar] [CrossRef] [Green Version]
- Barros, V.R.; Field, C.B. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Engelbrecht, C.J.; Engelbrecht, F.A.; Dyson, L.L. High-resolution model-projected changes in mid-tropospheric closed-lows and extreme rainfall events over southern Africa. Int. J. Clim. 2013, 33, 173–187. [Google Scholar] [CrossRef]
- Cai, W.; Borlace, S.; Lengaigne, M.; Van Rensch, P.; Collins, M.; Vecchi, G.A.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.; et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Chang. 2014, 4, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S.; Farrar, T. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall. Remote Sens. Environ. 1994, 50, 107–120. [Google Scholar] [CrossRef]
- Chamaille-Jammes, S.; Fritz, H.; Murindagomo, F. Spatial patterns of the NDVI–rainfall relationship at the seasonal and inter-annual time scales in an African savanna. Int. J. Remote Sens. 2006, 27, 5185–5200. [Google Scholar] [CrossRef]
- Chikoore, H.; Jury, M.R. Intraseasonal Variability of Satellite-Derived Rainfall and Vegetation over Southern Africa. Earth Interact. 2010, 14, 1–26. [Google Scholar] [CrossRef]
- Georganos, S.; Abdi, A.; Tenenbaum, D.E.; Kalogirou, S. Examining the NDVI-rainfall relationship in the semi-arid Sahel using geographically weighted regression. J. Arid. Environ. 2017, 146, 64–74. [Google Scholar] [CrossRef]
- Anyamba, A.; Eastman, J.R. Interannual variability of NDVI over Africa and its relation to El Niño/Southern Oscillation. Int. J. Remote. Sens. 1996, 17, 2533–2548. [Google Scholar] [CrossRef]
- Kawabata, A.; Ichii, K.; Yamaguchi, Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. Int. J. Remote Sens. 2001, 22, 1377–1382. [Google Scholar] [CrossRef]
- Davis-Reddy, C. Assessing Vegetation Dynamics in Response to Climate Variability and Change across Sub-Saharan Africa; Stellenbosch University: Stellenosch, South Africa, 2018. [Google Scholar]
- Kalisa, W.; Igbawua, T.; Henchiri, M.; Ali, S.; Zhang, S.; Bai, Y.; Zhang, J. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 2019, 9, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Medany, M.; Niang-Diop, I.; Nyong, T.; Tabo, R.; Vogel, C. Background paper on impacts, vulnerability and adaptation to climate change in Africa. In Proceedings of the UNFCCC Convention, Accra, Ghana, 21–23 September 2006. [Google Scholar]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote. Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, P.; Funk, C.C.; Husak, G.J.; Pedreros, D.H.; Landsfeld, M.; Verdin, J.P.; Shukla, S. The Climate Hazards Group InfraRed Precipitation (CHIRP) with Stations (CHIRPS): Development and Validation. AGUFM 2013, H33E–1417. Available online: https://ui.adsabs.harvard.edu/abs/2013AGUFM.H33E1417P/ (accessed on 22 January 2021).
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Bogaert, J.; Zhou, L.; Tucker, C.J.; Myneni, R.B.; Ceulemans, R. Evidence for a persistent and extensive greening trend in Eurasia inferred from satellite vegetation index data. J. Geophys. Res. Space Phys. 2002, 107. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, C.; Li, J.; Sun, Q. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 506–512. [Google Scholar] [CrossRef]
- Croux, C.; Dehon, C. Influence functions of the Spearman and Kendall correlation measures. Stat. Methods Appl. 2010, 19, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Spearman, C. “General Intelligence”, Objectively Determined and Measured; APA PsycNet: Washington, DC, USA, 1904; Volume 15, pp. 201–293. [Google Scholar]
- Reed, B.C. Trend Analysis of Time-Series Phenology of North America Derived from Satellite Data. GISci. Remote Sens. 2006, 43, 24–38. [Google Scholar] [CrossRef]
- Duan, H.; Yan, C.; Tsunekawa, A.; Song, X.; Li, S.; Xie, J. Assessing vegetation dynamics in the Three-North Shelter Forest region of China using AVHRR NDVI data. Environ. Earth Sci. 2011, 64, 1011–1020. [Google Scholar] [CrossRef]
- Brandt, M.; Rasmussen, K.; Peñuelas, J.; Tian, F.; Schurgers, G.; Verger, A.; Mertz, O.; Palmer, J.R.B.; Fensholt, R. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat. Ecol. Evol. 2017, 1, 0081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, S.; Jury, M. Climatic variability and change over southern Africa: A reflection on underlying processes. Prog. Phys. Geogr. Earth Environ. 1997, 21, 23–50. [Google Scholar] [CrossRef]
- Nicholson, S. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet. Chang. 2000, 26, 137–158. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R.; Tucker, C.J. Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery. Int. J. Remote. Sens. 1991, 12, 1223–1242. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Field, C.B. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Cashin, P.; Mohaddes, K.; Raissi, M. Fair weather or foul? The macroeconomic effects of El Niño. J. Int. Econ. 2017, 106, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, M.; Santini, M.; Valentini, R.; Pope, E. Relationships between forests and weather. In EC Directorate General of the Environment; Met Office Hadley Centre: Exeter, UK, 2012. [Google Scholar]
- Diba, I.; Camara, M.; Diedhiou, A. Impacts of the Sahel-Sahara Interface Reforestation on West African Climate: Intra-Annual Variability and Extreme Temperature Events. Atmos. Clim. Sci. 2019, 9, 35–61. [Google Scholar] [CrossRef] [Green Version]
- Igbawua, T.; Zhang, J.; Chang, Q.; Yao, F. Vegetation dynamics in relation with climate over Nigeria from 1982 to 2011. Environ. Earth Sci. 2016, 75, 518. [Google Scholar] [CrossRef]
- Ochege, F.U.; Okpala-Okaka, C. Remote sensing of vegetation cover changes in the humid tropical rainforests of South-eastern Nigeria (1984–2014). Cogent Geosci. 2017, 3, 1307566. [Google Scholar] [CrossRef]
Slope | Trend Magnitude | p-Value | Variation |
---|---|---|---|
Positive | 0.002–0.013 | 0–0.01 | Strong improvement |
0.0003–0.002 | 0.01–0.05 | Slight improvement | |
Negative–Positive | −0.0003–0.0003 | 0.05–1 | Stable or non-vegetated area |
Negative | −0.002–−0.0003 | 0.01–0.05 | Slight degradation |
−0.014–−0.002 | 0–0.01 | Strong degradation |
Strong Degradation | Slight Degradation | Stable or Non-Vegetated Area | Slight Improvement | Strong Improvement | |||||
---|---|---|---|---|---|---|---|---|---|
a | NDVI Trends Variation Area (in Pixel) for Each Country | ||||||||
Angola | 10.21 | DR, Congo | 44.88 | Algeria | 168.04 | DR Congo | 94.12 | Sudan | 28.44 |
Tanzania | 4.60 | Angola | 34.39 | Libya | 146.66 | South Africa | 63.96 | Ethiopia | 27.91 |
Kenya | 3.79 | Zambia | 18.26 | Egypt | 78.42 | Ethiopia | 43.30 | Chad | 26.70 |
Mozambique | 3.50 | Mozambique | 18.21 | Sudan | 77.14 | Sudan | 38.65 | South Africa | 22.39 |
Zambia | 3.15 | 14.27 | Niger | 62.36 | Nigeria | 38.64 | South Sudan | 21.72 | |
Madagascar | 3.07 | Tanzania | 13.11 | Mauritania | 57.63 | Namibia | 37.88 | Nigeria | 20.19 |
DR Congo | 2.79 | Morocco | 10.34 | Mali | 51.41 | Angola | 36.70 | Mali | 16.04 |
Ethiopia | 2.64 | Namibia | 10.03 | DR Congo | 40.74 | C A R | 35.03 | Botswana | 12.94 |
Sudan | 2.52 | Sudan | 9.77 | Chad | 38.84 | Tanzania | 34.70 | Kenya | 11.92 |
b | The Percentage of NDVI Trends Based on the Area of Each Country | ||||||||
Djibouti | 19.63 | Djibouti | 53.38 | Libya | 93.99 | Eq G | 72.57 | Senegal | 49.89 |
Angola | 9.93 | Angola | 33.47 | Egypt | 90.44 | C A R | 69.22 | Sierra Leone | 45.11 |
Kenya | 8.48 | Madagascar | 30.58 | Algeria | 79.01 | Lesotho | 68.01 | South Sudan | 42.27 |
Eritrea | 7.42 | Zambia | 30.01 | Mauritania | 64.42 | Congo | 64.62 | Liberia | 33.78 |
Malawi | 7.33 | Mozambique | 29.28 | Niger | 62.08 | Burundi | 64.43 | Togo | 32.94 |
Tanzania | 6.67 | Rwanda | 26.50 | Mauritius | 50.00 | Liberia | 63.85 | The Gambia | 31.32 |
Madagascar | 6.58 | Malawi | 26.01 | Sudan | 49.29 | Swaziland | 63.03 | Guinea-Bissau | 31.14 |
Mozambique | 5.63 | Tunisia | 25.80 | Mali | 48.32 | Gabon | 62.89 | Guinea | 31.12 |
Zambia | 5.18 | DR Congo | 24.25 | Tunisia | 43.43 | Guinea | 62.69 | Ethiopia | 30.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nzabarinda, V.; Bao, A.; Xu, W.; Uwamahoro, S.; Jiang, L.; Duan, Y.; Nahayo, L.; Yu, T.; Wang, T.; Long, G. Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa. Sustainability 2021, 13, 1234. https://doi.org/10.3390/su13031234
Nzabarinda V, Bao A, Xu W, Uwamahoro S, Jiang L, Duan Y, Nahayo L, Yu T, Wang T, Long G. Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa. Sustainability. 2021; 13(3):1234. https://doi.org/10.3390/su13031234
Chicago/Turabian StyleNzabarinda, Vincent, Anming Bao, Wenqiang Xu, Solange Uwamahoro, Liangliang Jiang, Yongchao Duan, Lamek Nahayo, Tao Yu, Ting Wang, and Gang Long. 2021. "Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa" Sustainability 13, no. 3: 1234. https://doi.org/10.3390/su13031234